
ExaFMM—10+ years, 7 re-writes

The tortuous progress of computational research

@LorenaABarba

Excalibur SLE

Exascale Computing for System-Level Engineering

Workshop on Software Engineering 14-15 July 2020

ExaFMM

‣ Library implementing the fast multipole method

‣High-performance: C++ / MPI / OpenMP

‣ 7th FMM implementation written in the group!

https://github.com/exafmm

‣ 1946 — The Monte Carlo method.

‣ 1947 — Simplex Method for Linear Programming.

‣ 1950 — Krylov Subspace Iteration Method.

‣ 1951 — The Decompositional Approach to Matrix Computations.

‣ 1957 — The Fortran Compiler.

‣ 1959 — QR Algorithm for Computing Eigenvalues.

‣ 1962 — Quicksort Algorithms for Sorting.

‣ 1965 — Fast Fourier Transform.

‣ 1977 — Integer Relation Detection.

‣ 1987 — Fast Multipole Method
Dongarra& Sullivan, IEEE Comput. Sci. Eng., 
Vol. 2(1):22-- 23 (2000)

AB

�i =
NX

j=0

mj ·K(xi,yj)

M31 Andromeda Milky Way

Gravitational potential

AB
�i =

NX

j=0

mj ·K(xi,yj)

mB =
NX

j=0

mj

ȳB x̄A

�A = mB ·K(x̄A, ȳB)

AB
�i =

NX

j=0

mj ·K(xi,yj)

mB =
NX

j=0

mj

ȳB x̄A

�A = mB ·K(x̄A, ȳB)

O(NB ·NA)

O(NB) O(NA)

O(1)

Source: http://arborjs.org/docs/barnes-hut

Level 0

http://arborjs.org/docs/barnes-hut

Source: http://arborjs.org/docs/barnes-hut

http://arborjs.org/docs/barnes-hut

Well-separated regions

root

level 1

leaf level

x x

M2L

root

level 1

M2L

P2M L2P

L2L

leaf level

M2M

“A tuned and scalable fast multipole method as a preeminent algorithm for exascale systems”, Rio Yokota, L A
Barba. Int. J. High-perf. Comput. 26(4):337–346 (November 2012)

Turn the PDE to an integral equation:

‣ Poisson

‣ Helmholtz

‣ Poisson-Boltzmann

Fast mat-vec:

accelerate iterations of Krylov solvers

speed-up Boundary Element Method (BEM) solvers

�2u = f u =
�

�
Gfd�

⇥2u = �f

⇥2u + k2u = �f

⇤ · (�⇤u) + k2u = �f

Astrophysics

Electrostatics

Fluid mechanics

Acoustics

Electromagnetics

Geophysics

Biophysics

Lab-grown codes:

1. PyFMM (2008)—Python, 2D prototype, serial

 https://github.com/barbagroup/pyfmm

2. PetFMM (2009)—PETSc-based, 2D/3D, parallel

 https://bitbucket.org/petfmm/

3. GemsFMM (2010)—C CUDA, 3D

 https://github.com/barbagroup/gemsfmm

4. ExaFMM v.0.1 alpha (2011)—C++/MPI/CUDA

 https://github.com/exafmm/exafmm-alpha

5. FMMTL (2012)—C++/CUDA

 https://github.com/ccecka/fmmtl

https://github.com/exafmm/exafmm-alpha

ExaFMM v0.1 (alpha):

1. Inter-node parallelism with MPI

2. Intra-node multithreading with OpenMP

3. GPU-enabled using CUDA

4. strong scaling :108 particles on 2048 Cray
procs.,93% parallel efficiency for the non-SIMD code

5. First release late 2011, continued dev to 2016…

Tree parallelization technique:

‣ “Local essential tree” (LET), from Salmon &

Warren, 1993: “A parallel hashed Oct-Tree N-body
algorithm”

https://doi.org/10.1145/169627.169640

But ExaFMM (v.0.1) is…

‣ over-engineered with many layers of class

inheritance, to implement many features

‣ long and complex: ~12,000 Lines of Code (LoC)

‣ hard to maintain!

ExaFMM v.1 — 8 months, year-3 PhD student

1. Same parallel strategy using LET & analytical kernels

2. Added (module-level) tests & regression tests

3. Simplified everywhere, with good naming (matching
mathematical equations), improved interfaces

4. Modularized: tree part totally separate from kernels

5. ~70% fewer LoC

6. Sixth implementation in the group!

https://github.com/exafmm/exafmm

ExaFMM-t: same student, 2 more years!

1. Kernel-independent version of the algorithm

2. Goal: reusable, standard code; C++ fancy stuff: in
moderation!

3. Shallow inheritance, conservative use of classes,
clean function interfaces

4. Easy to extend

5. Faster or competitive with state-of-the art

https://github.com/exafmm/exafmm-t

https://github.com/exafmm/exafmm-t

ExaFMM-t performance, single prec, 14-core i9

ExaFMM-t performance, double prec, 14-core i9

ExaFMM-t performance, high-accuracy, 14-core i9

ExaFMM-Python interface

1. pybind11 — to create Python bindings for C++ code

2. less than 400 lines to create the Python interface!

3. allows using exaFMM as a package, with NumPy
arrays for the sources and target

4. same performance

5. pip install it (setup.py will compile exaFMM locally)

https://github.com/exafmm/exafmm-t

https://github.com/exafmm/exafmm-t

ExaFMM in a Jupyter notebook!

https://github.com/exafmm/exafmm-t/blob/master/examples/laplace_example.ipynb

https://github.com/exafmm/exafmm-t/blob/master/examples/laplace_example.ipynb

Lessons, challenges

Important and complex algorithm, but no mature
software library available? Let’s fix that! 10 years later…

1. Challenge: in research setting, string of novice developers

2. Lesson: novices tend to over-engineer, and skip essentials
(documentation, modularization, robust design)

➡ over-engineered code is the worst for research computing!

https://github.com/exafmm/exafmm-t

Lessons, challenges

Important and complex algorithm, but no mature
software library available? Let’s fix that! 10 years later…

1. Challenge: testing is hard in research computing: test on
hardware with different SIMD capability, test different
compilers, test edge cases…

2. Lesson: implement code review as regular practice

3. Goal: code simplicity + high-performance

https://github.com/exafmm/exafmm-t

Cost?

1. Faculty start-up fund + NSF CAREER award … $1 million?

2. 10+ years

3. few papers (and rejections: “not novel enough”)

https://lorenabarba.com/publications/

https://github.com/exafmm/exafmm-t

Benefit to lab members and science-tech world

1. PhD student 1: staff scientist at Swiss National
Supercomputing Center

2. Postdoc: faculty at Tokyo Institute of Technology

3. PhD student 2: dev-tech engineer at NVIDIA

4. Collaborating post-doc: research engineer at NVIDIA

5. PhD student 3: graduating soon, hire him!

https://github.com/exafmm/exafmm-t

http://lorenabarba.com https://github.com/barbagroup

