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ExaFMM —10+ years, 7 re-writes

The tortuous progress of computational research

YW @LorenaABarba



ExaFMM

» Library implementing the fast multipole method
» High-performance: C++ / MPI / OpenMP
» 7th FMM implementation written in the group!

https://github.com/exafmm



» 1946 — The Monte Carlo method.

» 1947 — Simplex Method for Linear Programming.

> 1950 — Krylov Subspace Iteration Method.

» 1951 — The Decompositional Approach to Matrix Computations.
» 1957 — The Fortran Compiler.

- 1959 — QR Algorithm for Computing Eigenvalues.

» 1962 — Quicksort Algorithms for Sorting.

» 1965 — Fast Fourier Transform.

- 1977 — Integer Relation Detection.
Dongarra& Sullivan, IEEE Comput. Sci. Eng.,

- 1987 — Fast Multipole Method Vol. 2(1):22-- 23 ( 2000)
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“A tuned and scalable fast multipole method as a preeminent algorithm for exascale systems”, Rio Yokota, L A
Barba. Int. J. High-perf. Comput. 26(4):337-346 (November 2012)



Turn the PDE to an integral equation:
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Fast mat-vec:

accelerate iterations of Krylov solvers
speed-up Boundary Element Method (BEM) solvers




Lab-grown codes:
1. PyFMM (2008)—Python, 2D prototype, serial

https://github.com/barbagroup/pyfmm

2. PetFMM (2009)—PETSc-based, 2D/3D, parallel

https://bitbucket.org/petfmm/

3. GemsFMM (2010)—C CUDA, 3D

https://github.com/barbagroup/gemsfmm

4, ExaFMM v.0.1 alpha (2011)—C++/MPI/CUDA

https://github.com/exaftmm/exatmm-alpha

5. FMMTL (2012)—C++/CUDA

https://github.com/ccecka/fmmtl


https://github.com/exafmm/exafmm-alpha

ExaFMM v0.1 (alpha):

1. Inter-node parallelism with MPI
2. Intra-node multithreading with OpenMP

3. GPU-enabled using CUDA

4. strong scaling :108 particles on 2048 Cray
procs.,93% parallel efficiency for the non-SIMD code

5. First release late 2011, continued dev to 2016...



Iree parallelization technique:

» “Local essential tree” (LET), from Salmon &
Warren, 1993: “A parallel hashed Oct-Tree N-body
algorithm”

https://do1.org/10.1145/169627.169640



# > SC Blog » SC18 Names Mike Warren & John Salmon Test of Time Award Winners for Their Paper “A Parallel Hasht

SC18 Names Mike Warren & John
Salmon Test of Time Award Winners
for Their Paper “A Parallel Hashed
Oct-Tree N-Body Algorithm”

June 27, 2018

by SC Insider

HOMmO

The SC Test of Time Award (ToTA) Committee announced the selection of “A Parallel Hashed Oct-Tree
N-Body Algorithm” by John Salmon and Mike Warren as the SC18 ToTA winner.




But ExaFMM (v.0.1) Is. ..

» over-engineered with many layers of class
inheritance, to implement many features

» long and complex: ~12,000 Lines of Code (LoC)

» hard to maintain!



ExaFMM v.1 — 8 months, year-3 PhD student

1. Same parallel strategy using LET & analytical kernels
2. Added (module-level) tests & regression tests

3. Simplified everywhere, with good naming (matching
mathematical equations), improved interfaces

4. Modularized: tree part totally separate from kernels
5. ~70% tewer LoC

6. Sixth implementation in the group!

https://github.com/exaftmm/exafmm



ExaFMM-t: same student, 2 more years!

1. Kernel-independent version of the algorithm

2. Goal: reusable, standard code; C++ fancy stuft: in
moderation!

3. Shallow inheritance, conservative use of classes,
clean function interfaces

4. Easy to extend

5. Faster or competitive with state-of-the art

https://github.com/exafmm/exafmm-t


https://github.com/exafmm/exafmm-t
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ExaFMM-Python Interface

1. pybind11 — to create Python bindings for C++ code
2. less than 400 lines to create the Python interface!

3. allows using exaFMM as a package, with NumPy
arrays for the sources and target

4. same performance

5. pip install it (setup.py will compile exaFMM locally)

https://github.com/exafmm/exafmm-t


https://github.com/exafmm/exafmm-t

ExaFMM In a Jupyter notebook!

In [1]: import numpy as np
import exafmm.laplace as laplace

In [2]: laplace. doc

Out[(2]: "exafmm's submodule for Laplace kernel”

https://github.com/exafmm/exatfmm-t/blob/master/examples/laplace_example.1ipynb


https://github.com/exafmm/exafmm-t/blob/master/examples/laplace_example.ipynb

Lessons, challenges

[mportant and complex algorithm, but no mature
software library available? Let's fix that! 10 years later...

1. Challenge: in research setting, string of novice developers

2. Lesson: novices tend to over-engineer, and skip essentials
(documentation, modularization, robust design)

= over-engineered code is the worst for research computing!


https://github.com/exafmm/exafmm-t

Lessons, challenges

[mportant and complex algorithm, but no mature
software library available? Let’s fix that! 10 years later...

1. Challenge: testing is hard in research computing: test on
hardware with different SIMD capability, test different
compilers, test edge cases...

2. Lesson: implement code review as regular practice

3. Goal: code simplicity + high-performance


https://github.com/exafmm/exafmm-t

Cost?

1. Faculty start-up fund + NSF CAREER award ... $1 million?
2. 10+ years

3. few papers (and rejections: “not novel enough”)

https://lorenabarba.com/publications/


https://github.com/exafmm/exafmm-t

Benefit to lab members and science-tech world

1. PhD student 1: staff scientist at Swiss National
supercomputing Center

2. Postdoc: faculty at Tokyo Institute of Technology

3. PhD student 2: dev-tech engineer at NVIDIA

4. Collaborating post-doc: research engineer at NVIDIA
5. PhD student 3: graduating soon, hire him!


https://github.com/exafmm/exafmm-t
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Python workflow for
high-fidelity modeling
of overland hydrocarbon
flows with GeoClaw and
cloud computing

Poster presented at the SciPy 2019
Conference, Austin, TX

How repro-packs can
save your future-self

Natalia Clementi

The story of a bug-fix after the
research paper was published. Back
in December 2019 we published a
paper along with its reproducibility
packages. These repro-packs, as we
call them, consist of all the files
necessary to reproduce the results in
our paper (data and plots) and we
deposit them in Zenodo and Figshare
archives... CONTINUE »
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Fulbright Scholar joins
the group

http://lorenabarba. com
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Computational
nanoplasmonics in the
quasistatic limit for
biosensing applications
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Preprint: arXiv 1812.10722 Dec. 31,
2018. Submitted: Dec. 31, 2018; Jan.
20, 2019; Mar. 20, 2019. Accepted:
Nov. 1. Published: Dec. 16, 2019. DOI:
10.1103/PhysRevE.100.063305
Abstract This work uses the long-
wavelength limit to compute LSPR
response of biosensors, expanding
the open-source PyGBe code to
compute the extinction cross-section
of metallic nanoparticles in the
presence of any target... CONTINUE
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