-xcalibur SLE

-xascale Computing for System-Level Engineering
Workshop on Software Engineering 14-15 July 2020

ExaFMM —10+ years, 7 re-writes

The tortuous progress of computational research

YW @LorenaABarba

ExaFMM

» Library implementing the fast multipole method
» High-performance: C++ / MPI / OpenMP
» 7th FMM implementation written in the group!

https://github.com/exafmm

» 1946 — The Monte Carlo method.

» 1947 — Simplex Method for Linear Programming.

> 1950 — Krylov Subspace Iteration Method.

» 1951 — The Decompositional Approach to Matrix Computations.
» 1957 — The Fortran Compiler.

- 1959 — QR Algorithm for Computing Eigenvalues.

» 1962 — Quicksort Algorithms for Sorting.

» 1965 — Fast Fourier Transform.

- 1977 — Integer Relation Detection.
Dongarra& Sullivan, IEEE Comput. Sci. Eng.,

- 1987 — Fast Multipole Method Vol. 2(1):22-- 23 (2000)

Gravitational potential

M31 Andromeda Milky Way

Level O

Source: http://arboris.org/docs/barnes-hut

http://arborjs.org/docs/barnes-hut

Source: http://arboris.org/docs/barnes-hut

http://arborjs.org/docs/barnes-hut

Well-separated regions

oot
@]

level 1

leaf level

OOt

@ Y U . Y U @ ¢

leaf level

\Fpaum A 12r

“A tuned and scalable fast multipole method as a preeminent algorithm for exascale systems”, Rio Yokota, L A
Barba. Int. J. High-perf. Comput. 26(4):337-346 (November 2012)

Turn the PDE to an integral equation:

Viu=f u:/GfdQ
()

» Poisson Astrophysics

VQU — —f El.ectrostatic.s
Fluid mechanics

T— T—

» Helmholtz

)) Acoustics
VZu T ku = _f Flectromagnetics
» Poisson-Boltzmann
: 2, _ Geophysics
\Y (EVU) + ku = f Biophysics

Fast mat-vec:

accelerate iterations of Krylov solvers
speed-up Boundary Element Method (BEM) solvers

Lab-grown codes:
1. PyFMM (2008)—Python, 2D prototype, serial

https://github.com/barbagroup/pyfmm

2. PetFMM (2009)—PETSc-based, 2D/3D, parallel

https://bitbucket.org/petfmm/

3. GemsFMM (2010)—C CUDA, 3D

https://github.com/barbagroup/gemsfmm

4, ExaFMM v.0.1 alpha (2011)—C++/MPI/CUDA

https://github.com/exaftmm/exatmm-alpha

5. FMMTL (2012)—C++/CUDA

https://github.com/ccecka/fmmtl

https://github.com/exafmm/exafmm-alpha

ExaFMM v0.1 (alpha):

1. Inter-node parallelism with MPI
2. Intra-node multithreading with OpenMP

3. GPU-enabled using CUDA

4. strong scaling :108 particles on 2048 Cray
procs.,93% parallel efficiency for the non-SIMD code

5. First release late 2011, continued dev to 2016...

Iree parallelization technique:

» “Local essential tree” (LET), from Salmon &
Warren, 1993: “A parallel hashed Oct-Tree N-body
algorithm”

https://do1.org/10.1145/169627.169640

> SC Blog » SC18 Names Mike Warren & John Salmon Test of Time Award Winners for Their Paper “A Parallel Hasht

SC18 Names Mike Warren & John
Salmon Test of Time Award Winners
for Their Paper “A Parallel Hashed
Oct-Tree N-Body Algorithm”

June 27, 2018

by SC Insider

HOMmO

The SC Test of Time Award (ToTA) Committee announced the selection of “A Parallel Hashed Oct-Tree
N-Body Algorithm” by John Salmon and Mike Warren as the SC18 ToTA winner.

But ExaFMM (v.0.1) Is. ..

» over-engineered with many layers of class
inheritance, to implement many features

» long and complex: ~12,000 Lines of Code (LoC)

» hard to maintain!

ExaFMM v.1 — 8 months, year-3 PhD student

1. Same parallel strategy using LET & analytical kernels
2. Added (module-level) tests & regression tests

3. Simplified everywhere, with good naming (matching
mathematical equations), improved interfaces

4. Modularized: tree part totally separate from kernels
5. ~70% tewer LoC

6. Sixth implementation in the group!

https://github.com/exaftmm/exafmm

ExaFMM-t: same student, 2 more years!

1. Kernel-independent version of the algorithm

2. Goal: reusable, standard code; C++ fancy stuft: in
moderation!

3. Shallow inheritance, conservative use of classes,
clean function interfaces

4. Easy to extend

5. Faster or competitive with state-of-the art

https://github.com/exafmm/exafmm-t

https://github.com/exafmm/exafmm-t

10
—
101

Total time
== exatmm-t
exalmm-beta O\c(\,\
-¥- PVFMM
o ,’V
ST X
__..-V‘”’ ,//
V== e X
/x”
//,
”X
/’x”
%=
=
10 10° 10°

101

ExaFMM-t performance, single prec, 14-core 17

Evaluation time

X
7
7
7’
7’
7
//V /)(
. ig
/’v —X,/
- ’f”’
_EeT XK
’ -—-V _____ _V‘” X’,
/’x”
/’x”
10° 10°
N

Time (s)

101

Total time
-¥X=' exaimm-t
exafmm-beta
-E~ ScalFMM O\@\
-v¥Y- PVFMM /,/’V
/,___v’ ,,;ﬁ
.\J"'—V” /////
- ————- -V————?S?"'/,,'-ﬁ’
S <d
- //
e =
Kg .
104 10° 109

ExaFMM-t performance, double prec, 14-core 19

Evaluation time

N
P 4
7R
”
-
X
/’/””
/”’
-
,;;’%
P
_=2%"
:: - ”—’—’
/’x
_
). ¢
10* 10° 10°
N

10!
= 10°
-

107!

Total time
-¥= exafmm-t 101
exalmm-beta
=&~ ScalFMM \“\
-¥- PVFMM O
AN - , -
V————————— R A kY 2 v ,,’//X
L7 »7
"‘0" —E””)E(,/,
B Y e

":ﬂ‘_—-.-')‘(" 10—1
10* 10° 106

ExaFMM-t performance, high-accuracy, 14-core 19

Evaluation time

-,,ggj;,
- ”
/” A
/’E ’/‘,
_.E’” V///
S ++ L%’
.- o
"“’_”V-———,—,%‘
V- -
%"
*——_
10* 10° 106
N

ExaFMM-Python Interface

1. pybind11 — to create Python bindings for C++ code
2. less than 400 lines to create the Python interface!

3. allows using exaFMM as a package, with NumPy
arrays for the sources and target

4. same performance

5. pip install it (setup.py will compile exaFMM locally)

https://github.com/exafmm/exafmm-t

https://github.com/exafmm/exafmm-t

ExaFMM In a Jupyter notebook!

In [1]: import numpy as np
import exafmm.laplace as laplace

In [2]: laplace. doc

Out[(2]: "exafmm's submodule for Laplace kernel”

https://github.com/exafmm/exatfmm-t/blob/master/examples/laplace_example.1ipynb

https://github.com/exafmm/exafmm-t/blob/master/examples/laplace_example.ipynb

Lessons, challenges

[mportant and complex algorithm, but no mature
software library available? Let's fix that! 10 years later...

1. Challenge: in research setting, string of novice developers

2. Lesson: novices tend to over-engineer, and skip essentials
(documentation, modularization, robust design)

= over-engineered code is the worst for research computing!

https://github.com/exafmm/exafmm-t

Lessons, challenges

[mportant and complex algorithm, but no mature
software library available? Let’s fix that! 10 years later...

1. Challenge: testing is hard in research computing: test on
hardware with different SIMD capability, test different
compilers, test edge cases...

2. Lesson: implement code review as regular practice

3. Goal: code simplicity + high-performance

https://github.com/exafmm/exafmm-t

Cost?

1. Faculty start-up fund + NSF CAREER award ... $1 million?
2. 10+ years

3. few papers (and rejections: “not novel enough”)

https://lorenabarba.com/publications/

https://github.com/exafmm/exafmm-t

Benefit to lab members and science-tech world

1. PhD student 1: staff scientist at Swiss National
supercomputing Center

2. Postdoc: faculty at Tokyo Institute of Technology

3. PhD student 2: dev-tech engineer at NVIDIA

4. Collaborating post-doc: research engineer at NVIDIA
5. PhD student 3: graduating soon, hire him!

https://github.com/exafmm/exafmm-t

Lorena A. Barba group

RESEARCH

CODE

Python workflow for
high-fidelity modeling
of overland hydrocarbon
flows with GeoClaw and
cloud computing

Poster presented at the SciPy 2019
Conference, Austin, TX

How repro-packs can
save your future-self

Natalia Clementi

The story of a bug-fix after the
research paper was published. Back
in December 2019 we published a
paper along with its reproducibility
packages. These repro-packs, as we
call them, consist of all the files
necessary to reproduce the results in
our paper (data and plots) and we
deposit them in Zenodo and Figshare
archives... CONTINUE »

[4BLoG % DISCUSS 06.1.2020

PEOPLE

RESEARCH PUBLICATIONS

BLOG

E4

EVENTS

Fulbright Scholar joins
the group

http://lorenabarba. com

CODE EVENTS BLOG PEOPLE

Computational
nanoplasmonics in the
quasistatic limit for
biosensing applications

1200
T160
T120

180

Preprint: arXiv 1812.10722 Dec. 31,
2018. Submitted: Dec. 31, 2018; Jan.
20, 2019; Mar. 20, 2019. Accepted:
Nov. 1. Published: Dec. 16, 2019. DOI:
10.1103/PhysRevE.100.063305
Abstract This work uses the long-
wavelength limit to compute LSPR
response of biosensors, expanding
the open-source PyGBe code to
compute the extinction cross-section
of metallic nanoparticles in the
presence of any target... CONTINUE

>»>

BINEws % DIscUss 11.1.2019

https://github.com/barbagroup

