Tracking Performance
of the Graal Compiler
on Public Benchmarks

Lubomir Bulej ! Francois Farquet 2 Vojtéch Horky ' Petr Tima '

'Department of Distributed and Dependable Systems
Faculty of Mathematics and Physics
Charles University

2Qracle Labs Ziirich

2018 - 2021

Department of
Distributed and
Dependable




Disclaimer

Development Versions

Performance and other measurements used in this presentation are
collected using development versions of the software involved.
As such, they do not represent product performance.

Modified Benchmarks

Benchmarks used to collect the measurements were often modified
to facilitate integration into the measurement infrastructure.

None of the benchmark results are standard benchmark scores.

Platform Specific

Measurements are platform specific. Platform information was omitted
for brevity, contact us if you need more details.

... and we are only human

The data may be influenced by mistakes we are not aware of.




Outline

@ Quick Platform Overview



About Graal Compiler
A just-in-time compiler for Java written in Java

@ Functions as the last tier compiler

@ Partial escape analysis and speculative optimizations

Part of a larger ecosystem surrounding the JVM

JS "‘@de"’ ﬂ@ Mg ®@@

GraalVM Compiler

Image from https://www.graalvm.org



https://www.graalvm.org

Performance Testing Goal ?

Make performance testing roughly the same as
standard (functional) regression testing.



Performance Testing Goal ?

@ Grasl Benchmark Dashboard

Make performance testing roughly the same as
standard (functional) regression testing.

Overview  Da:

©  Within 8 days of

S —
oz —_
ey o o o -
' Within 15 days of ~ Withinan hour of ©  Witinadayof
Februay 4 1522:08 Janiary 22 03:52:19 Febrary 13 052451

February 13 05:24:51

February 13 04:01:30

s st
© Wi8ause

©  Within 3 months of
February 5 03:33:11

©  Within 2 months of
January 20 1451:25.

February 11 05:08:07 © Febm!ly n nS nB 07

w16 g Wit 4 monts of
© Féb 5 6837 © Febn :44:29

February 11 04:56:51

©  Within 2 months of
Fet 1

©  Within 3 months of © yiinodaysor
February 5 03:33:11 425
X Within 8 days of X Within 3 months of
Februay 13652451 by 1 50307

it oot
© 02 19

X Within 4 months of
February 11 05:08:07




Performance Testing Goal ?

Make performance testing roughly the same as
standard (functional) regression testing.

Overall trends

@ Grasl Benchmark Dashboard

— mawm—
oz —_
wr s o f -
' Within 15 days of ~ Withinan hour of ©  Witinadayof ©  Within 8 days of
Februay 4 1522:08 Janiary 22 03:52:19 Febrary 13 052451 February 13 052451

Witin 6 days of
i Mot © FhLaTRy  © ey 11050507 © ety 1045651
ot

© mmnsdyor © Wi sdaysor ©  Winin amonthsof ©  Within2months of
b 6’ 8o February 5 05:48:37 Febi 429 Fe i

©  Wiin3monthsof ©  Wihin3monthsof © oo © Wtinannouof
February 5 03:33:11 February 50313311 425 W21

©  witin2months of X Within® days of X Within3 months of % Within 4 months of
January 201451225 February 13 052451 R 105087 February 11 050807




Performance Testing Goal ?

Make performance testing roughly the same as
standard (functional) regression testing.

e Overall trends

— - pe—
i
—
oz b
v 15 days of v ©  Withinadayof [}

oShes

ary 413:22.08

sof
13 05201

Individual
performance
w changes

in an hour of
ary 22 025219

Wit 3 months o Wit 3 s of Witin 8 daysof
TSmO finatamn  © 1y 2706 ©




Performance Testing Goal ?

Make performance testing roughly the same as
standard (functional) regression testing.

e — Overview  Dashboard @ Grasl Benchmar Dashboard Overview  Dashboard

ScalaBench tradesoap-large 249ms (2.2%) slowdown

s Gttt New Groal GE (devel) JOK 82110186 — o
o 2021-02-05702:33:112 w0125 00m%
vaon e ou Graal CE (devel) JOK 8.21.0.0317 e s Newtrt a2 hewcne azen
2020-1215T09:56:432 T it s ety
B Configuration .
wandock e porteroton
' Within 15 days of ~ Withinan hour of ©  Wiinadayof ©  Wihin8 days of
February 4 15:22:08 Janary 22 02:5219 February 13 05:24:51 February 19 05:24:51

©  Within8 days of ©  Within3 months of ©  Within 4 months of ©  Within 6 days of
February 13 04:01:30 February 11 05:0807 Februry 1050807 February 11 04:56:51 wa
Gl F e K o F ) 56 G 7 e K G ) 11

Wall dock ime per eration

O pinedaysof © Wiin 164 ©  Within 4 months of ©  Within 2 months of
February 10 15:34:58 February 5 0 as 37 February 5 03:44:29 February 5 0333:11
©  Within 3 months of ©  Within 3 months of ©  Within8 days of @ Within an hour of "
February 5 03:33:11 February 503:33:11 January 27063425 January 22 02:52:19
naasta 0458 eopasseszy Neami Er—— o
@©  Within2 months of X finng darsor X Within 3 months of X Within 4 months of
January 20145125 552051 February 11 05:08:07 February 1050807
) ¢ ol K1 G




Performance Testing Goal ?

@ Grasl Benchmark Dashboard

Make performance testing roughly the same as
standard (functional) regression testing.

Overview  Dashboard

o Wmu

~ Within 15 days of
February 413:22:08

witin6 daysof
O Fman 5

©  Within 3 months of
February 5 03:33:11

©  Within 2 months of
January 20 1451:25.

v Within an hour of
January 22 02:52:19

Wit 3 maths of
© February 11 05:08:07

wntegayr
O H SO

Witinadayof
© February 13 05:24:51

Wit 4 monts of
© Fbmu HﬂSnBlﬂ
.

Wit monts o
© Febm :44:29

©  Within 8 days of
February 13 05:24:51

©  Within 6 days of
Fetruan 11 045651

Wit 2 monts o
© Fet 33

©  Within 3 months of
February 5 03:33:11

X Within 8 days of
Februay 13652451

v e dars ot
© isias

X Within 3 months of
Februy 1050807
G 7

it oot
© 02 19

X Within 4 months of
February 11 05:08:07

@ Grasl Benchmar Dashboard

ScalaBench tradesoap-large 249ms (2.2%) slowdown

New Graal CE (devel) JDK 8 21.1.0-186
2021-02.05T02:33:112
oid Graal CE (devel) JDK 821.0.0:317

2020-12-15T09:56:432
Configuration

Overview

Dashboard

D0a%

Specific benchmark history

Wall dock ime per eration

AN

sequenaimessramen

-

b




Performance Testing Goal ?

@ Grasl Benchmark Dashboard

Make performance testing roughly the same as
standard (functional) regression testing.

Overview  Dashboard

e

~ Within 15 days of
February 4 15:22:08

©  Within 8 days of
February 13 05:24:51

February 13 04:01:30

Wit dayeof
© February 10 15:34:58.

©  Within 3 months of
February 5 03:33:11

©  Within 2 months of
January 20 1451:25.

—
oz Jont o

v Within an hour of ©  Withinadayof
January 22 02:52:19 February 13 05:24:51
February 11 05:0807 February 11 05:08:07
G F ) 0611 G 2 e K1

ey

© winn 16 daysor © Wi amonns o
Febmuary 50548537 Februry 8054429

February 11 04:56:51

©  Within 2 months of
Fet 1

Witin& daysof
Oty Phazs

onths of
505:3311

X Within 8 days of X Within 3 months of
February 13 05:24:51 February 11 05:08:07
Gl O i KD Gl 7 e K1

@ Within an hour of
January 22 02:52:19

X Within 4 months of
February 11 05:08:07

@ Grasl Benchmar Dashboard

ScalaBench tradesoap-large 249ms (2.2%) slowdown

New Graal CE (devel) JDK 8 21.1.0-186

sty e emtons
oid Graal CE (devel) JDK 8.21.0.0-317 Ntz 075

2020-12-15T09:56:432 o a2
Configuration .

Overview

Dashboard

D0a%

Specific benchmark history

T

Wall dock ime per eration

Individual measurement

1Y




Dashboard Internals |

How to execute the measurements ?

Resource sharing and background load matter
Repetition count is determined on the fly

°
°
@ Need more than latest software version
°

Faulty setup may remain invisible

What we do

@ Use dedicated hardware infrastructure

> Multiple servers with equivalent parameters
> No other load than the benchmarks

@ Proprietary software to coordinate measurements

@ Iterative selection of versions to measure



Dashboard Internals Il

When to fail the test ?

@ Noisy measurements
@ Change can be legitimate

@ Absolute performance requirements not given

What we do

@ Compare performance of neighboring versions
@ Focus on low false alarm rate

> lterative measurement planning
» Observing multiple metrics together

@ Alongside commit pipeline but not blocking



Dashboard Internals IlI

Platforms )

@ GraalVM CE and EE with Open)DK and HotSpot JDK 8 and 11
@ Only top level merge commits into master

@ ... around 6000 versions last year

Benchmarks )
@ ScalaBench (includes DaCapo) https://scalabench.org
@ SPECjvm2008 (non-compliant) https://spec.org/jvm2008
@ Renaissance 0.10 https://renaissance.dev
@ Plus internal microbenchmarks
@ ... around 130 workloads in all

Hardware )

@ ... around 40 dedicated servers


https://scalabench.org
https://spec.org/jvm2008
https://renaissance.dev

Summary Performance History

100.00%

GraalVM CE JDK 8
GraalVM EE JDK

99.00%

GraalVM EE JDK 11

©
&
=3
S
R

97.00%
GraalVM CE JDK 11

Speed relative to latest version

96.00%

95.00%

Jan 2020 Apr 2020 Jul 2020 Oct 2020 Jan 2021




Summary Performance History

100.00%

/_/\/\\ GraalVM CF IDK R
Plot Info

Input Benchmark execution times collected across one year of

compiler versions and all benchmarks.

Computation Express all execution times as speed up or slow down
relative to the execution times of the most recent compiler version
on the same benchmark.

X axis Commit time of the compiler version measured.

Speed relative to latest version

Y axis Geometric mean of relative speed up or slow down.

95.00% \/—/

Jan 2020 Apr 2020 Jul 2020 Oct 2020 Jan 2021



Summary Performance History

100.00%

GraalVM CE JDK 8
GraalVM EE JDK

99.00%

GraalVM EE JDK 11

©
&
=3
S
R

97.00%
GraalVM CE JDK 11

Speed relative to latest version

96.00%

95.00%

Jan 2020 Apr 2020 Jul 2020 Oct 2020 Jan 2021




Summary Performance History

100.00%

GraalVM CE JDK 8
GraalVM EE JDK

99.00%

GraalVM EE JDK 11

0
I
=3
S
R

Development appears to
gradually improve
performance

97.00%

GraalVM CE JDK 1

Speed relative to latest version

96.00%

95.00%

Jan 2020 Apr 2020 Jul 2020 Oct 2020 Jan 2021



Summary Performance History

100.00%
GraalVM CE JDK 8

c GraalVM EE JDK
S 99.00%
@
%
>
*5 GraalVM EE JDK 11
E 98.00%
e}
e
(%
2
=
<
T 97.00% Development appears to
3 GraalVM CE JDK 1 gradually improve
(]
& performance

96.00%

Note
All benchmarks have the same weight ... J
95.00%

Jan 2020 Apr 2020 Jul 2020 Oct 2020 Jan 2021



Outline

© Handling Warm Up



0 100 200 300
Benchmark execution time [s]

Plot Info
Input Benchmark repetition times for an arbitrarily selected
benchmark and platform.

X axis Time from start of the benchmark execution.

Y axis Time of single benchmark repetition.




Warm Up

Initial measurements quite slow

0 100 200 300
Benchmark execution time [s]

Plot Info
Input Benchmark repetition times for an arbitrarily selected
benchmark and platform.

X axis Time from start of the benchmark execution.

Y axis Time of single benchmark repetition.




Warm Up

Initial measurements quite slow ‘

oL_| Stabilization possibly jumpy |

0 rov 200 300
Benchmark execution time [s]

Plot Info
Input Benchmark repetition times for an arbitrarily selected
benchmark and platform.

X axis Time from start of the benchmark execution.

Y axis Time of single benchmark repetition.




Warm Up

Initial measurements quite slow ‘

oo
[}
Eo
b— ofe . . .
oL_| Stabilization possibly jumpy
0 oo I 200 300

Benchmark execution time [s]



Warm Up

Initial measurements quite slow ‘

Stabilization possibly jumpy |
300

0 T

200
Benchmark execution time [s]

Some reasons behind warm up eliminated in our setup
@ Most power management features disabled
@ Initial and maximum heap size equal and fixed
@ Most (but not all) benchmarks stable after first repetition



Warm Up

Initial measurements quite slow ‘

Stabilization possibly jumpy |
TOU 200 300

0
Benchmark execution time [s]

Some reasons behind warm up eliminated in our setup
@ Most power management features disabled
@ Initial and maximum heap size equal and fixed
@ Most (but not all) benchmarks stable after first repetition

But the elephant in the room is just-in-time compilation



How

Much Compilation On Average ?

» ScalaBench (with DaCapo)

150%

e - ® Renaissance 0.10

Q .

= .

o .

< .

- .

.2 .

= 2

E 100% »

= "

=] .

c °e

o

'g .
— , %% Internal Micros
o .

: g

S 50% - %

%3 ﬁ;“ SPECjvm2008 (modified)
— e LR

g «° v“.’:\w-.
< s? LY

0%
0 100

Benchmark execution time [s]

200

300



How Much Compilation On Average ?
» ScalaBench (with DaCapo)

150%

« " Renaissance 0.10

Plot Ir;fo

Input Cumulative compiler thread execution times collected during
benchmark execution across all benchmarks.

Computation Average processor utilization for compiler threads
relative to single core across benchmark suites.

axis Time from start of the benchmark execution.

< X

axis Processor utilization for compiler threads.

Average compilation utilization [cores]

0% ‘%M

0 100 200
Benchmark execution time [s]

300




How

Much Compilation On Average ?

» ScalaBench (with DaCapo)

150%

e - ® Renaissance 0.10

Q .

= .

o .

< .

- .

.2 .

= 2

E 100% »

= "

=] .

c °e

o

'g .
— , %% Internal Micros
o .

: g

S 50% - %

%3 ﬁ;“ SPECjvm2008 (modified)
— e LR

g «° v“.’:\w-.
< s? LY

0%
0 100

Benchmark execution time [s]

200

300



How Much Compilation On Average ?

» ScalaBench (with DaCapo)
150%{
— - ® Renaissance 0.10
] .
S - More complex benchmarks
£ . induce more compilation
100%
= A
= o
=] .
c ®e
.2
b= .
— %% Internal Mi
= r - nternal Micros
£ -
o} (X
S 50% %
g”n &'\ SPECjvm2008 (modified)
o e $‘~.‘
g «° ".’:Nv-,
< w RONCT R
%
0%
0 100 200

300
Benchmark execution time [s]



How Much Compilation On Average ?

150%

100%

Average compilation utilization [cores]
o
(=3
N

0%

» ScalaBench (with DaCapo)

. .
« Renaissance 0.10

. More complex benchmarks
induce more compilation

Internal Micros

E SPECjvm2008 (modified) Compilation

S never really stops

100 200
Benchmark execution time [s]

300



How

Much Compilation Per Benchmark ?

chi-square jython-large
150%1
.;'_ 150% L
100%]  $82, B
Y = -
[ L .
100%
S ¥ . :
= son Lk w2 e !
= ¢ X I — s
TN v =)
= 7 M
N H \\
= 0% 0%
2 0 100 200 300 0 100 200 300
8 naive-bayes neo4j-analytics
8 250%1 . L
a . 200% ?
€ 200%{ :
8 . ol TN
° 150% .
en150%1 ¢ .
s 5 .
) ° 100%
2007l - %
Z 100% e:‘
50% Qd‘-‘.; . 50% \
K M
0% 0%
0 100 200 300 0 100 200 300

Benchmark execution time [s]



Detecting Warm Up

What do we want from warm up ?

@ Make sure we measure code produced by the last tier compiler
@ Move past the most egregious performance changes

@ Do not waste too much time on warm up

What we do

@ Monitor activity of background compiler threads

@ Establish thresholds across 60 s sliding window
@ The first window with activity within 10 % of minimum is warm

> The algorithm is not online
» Used with runs of 300 s to 600 s
» Will always identify some repetitions as warm



Do We Warm Up Enough ?

Internal Micros Renaissance 0.10
90
100
60
50
30
= 0 0
c
Lg) ScalaBench (with DaCapo) SPECjvm2008 (modified)
60 100
40
50
20
0 0 A
-20.0% -10.0% 0.0% 10.0% 20.0% -20.0% -10.0% 0.0% 10.0% 20.0%

Difference between first warm repetion and last repetition




Do We Warm Up Enough ?

Internal Micros Renaissance 0.10

, Plot Info

Input Benchmark repetition times and compiler thread execution
times across all benchmarks from many runs.

Computation Relative difference between the first repetition time
considered warm and the last repetition time (which is the most
warm we have).

Count

X axis Relative difference in the repetition times.
Y axis Count of runs with that difference.
Color Distinguishes benchmarks.

Simply How much will performance change after warm up ?

MY/

200% -100% 0.0%  100%  20.0% 200% -100% 0.0%  100%  20.0%
Difference between first warm repetion and last repetition



Do We Warm Up Enough ?

Internal Micros Renaissance 0.10
90
100
60
50
30
= 0 0
c
Lg) ScalaBench (with DaCapo) SPECjvm2008 (modified)
60 100
40
50
20
0 0 A
-20.0% -10.0% 0.0% 10.0% 20.0% -20.0% -10.0% 0.0% 10.0% 20.0%

Difference between first warm repetion and last repetition




Do We Warm Up Enough ?

Count

100

50

60

40

20

Internal Micros

90

60

Renaissance 0.10

| Symmetry is important |

/

-20.0%

ScalaBench (with DaCapo) ' SPECjvm2008 (modified)
100
50
T, M
-10.0% 0.0% 10.0% 20.0%

-20.0%

-10.0%  0.0% 10.0%  20.0%

Difference between first warm repetion and last repetition




Do We Warm Up Enough ?

Count

100

50

60

40

20

Internal Micros

90

60

Renaissance 0.10

| Symmetry is important |

/

ScalaBench (with DaCapo)

0

100

50

0

Constant
compilation
churn

SPECjy,£008 (modified)

-

-10.0%  0.0% 10.0%  20.0%

-20.0% -10.0%

0.0% 10.0%  20.0%

Difference between first warm repetion and last repetition



Do We Warm Up Enough ?

Internal Micros

Renaissance 0.10

90
100
60
50 a_ o
| Symmetry is important |
= 0 0
c
Lg) ScalaBench (with DaCapo) SPECjy,£008 (modified)
Constant
60 100{ | compilation
churn
40 Leaky
benchmark 50
20
0 ol | A
-20.0% -10.0% 0.0% 10.0% 20.0%

-20.0% -10.0%

0.0% 10.0%  20.0%

Difference between first warm repetion and last repetition



Do We Warm Up Too Much ?

Internal Micros

60

40

20

Count

125

ScalaBench (with DaCapo)

100

75

40

Renaissance 0.10

A

SPECjvm2008 (modified)

40

50

2l Ly

20

0 A

0

dAa

0 100 200 300

500
Distance from first fast cold repetition to first warm repetion [s]

400




Do We Warm Up Too Much ?

Internal Micros Renaissance 0.10
Plot Info
Input Benchmark repetition times and compiler thread execution

times across all benchmarks from many runs

Computation How far before the first repetition considered warm
did we see a repetition at least as short

Count

X axis Distance between the first fast cold repetition and the first
| warm repetition.

Y axis Count of runs with that distance

Color Distinguishes benchmarks

Simply How long before warm up are benchmarks already fast ?
%ﬁ%@&ﬁ&ﬁ%ﬁmﬁmmmM fdha

0 100

200

300

of MMMKASRALAAANBANNIA )

400 500 0 100

A
200 300
Distance from first fast cold repetition to first warm repetion [s]

400

500




Do We Warm Up Too Much ?

Internal Micros

60

40

20

Count

125

ScalaBench (with DaCapo)

100

75

40

Renaissance 0.10

A

SPECjvm2008 (modified)

40

50

2l Ly

20

0 A

0

dAa

0 100 200 300

500
Distance from first fast cold repetition to first warm repetion [s]

400




Do We Warm Up Too Much ?

Internal Micros Renaissance 0.10

60 Less complex benchmarks | 4
show peak performance
s 0 0 30
40 before compilation subsides
20
= 0
o
8 ScalaBench (with DaCapo) SPECjvm2008 (modified)
Q 125
100
40
75
50
20
25
0 100 200 300 400 500 0 100 200 300 400 500

Distance from first fast cold repetition to first warm repetion [s]




What About (Much) Longer Warm Up ?

als

N W A G

philosophers

Time [s]

reactors

0 2 4 6 8
Benchmark execution time [h]



What About (Much) Longer Warm Up ?

als

N W A G

Plot Info
Input Benchmark repetition times for an arbitrarily selected
@'  benchmarks and platforms.

—

o1
E , X axis Time from start of the benchmark execution.

€Y axis Time of single benchmark repetition.

0 2 4 6
Benchmark execution time [h]



What About (Much) Longer Warm Up ?

als

N W A G

philosophers

Time [s]

reactors

0 2 4 6 8
Benchmark execution time [h]



What About (Much) Longer Warm Up ?

als

6
5 Nice behavior except for outliers
4
3
philosophers
—14 Sudden changes after long stability
h .
o 1.2 .
£
= 1.0
0.8
reactors
13 R R
; Very slowly deteriorating performance
11
10

0 2 4 6 8
Benchmark execution time [h]



Take Away So Far ...

Some warm up properties complicate detection from time measurements
@ Performance can change at any time into benchmark execution
@ Performance changes possibly rather sudden

@ Performance changes in both directions

Reaching measurement stability not really the goal here
@ Looking (only) at repetition times possibly wrong

@ Warm up detection surprisingly important

Too much warmup is prohibitive resource hog
Too little warmup produces useless measurements




Outline

e Detecting Changes



Detecting Changes

| Colors show runs
245 — —

"% 2.40
Q235
= 2.30

2.25

i

Jan 2020 Apr 2020 May 2020 Aug 2020 Oct 2020

https://doi.org/10.1007/s10515-015-0188-0



https://doi.org/10.1007/s10515-015-0188-0

Detecting Changes

Colors show runs

2.45
"% 2.40
Q235
E
= 230

2.25

Jan 2;020 Apr 2020 May 2020 Aug 2;)20 Oct 2020
A time series change point detection problem with a few twists

@ We have more correlated time series rather than just one

@ We can add more data points to any version if required

@ Data points are in fact hierarchical sets from runs

@ We are more interested in changes near series end

@ Almost no assumptions about data distribution

https://doi.org/10.1007/s10515-015-0188-0


https://doi.org/10.1007/s10515-015-0188-0

Detecting Changes

Colors show runs

2.45

T 2.40
Q235
= 2.30

2.25

Jan 2;020 Apr 2020 May 2020 Aug 2620 Oct 2020
A time series change point detection problem with a few twists

@ We have more correlated time series rather than just one

@ We can add more data points to any version if required

@ Data points are in fact hierarchical sets from runs

@ We are more interested in changes near series end

@ Almost no assumptions about data distribution

We use bootstrap confidence intervals of mean differences

https://doi.org/10.1007/s10515-015-0188-0


https://doi.org/10.1007/s10515-015-0188-0

Detected Changes In Numbers

What share of versions have changes and how reliably are they detected ?

Renaissance 0.10 rx-scrb 4% 0% | scrfm-h 2% sci.spl 4% 0% FIstr
bench R D I | sc-doku 1% scxb-h 2% serial 2% 25% | FltOdd
aka-uct 1% 0% | sc-kmns specs-1 1% sunflow 3% 0% | FndNgt
als 5% 9% | sc-stmb 1% sunfl-1 2% xml.trn 3% FntNgtR
chi-sqr 2% 0% scrb | 5% - 0% tmt-d 3% xml.val 2% 25% | FldSum
db-shot 2% ScalaBench (with DaCapo) | trdb-d 1% Internal Micros F1ldSumR
dec-tre 2% - 0% | bench R D I trds-1 2% bench R D I ForSum

dotty 5% appar-d 3%. 0% | xalan-1 2% StrDev 4% ForSumR
fin-chi 1% % | avror-1 1% SPECjvm2008 (modified) | SFndNeg 3%
fin-htt 3% 0% | batik-s 3%. 33%| bench R D I |SFldsum 3%

fj-kmns 5% 9% | eclps-s 1% cmp.cmp 2% SForSum 3%

GrpRem
MapOne

NetDot

fut-gen 0% factr-d 1% cmp.sun 2% SMapRed 3% 21% | NetEig
gauss 1% fop-d 2% compr 4% STwoAvg 30% | Reduce
log-reg 0% h2-d 2% cry.aes 4% TSP 0% | STMLst
mne 5% 0% | jythn-1 1% cry.rsa 2% TxtSDF 10% | STMMap
mov-len | 6% kiama-d 2% cry.sgn 4% TxtRDD o% Scan
nai-bay 2% luidx-d 1% derby 1% WrdCnt 0% | SrtRDD
neo-ana 4% 0% | lusrc-1 2% mpega 4% BufDec 15% | StdDev
pg-rank 1% 0% pmd-1 3% sci.ffl 1% BufEnc 12% | StrCnt
par-mne 4% % scc-1 1% sci.lul 1% ChrCnt % | StrDem
philos 2% scdoc-1 1% sci.mtc 3% ChrHis 20% | StrPer
reactr 2% - % scp-1 2% sci.sol 3% FIHis 0%

R - versions with changes D - manually confirmed



Detected Changes In Numbers

What share of versions have changes and how reliably are they detected ?

Renaissance 0.10 rx-scrb 4% 0% | scrfm-h 2% sci.spl 4% 0% FIstr
bench R D I | sc-doku 1% scxb-h 2% serial 2% 25% | FltOdd
aka-uct 1% 0% | sc-kmns specs-1 1% sunflow 3% 0% | FndNgt
als 5% 9% | sc-stmb 1% sunfl-1 2% xml.trn 3% FntNgtR
chi-sqr 2% 0% scrb | 5% - 0% tmt-d 3% xml.val 2% 25% | FldSum
db-shot 2% ScalaBench (with DaCapo) | trdb-d 1% Internal Micros F1ldSumR
dec-tre 2% - 0% | bench R D I trds-1 2% bench R D I ForSum

dotty 5% appar-d 3%. 0% | xalan-1 2% StrDev 4% ForSumR
fin-chi 1% % | avror-1 1% SPECjvm2008 (modified) | SFndNeg 3%

fin-htt 3% 0% | batik-s 3%- 33% | bench R D I | SFldSum 3%

GrpRem
MapOne
fj-kmns 5% 9% | eclps-s 1% cmp.cmp 2% SForSum 3% NetDot

fut-gen 0% factr-d 1% cmp.sun 2% SMapRed 3% 21% | NetEig

gauss 1% fop-d 2% 30% | Reduce

log-reg W‘ 0% h2-d 2%

mne 0% | jythn-1 1%
Most benchmarks [
exhibit changes | =

123 pre-l 3%
par-mne 4%.@% scc-1 1%

philos 2% scdoc-1 1%

reactr 2%- % scp-1 2%

compr 4% 25% | STwoAvg
cry.aes 4% 0% TSP 0% | STMLst

cry.rsa 2% 0% | TxtSDF 10% | STMMap

cry.sgn | 4% 25% | TxtRDD 3 Scan

derby 1% 40% | WrdCnt 0% | SrtRDD

mpega 4% % | Bufbec 15% | StdDev

sci.ffl 1% 33% | BufEnc

12% | StrCnt
sci.lul 1% 0% | ChrCnt 0% | StrDem

sci.mtc 3% 12% | ChrHis 20% | StrPer

FJHis

R - versions with changes D - manually confirmed I - invalid situations




Detected Changes In Numbers

What share of versions have changes and how reliably are they detected ?

Renaissance 0.10

bench R D

aka-uct 1%

als | 5%

Detection mostly

rx-scrb 4% 0%
sc-doku 1%
sc-kmns
sc-stmb 1%
scrb | 5% - 0%

ScalaBench (with DaCapo)

. bench R D 1
reliable enough || . g o
fin-chi 1% 0% | avror-1 1%
fin-htt 3% 0% | batik-s 3% - 33%
fj-kmns 5% 9% | eclps-s 1%
fut-gen 0% factr-d 1%
gauss 1% fop-d 2%
log-reg  f% 0% h2-d 2%
mne ' ‘ 0% | jythn-1 1%
2%
Most benchmarks |
exhibit changes | =
123 pre-l 3%
par-mne 4% . % scc-1 1%
philos 2% scdoc-1 1%
reactr 2% - % scp-1 2%

scrfm-h

scxb-h

specs-1

sunfl-1

tmt-d

trdb-d

trds-1

xalan-1

2%

SPECjvm2008

bench

cmp.

cmp.

cmp

sun

compr

cry.
cry.

cry.

aes

rsa

sgn

derby

mpega

sci.

sci

sci.

R - versions with changes

ffl

~lul

R
%
2%
4%
4%
%
4%
1%
4%
1%

(modi fied)

D

I

sci.spl 4% 0%
serial 2% 25%
sunflow 3% 0%
xml.trn 3%
xml.val 2% 25%
Internal Micros
bench R D I
StrDev 4%
SFndNeg 3%
SF1dSum 3%
SForsum 3%
SMapRed 3% 21%
STwoAvg 30%
TSP 0%
TxtSDF 10%
TxtRDD 0%
WrdCnt 0%
BufDec 15%
BufEnc 12%
ChrCnt 0%
ChrHis 20%
FJHis 0%

D - manually confirmed

FIstr
F1t0dd
FndNgt

FntNgtR
FldSum
FldSumR
ForSum
ForSumR
GrpRem
MapOne
NetDot
NetEig
Reduce
STMLst
STMMap
Scan
SrtRDD
StdDev
strCnt
StrDem

StrPer

| - invalid situations




Detected Changes In Numbers

What share of versions have changes and how reliably are they detected ?

Renaissance 0.10 rx-scrb 4% 0% | scrfm-h 2% sci.spl 4% FIstr

bench R D I | sc-doku 1% scxb-h 2% serial 2% F1t0dd

aka-uct 1% 0% | sc-kmns ' 6% specs-1 1% sunflow 3% FndNgt

als | 5% sc-stmb 1% sunfl-1 2%

scrb 5%- 0% tmt-d 3%

ScalaBench (with DaCapo) | trdb-d 1%

xml.trn 3% FntNgtR

xml.val 2% FldSum

Internal Micros FldSumR

Detection mostly

. bench R D I trds-1 2% bench R D ForSum
rehable enough appar-d 3%- 0% | xalan-1 2% StrDev 4% ForsumR
fin-chi 1% 0% | avror-1 1% SPECjvm2008 (modified) | SFndNeg 3% GrpRem
fin-htt 3% 0% | batik-s 3%- 33% bench R D I SF1dSum 3% MapOne
fi-kmns 5% 0% | eclps-s 1% cmp.cmp 2% SForsum 3% .
ut-gon [ toctrod [ anp.sun srapredt [ Microbenchmarks

gauss 1% fop-d 2% compr 4% 25% | STwoAvg Sometimes m isbehave
log-reg  f% 0% h2-d 2% cry.aes 4% 0% TSP
mne ' ‘ 0% | jythn-1 1% cry.rsa 2% 0% | TxtSDF 10% | STMMap 3% 0%
Most bench marks d 2% cry.sgn 4% 25% | TxtRDD 0% Scan 1%
1% derby 1% 40% | WrdCnt 0% | SrtRDD 2%
exhibit chan ges | = npega | 4% o% | Bufdec 15% | staev 3% |
PE pme-1 3% sci.ffl 1% 33% | BufEnc 12% | strCnt 2% ‘
par-mne 4% . % scc-1 1% sci.lul 1% 9% | ChrCnt % | StrDem 2% 0%
philos 2% scdoc-1 1% sci.mtc 3% 12% | ChrHis 20% | StrPer 4% 0%
reactr 2% - % scp-1 2% sci.sol FIHis 0%

R - versions with changes D - manually confirmed | - invalid situation




Manual Change Classification

We examined all detected performance changes in ad hoc version intervals
@ Benchmarks not necessarily represented equally

@ More measurements added when not sure

We have no classification information about false negatives

o Likely impacts especially small changes relative to variance



Manual Change Classification

We examined all detected performance changes in ad hoc version intervals
@ Benchmarks not necessarily represented equally

@ More measurements added when not sure

We have no classification information about false negatives

o Likely impacts especially small changes relative to variance

Plot Info
Input Benchmark repetition times for arbitrarily selected pairs of
platform versions with suspected change.

X axis Benchmark repetitions and runs ordered sequentially.

Y axis Time of single benchmark repetition.

Color Distinguishes versions.




Classification Example: Trivial

0.20

o Samples from version one
—0.18
[}

£
F 016 Samples from version two




Classification Example: Trivial

0.20
- \E'lples from version one \
QE) 0.18
F o6 gples from version two }

An obvious difference that is trivial to classify
@ Very low variance both within run and between runs

o Difference of large relative magnitude
If all data looked like this we would have little to talk about ...



Classification Example: Small Change




Classification Example: Small Change

10

. ‘ Variance between runs \ I

6

Time [s]

4

Computed difference in average repetition time around 0.6 %
@ Variance between runs large relative to the computed difference

@ Outliers large relative to the computed difference

@ Maybe we need more data ?



Classification Example: Small Change

. ‘ Variance between runs \ .

N

Computed difference in average repetition time around 0.6 %
@ Variance between runs large relative to the computed difference
@ Outliers large relative to the computed difference

@ Maybe we need more data ?

=2}
a

Instruction count difference
may appear convincing

Instructions [G]
[=2)
(=}

51
a1l




Classification Example: Outlier Definition Issues

0.36




Classification Example: Outlier Definition Issues

0.36

Computed difference in average repetition time around 0.9 %
@ The computed difference very much depends on outlier filtering

@ Are we sure we have enough data ?



Classification Example: Outlier Definition Issues

0.36

Computed difference in average repetition time around 0.9 %
@ The computed difference very much depends on outlier filtering

@ Are we sure we have enough data ?
Assume 10 % change in outlier runs and 10 % chance of such runs
@ This would result in an average repetition time change of 0.9 %

@ There is around 35 % chance of getting 10 fine runs

@ Obviously the example can be stretched in various directions



Do We Have Too Many Benchmarks ?

60%

40%

20%

Share of versions with changes

0%

‘II.I.II---_-_ -
0 20 40

Number of benchmarks changing together

60



Do We Have Too Many Benchmarks ?

60% I

Plot Info
Input All detected performance changes across measurement history.

4

Computation Count how many benchmarks are impacted by
particular compiler version commits.

X axis Count of benchmarks changing together on the same commit.

Y axis Share of compiler versions with that count.

z

Share of versions with changes

0% “II.I.II---_-_ — _ 1
0 20

40 60
Number of benchmarks changing together



Do We Have Too Many Benchmarks ?

60%

40%

20%

Share of versions with changes

0%

‘II.I.II---_-_ -
0 20 40

Number of benchmarks changing together

60



Do We Have Too Many Benchmarks ?

60%

40%

20%

Share of versions with changes

0%

Majority of changes
< limited to single
benchmark

‘II.I.II---_-_ —_—
0

20 40
Number of benchmarks changing together

60






Do Benchmarks Change Together ?







Benchmarks Change Together ?

(828R TT01%o T3T1s T EfTzevoTiiniibas
52388 Trvsvo FEYrz T frdEeroIifslibade

Only few benchmarks
‘| often change with another i




Do Benchmarks Change Together ?

2282 Trip ‘:g Tz I_E53z

Only few benchmarks :
often change with another fi:

}fg H Some benchmarks almost
Eff : ’*ij never change with another

e
% ”




Do Benchmarks Change Together ?

££2 Trrge, 13Toe T TelzesoIiiigss
SSEE 5T liTo ERiTZ_E_EfRZvR-Eg

Only few benchmarks
often change with another fi:

8 i S A
st

Some bench marks almost

] ! ’*ij never change with another
: e .”
4,

Artlfact of one su1te
not belng around KYo) long H




Take Away So Far ...

We probably do not have too many (or even enough) benchmarks
@ Overlap in performance changes relatively rare

@ Not really clear how to define coverage !

Change detection reliability per se not an issue
@ Change definition issues beyond math
@ Requires reasonable measurement procedure

@ Some benchmarks may require special attention




Outline

@ Handling More Runs



Count

Handling More Runs

A single benchmark run does not really tell the whole story ...

0 1

670 675 630 685 690 69
Benchmark repetition time [s]



Count

Handling More Runs

A single benchmark run does not really tell the whole story ...

Compact results
coming from

one run

0 1

670 675 630 685 690 69
Benchmark repetition time [s]




Handling More Runs

A single benchmark run does not really tell the whole story ...

Count

Compact results
coming from

one run

670 675 680 685 690 69
Benchmark repetition time [s]

Count

670 675 680 685 690
Benchmark repetition time [s]

6.9



Count

Handling More Runs

A single benchmark run does not really tell the whole story ...

” Compact results ” More runs
coming from give more
one run variability
10 o 10
c
>
o
|©]
5 5
0 1 0 1 |
6.70 6.75 6.80 6.85 6.90 6.9 6.70 6.75 6.80 6.85 6.90 6.9
Benchmark repetition time [s]

Benchmark repetition time [s]




How Many Runs Needed ...

... to compute average performance with at most 1% error in 99 % of cases ?

Renaissance 0.10 rx-scrb scrfm-h = 33 13 44 34| sci.spl 4 9 NetDot
bench C8 C11 E8 E11 | sc-doku scxb-h serial 14 23 NetEig
aka-uct 15 sc-kmns specs-1 12 5 1N 8 | sunflow 9 13 Reduce
als 6 7 sc-stmb sunfl-1 6 16 18 [ xml.trn 10 7 9 7| STMLst
chi-sqr scrb tmt-d 8 9 19 9 | xml.val 1 30 16 30| STMMap
db-shot 56 39 ScalaBench (with DaCapo) trdb-d 17 26 18 25 Internal Micros Scan
dec-tre 55 bench c8 €11 E8 EI trds-1 7 5 3 5| bench c cn SrtRDD
dotty appar-d - xalan-1 35 26 28 23| BufDec StdDev
fin-chi avror-1 SPECjvm2008 (modified) BufEnc strent
fin-htt batik-s bench c8 C11 E8 EIN ChrHis StrDem
fi-kmns eclps-s cmp.cmp 8 5 Chrent StrDev
fut-gen factr-d cmp.sun 5 16 F1todd SFndNeg
gauss fop-d compr 4 15 16 FndNgt 2 1 1 1| SF1dSum
log-reg h2-d cry.aes 13 21 9 | FntNgtR 1 1 1 2 | SForSum
mne jythn-1 cry.rsa 11 9 6 7| FIHis SMapRed
mov-len kiama-d cry.sgn 9 13 5 14| FIStr StrPer
nai-bay luidx-d derby 28 8 35 FldSum STwoAvg
neo-ana lusrc-1 mpega 1 FldSumR TxtSDF
pg-rank pmd-1 sci. ffl Forsum TXtRDD
par-mne scc-1 sci.lul 1 1 1 1 | ForSumR TSP
philos scdoc-1 sci.mtc 12 6 - 1| Grprem WrdCnt
reactr scp-1 sci.sol 1 1 1 1| MapOne




How Many Runs Needed ...

... to compute average performance with at most 1% error in 99 % of cases ?

scrfm-h = 33 13 44 34| sci.spl 4\_- NetDot 1 1

Renaissance 0.10 rx-scrb
bench €8 €11 E8 El1|sc-doku scxb-h se Perhaps 1%
aka-uct 15 sc-kmns specs-1 12 5 11 8| sun
als 6 7 sc-stmb sunfl-1 6 16 18| xm| 1S asking too much
chi-sgr scrb tmt-d 8 9 19 9 | xml.var T 30 6 30 S TMMap
db-shot 56 39 | ScalaBench (with DaCapo) | trdb-d 17 26 18 25 Internal Micros Scan
dec-tre 55 bench €8 C11 E8 E11| trds-l 7 5 3 5| bench C8 CI11 E8 EI1| SrtROD
dotty appar-d - 27 41 |xalan-l 35 26 28 23| Bufbec StdDev
fin-chi avror-l 8 7 18 7| SPECjvm2008 (modified) BufEnc strnt
fin-htt batik-s 2 1 2 1| bench C8 CI1 E8 FEI1| Chrhis Strem
fi-kmns eclps-s cmp 8 5 chrent StrDev
fut-gen factr-d sun 5 16 F1todd SFndNeg
gauss fop-d ompr 4 15 16| FndNgt SFldsum
log-reg h2-d Laes 13 21 9 | FnthgtR SForsum
mne jythn-1 rsa 119 6 7| FlHis SMapRed
mov-len kiama-d = 39 51 46 18|cry.sgn 9 13 5 14| FIstr Strper
nai-bay luidx-d | 62 50 23 27| derby 28 8 35 70| Fldsum STwoAvg
neo-ana lusre-1 1| mpega 1 1 1 2|Fldsum TxtSDF
pg-rank pmd-1 14 | sci. ff1 _ Forsum TXtRDD
par-mne sce-1 20|scilul 1 1 1 1|Forsum TSP
philos scdoc-1 19| scimtc 12 6 - 1| Grprem Wrdcnt
reactr scp-1 52 - scisol 1 1 1 1| Mapone




How Many Runs Needed ...

... to compute average performance with at most 5 % error in 99 % of cases ?

Renaissance 0.10 rx-scrb 2 2 1 1 |scrfm-h 2 1 1 1 |sci.spl 1 1 1 NetDot 1 1 12 30
bench €8 C11 E8 E11 | sc-doku | 67 18 - scxb-h 8 6 25 - serial 2 8 3 13| NetEig 1 1 2 4
aka-uct 1 4 3 4 | sc-kmns 2 1 1 1| specs-1 1 1 3 1| sunflow 1 1 1 1 Reduce 14 11 8 15

als 1 2 7 14| sc-stmb 2 2 4 6 [ sunfl-1 1 1 2 1| xml.trn 1 1 1 1 STMLst 6 21 8 1

chi-sqr 23 22 36 26 scrb 20 10 25 42 tmt-d 1 1 2

xml.val 1 3 1 3 STMMap 18 24 4

db-shot 7 6 2

ScalaBench (with DaCapo) trdb-d 1 3 1 1 Internal Micros Scan 9 14 34 8
dec-tre 11 1 6 7 bench €8 C11 E8 EM trds-1 3 1 1 1 bench €8 C11 E8 EI1 SrtRDD 4 7 5 19

appar-d - 3 2 | xalan-1 1 14 Bufbec 1 5 8 2| StdDev = 45 - 1

dotty 1 1 1

fin-chi 5 21 26 6|avror-1 2 1 1 1  SPECjvm2008 (modified) | BufEnc 1 1 1 5| strecnt 3 9 7 1
fin-htt 1 1 1 1|batik-ss 1 1 1 1 bench C8 CI1 E8 EI1| ChrHis 4 10 4 3| StrDem - 26 - 51
fjkmns 1 3 2 1|eclps-s 2 2 cmp.cmp 1 1 chrent 11 73 5| Strdev 1 1 2 2
fut-gen 6 6 3 8|factr-d 6 7 38 59 |cmp.sun 1 4 Fltodd 1 45 6 1 |SFndNeg 11 9 18 12
gauss 25 13 - fop-d 1 3 1 1| compr 1 3 1 2| Fndgt 2 1 1 1|SFldsum 34 1 -
log-reg 6 8 2 2 h2-d 1 2 1 2|cry.aes 1 1 11 4|FntNgtR 1 1 1 1[SForSum 1 1 21 44

mne 7 13 29 12| jythn-1 3 9 1 3|cry.rsa 1 11 1 FJHis 1 1 1 3 | SMapRed | 67 57 1 1

mov-len 1 1 1 1 | kiama-d 1 6 2 1 |cry.sgn 1 1 1 14 FIstr 1 5 3 2 StrPer 13 1
nai-bay 1 1 60 - luidx-d 1 1 1 2 derby 2 1 1 2| Fldsum 1 3 - 70 | STwoAvg 25 40

neo-ana 41 8 10 14| lusrc-1 1 1 3 1 mpega 1 1 1 1| FldSumR 1 1 1 1 TxtSDF 3 1 8 10
pg-rank 7 5 5 2 pmd-1 1 2 13 1 |sci.ffl 21 14 33 7| ForSum 1 1 - TxtRDD 11 10 1 8

ForSumR 10 1 1 4 TSP -

par-mne 8 5 1 sce-1 5 1N 1 1]sci.lul 1 1 1 1
philos 10 14 38 | scdoc-1 4 1 1 1|sci.mte 1 112 1 GrpRem 7 7 4 9| WrdCnt 1 5 2 3
reactr 2 1 23 10 scp-1 1 1 1 3 |sci.sol 1 1 1 1 MapOne 14 16 -



How Accuracy Relates To

10.0% 1

Accuracy

3.0%

1.0%1

Run Count ?

Run count

100

15C



How Accuracy Relates To Run Count ?

10.0%

Plot Info
Input Benchmark repetition times for an arbitrarily selected

benchmark and platform.

Computation Size of 99 % confidence interval for the mean relative
to the mean

Accuracy

X axis How many times the benchmark was run.

Y axis Confidence interval width.

v

\

0 50 100
Run count

15C



How Accuracy Relates To

10.0% 1

Accuracy

3.0%

1.0%1

Run Count ?

Run count

100

15C



How Accuracy Relates To Run Count ?

10.0% 1

- Roughly follows 1/1/n

Accuracy

3.0%

1.0%1

Run count

100

15C



Take Away So Far ...

Running benchmarks only once may not be enough
@ Non deterministic compilation visible especially with microbenchmarks

@ But the presented tables also include simple cases of high variance

Aiming for excessive accuracy backfires quickly

Reasonable accuracy is a function of more than just the benchmark
@ Tooling should consider benchmarks together with platforms

@ Not yet sure how often relevant parameters tend to change




Outline

© Handling Different Metrics



Runs Needed When Different Metrics Used ...

... to compute average performance with at most 1% error in 99 % of cases.

bench
aka-uct
als
chi-sqr
db-shot
dec-tre
dotty
fin-chi
fin-htt
£i-kmns
fut-gen
gauss
log-reg
mne
mov-len
nai-bay
neo-ana
pg-rank
par-mne
philos

reactr

Renaissance 0.10

time clk

ins

rx-scrb 49 46 25 | scrfm-h
sc-kmns s 8 7 | specs-1
sc-stmb sunfl-1

scrb tmt-d

ScalaBench (with DaCapo) | trdb-d

bench  time clk

appar-d xalan-1
avror-1 8 32

SPECjvm2008 (modified)

batik-s 2 2

eclps-s 10 12

ins trds-1

bench

cmp. cmp

fop-d 17 17
h2-d 24 10
jythn-l 31 31
kiama-d 39 | 66
luidx-d | 62 7
lusrc-1 42 54
pmd-1 32 16
sce-1
scdoc-1

scp-1

ES

compr

12 | cry.aes

©

cry.rsa

51 | cry.sgn

o

derby
29 | mpega
sci.ffl

sci.lul
sci.mtc

sci.sol

time - wall clock time

time

8

5

clk
8

ins

8

w o -

- = - @

23

sci.spl 4 4

serial 14 14
sunflow 9 9
xml.trn 1

xml.val 1 3

Internal Micros

bench  time clk
BufDec 1 1
BufEnc 6 6
ChrHis
ChrCnt

F1t0dd 2 2
FndNgt 2 1
FntNgtR 1 1
FIHis 2 2
FIstr 1723
FldSum 1 1
FldSumR 1 1
ForSum 1 1
ForsumR
GrpRem

MapOne

clk - thread clock time

ins
1

2
55
50

w o - o

NetDot
NetEig
Reduce
STMLst
STMMap
Scan
SrtRDD
StdDev
StrCnt
StrDem
StrDev
SFndNeg
SF1dsum
SForSum
SMapRed
StrPer
STwoAvg
TxtSDF
TxtRDD

WrdCnt

ins - instruction count



Different Metrics Not Always In Sync

60%

30%

0%

Change in instruction count

-30%

-40% -20% 0% 20% 40% 60%
Change in wall clock time



Different Metrics Not Always In Sync

60%

.
._.’
o

30% . . T T

Plot Info

Input Benchmark repetition times and dynamic instruction counts
for all pairs of platform versions with suspected change.

X axis Change in average repetition time.

Y axis Change in average instruction count.

Change in instruction count

J ey o 0 E
-30% ey, gt o4 . 1
8 o0 & v . .o .
S e a-
-40% -20% 0% 20% 40% 60%

Change in wall clock time



Different Metrics Not Always In Sync

60%

30%

0%

Change in instruction count

-30%

-40% -20% 0% 20% 40% 60%
Change in wall clock time



Different Metrics Not Always In Sync

60%
v

- .
< 30%
S .
o
o
c
(]
=
o
=3
bt .
%]
£ 0% -
£
[}
o0
c
4]
<
O

-30%

Sometimes things
work quite well
-40% -20% 0% 20% 40% 60%

Change in wall clock time



Different Metrics Not Always In Sync

60%
et P
T 30 "o CRE .
S 30% I RICRERRE ]
3 .
o
c
S S B
=
o
=3
k= . .
2 .
£ 0% e e
£
. A\
o0
S
S Sometimes
30% instructions
Sometimes things may not be
work quite well the culprit
-40% -20% 0% 20% 40% 60%

Change in wall clock time



Different Metrics Not Always In Sync

Change in instruction count

60%

30%

0%

-30%

Perhaps
memory
bound ?

Change in wall clock time

St e
Sometimes
instructions

Sometimes things |° may not be
work quite well the culprit

-40% -20% 0% 20% 40% 60%



Wall Clock Time Changes Not Always Portable

Q 10%
o
)
c
o
>
2
o
o . .
o .
L 0% - LI :
£ . . . Using Cores
- .
= = All
3 . + Half
° &
= .
3 o
£ -10% . —
)
o0
o .
]
=
)

20%] .

-20.0% -10.0% 0.0% 10.0%

Change in wall clock time on our hardware



Wall Clock Time Changes Not Always Portable

S
NI

Plot Info
Input Benchmark repetition times for arbitrarily selected pairs of
platform versions with suspected change.

X axis Change in average repetition time on our hardware.

Y axis Change in average repetition time on cloud hardware.

Change in wall clock time on cloud nodes

-20% .

-20.0% -10.0% 0.0% 10.0%
Change in wall clock time on our hardware



Wall Clock Time Changes Not Always Portable

Q 10%
o
)
c
o
>
2
o
o . .
o .
L 0% - LI :
£ . . . Using Cores
- .
= = All
3 . + Half
° &
= .
3 o
£ -10% . —
)
o0
o .
]
=
)

20%] .

-20.0% -10.0% 0.0% 10.0%

Change in wall clock time on our hardware



Wall Clock Time Changes Not Always Portable

=
o
32

Even large local changes
may not reproduce

0% ° *.

Using Cores

. All
* Half

-10%

Change in wall clock time on cloud nodes

-20% .

-20.0% -10.0% 0.0% 10.0%
Change in wall clock time on our hardware



Wall Clock Time Changes Not Always Portable

=
o
32

Even large local changes
may not reproduce

%]
[}
el
<}
-
o
>
o
<
o .
o
Q0% . ks :
£ . . ‘ Using Cores
- .
X - Al
8 . * Half
<
3
z J .
£ 107 . - Improvement vs regression
[} e
2 also platform specific
g .
@)

-20% .

.720A0% -10.0% 0.0% 10.0%

Change in wall clock time on our hardware



Wall Clock Time Changes Not Always Portable

@ 10%
3 Even large local changes
< may not reproduce
E
o
<
c . .
S .
L 0% - LI :
E . . : Using Cores
x < Al
8 . * Half
2
E
£ -10% . Improvement vs regression
) .
%J also platform specific
=
O
Note
0% Measurement variance not shown ... J

-20.0% -10.0% 0.0% 10.0%
Change in wall clock time on our hardware



Take Away So Far ...

Looking at more execution metrics can improve accuracy
@ Can help developers trust detected time changes

@ Or even direct investigation of change causes

Not really clear how to combine multiple (possibly) conflicting results
@ Some metrics changing and some not
@ Some platforms improving and some regressing

@ Some benchmarks improving and some regressing




Outline

@ Troublesome Performance Changes



Regression Example: Processor Scheduling |

Code

A microbenchmark that locates the first negative array item.

def run () {
for (i <- @ until REPEATS) {
blackhole += findNegative (numbers)
}
}

def findNegative (numbers: Array[Int]): Option[Int] = {
numbers.find(_ < 0)

}

What the measurements said

Clear repetition time change between roughly 230 ms and roughly 170 ms
No change in other observed counters like instruction count

Observed multiple times in versions across several days

Commit changes often clearly unrelated




Regression Example: Processor Scheduling Il

Assembly

Compilation results in reasonably compact assembly code.

0x00007f115c894¢00:
0x00007f115c894¢03:
0x00007f115c894c09:
0x00007f115c894c0e:
0x00007f115c894c11:
0x00007f115c894c17:
0x00007f115c894c1d:
0x00007f115c894¢20:
0x00007f115c894c23:

Analysis

cmp
jbe
mov
test
jl
test
inc
cmp
jg

%r13d, %edi ;loop iteration count test
0x00007f115c89561¢

0x10(%rdx,%r13,4),%r10d ;fetch array item

%ried, %ried ;negative test

0x00007f115c894c2a ;found negative
%eax,0x1942d3e9(%rip) ;safepoint poll

%r13d

%r13d, %edi ;loop iteration count test (again)
0x000071115c894c00

Inner loop executes at IPC 6 when fast or IPC 4.5 when slow

Performance difference inflated from mere 0.5 cycle per iteration
Instruction scheduler counters report different pops port use as the reason
Actual scheduler choice only indirectly influenced by code




Regression Example: Inlining Heuristic |

Code

A microbenchmark that filters odd array items.

def run () {
for (i <- @ until REPEATS) {
blackhole += filterOdd (numbers).length
}
}

def filterOdd (numbers: ArrayBuffer[Int]): ArrayBuffer[Int] = {
numbers.filter (_ % 2 == 1)
}

What the measurements said

Times always stable within each run

Repetition time of a run flipping between 5s and 5.6 s

Rarely observed runs with repetition times of roughly 3.4s

Share of runs with each time sometimes changes between versions




Regression Example: Inlining Heuristic I

Analysis

Fast and slow runs differed in what code gets inlined

Inlining heuristic (also) relies on low level graph size of the callee
@ If callee previously compiled, a cached value was used

o If callee not yet compiled, an estimate was made

Caller and callee invocation counters necessarily similar
Hence compilation jobs launched close together in time
That increases the likelihood of the inliner flipping




Take Away So Far ...

Reasons for performance change
not always directly connected to committed code

@ Especially microbenchmarks may exhibit fragile performance

@ Responsibility for addressing changes therefore not clear

Hard to tell whether performance regression should be addressed

@ Especially with benchmarks that
do not represent application performance

o Effort needed to investigate reasons is not very predictable




Broader Context

Multiple testing scenarios employed

@ Quick benchmark run every commit
@ Thorough benchmark run every week

@ Interactive performance change detection (us)

Every commit

@ Fast but low detection ability

@ Useful to catch major bugs fast

Every week

@ Resource intensive but high detection ability
@ Useful to keep track of overall development

@ Significant changes investigated manually



Thank You!

https://d3s.mff.cuni.cz

Our work is kindly sponsored by Oracle Labs.


https://d3s.mff.cuni.cz

Thank You!

Do not treat all benchmarks the same ... J

.. using similar run sizes or expecting similar accuracy is not a good idea

https://d3s.mff.cuni.cz

Our work is kindly sponsored by Oracle Labs.


https://d3s.mff.cuni.cz

Thank You!

Do not treat all benchmarks the same ...

.. using similar run sizes or expecting similar accuracy is not a good idea
v

Microbenchmarks should get special treatment ...

... good for seeing specific changes but bad for judging practical impact

https://d3s.mff.cuni.cz

Our work is kindly sponsored by Oracle Labs.


https://d3s.mff.cuni.cz

Thank You!

Do not treat all benchmarks the same ...

.. using similar run sizes or expecting similar accuracy is not a good idea
v

Microbenchmarks should get special treatment ...

... good for seeing specific changes but bad for judging practical impact

Evaluation cannot stay with developers only ...

.. users determine important workloads

v

https://d3s.mff.cuni.cz

Our work is kindly sponsored by Oracle Labs.


https://d3s.mff.cuni.cz

Thank You!

Do not treat all benchmarks the same ...

.. using similar run sizes or expecting similar accuracy is not a good idea
v

Microbenchmarks should get special treatment ...

... good for seeing specific changes but bad for judging practical impact

Evaluation cannot stay with developers only ...

.. users determine important workloads

v

Contribute to Renaissance ...

... and we will start benchmarking your code too :-)

https://d3s.mff.cuni.cz

Our work is kindly sponsored by Oracle Labs.


https://d3s.mff.cuni.cz

	Quick Platform Overview
	Handling Warm Up
	Detecting Changes
	Handling More Runs
	Handling Different Metrics
	Troublesome Performance Changes

