
cbea

Tracking Performance
of the Graal Compiler
on Public Benchmarks

Lubomír Bulej 1 François Farquet 2 Vojtěch Horký 1 Petr Tůma 1

1Department of Distributed and Dependable Systems
Faculty of Mathematics and Physics

Charles University

2Oracle Labs Zürich

2018 – 2021



cbea

Disclaimer
Development Versions
Performance and other measurements used in this presentation are
collected using development versions of the software involved.
As such, they do not represent product performance.

Modified Benchmarks
Benchmarks used to collect the measurements were often modified
to facilitate integration into the measurement infrastructure.
None of the benchmark results are standard benchmark scores.

Platform Specific
Measurements are platform specific. Platform information was omitted
for brevity, contact us if you need more details.

… and we are only human
The data may be influenced by mistakes we are not aware of.



cbea

Outline

1 Quick Platform Overview

2 Handling Warm Up

3 Detecting Changes

4 Handling More Runs

5 Handling Different Metrics

6 Troublesome Performance Changes



cbea

About Graal Compiler

A just-in-time compiler for Java written in Java

Functions as the last tier compiler

Partial escape analysis and speculative optimizations

Part of a larger ecosystem surrounding the JVM

Image from https://www.graalvm.org

https://www.graalvm.org


cbea

Performance Testing Goal ?

Make performance testing roughly the same as
standard (functional) regression testing.



cbea

Performance Testing Goal ?

Make performance testing roughly the same as
standard (functional) regression testing.



cbea

Performance Testing Goal ?

Make performance testing roughly the same as
standard (functional) regression testing.

Overall trends



cbea

Performance Testing Goal ?

Make performance testing roughly the same as
standard (functional) regression testing.

Overall trends

Individual
performance

changes



cbea

Performance Testing Goal ?

Make performance testing roughly the same as
standard (functional) regression testing.



cbea

Performance Testing Goal ?

Make performance testing roughly the same as
standard (functional) regression testing.

Specific benchmark history



cbea

Performance Testing Goal ?

Make performance testing roughly the same as
standard (functional) regression testing.

Specific benchmark history

Individual measurements



cbea

Dashboard Internals I

How to execute the measurements ?

Resource sharing and background load matter

Repetition count is determined on the fly

Need more than latest software version

Faulty setup may remain invisible

What we do

Use dedicated hardware infrastructure
I Multiple servers with equivalent parameters
I No other load than the benchmarks

Proprietary software to coordinate measurements

Iterative selection of versions to measure



cbea

Dashboard Internals II

When to fail the test ?

Noisy measurements

Change can be legitimate

Absolute performance requirements not given

What we do

Compare performance of neighboring versions
Focus on low false alarm rate

I Iterative measurement planning
I Observing multiple metrics together

Alongside commit pipeline but not blocking



cbea

Dashboard Internals III
Platforms

GraalVM CE and EE with OpenJDK and HotSpot JDK 8 and 11

Only top level merge commits into master

… around 6000 versions last year

Benchmarks

ScalaBench (includes DaCapo) https://scalabench.org

SPECjvm2008 (non-compliant) https://spec.org/jvm2008

Renaissance 0.10 https://renaissance.dev

Plus internal microbenchmarks

… around 130 workloads in all

Hardware

… around 40 dedicated servers

https://scalabench.org
https://spec.org/jvm2008
https://renaissance.dev


cbea

Summary Performance History



cbea

Summary Performance History

Plot Info
Input Benchmark execution times collected across one year of

compiler versions and all benchmarks.

Computation Express all execution times as speed up or slow down
relative to the execution times of the most recent compiler version
on the same benchmark.

X axis Commit time of the compiler version measured.

Y axis Geometric mean of relative speed up or slow down.



cbea

Summary Performance History



cbea

Summary Performance History

Development appears to
gradually improve

performance



cbea

Summary Performance History

Development appears to
gradually improve

performance

Note
All benchmarks have the same weight …



cbea

Outline

1 Quick Platform Overview

2 Handling Warm Up

3 Detecting Changes

4 Handling More Runs

5 Handling Different Metrics

6 Troublesome Performance Changes



cbea

Warm Up

Some reasons behind warm up eliminated in our setup

Most power management features disabled

Initial and maximum heap size equal and fixed

Most (but not all) benchmarks stable after first repetition

But the elephant in the room is just-in-time compilation

Plot Info
Input Benchmark repetition times for an arbitrarily selected

benchmark and platform.

X axis Time from start of the benchmark execution.

Y axis Time of single benchmark repetition.



cbea

Warm Up

Some reasons behind warm up eliminated in our setup

Most power management features disabled

Initial and maximum heap size equal and fixed

Most (but not all) benchmarks stable after first repetition

But the elephant in the room is just-in-time compilation

Plot Info
Input Benchmark repetition times for an arbitrarily selected

benchmark and platform.

X axis Time from start of the benchmark execution.

Y axis Time of single benchmark repetition.

Initial measurements quite slow



cbea

Warm Up

Some reasons behind warm up eliminated in our setup

Most power management features disabled

Initial and maximum heap size equal and fixed

Most (but not all) benchmarks stable after first repetition

But the elephant in the room is just-in-time compilation

Plot Info
Input Benchmark repetition times for an arbitrarily selected

benchmark and platform.

X axis Time from start of the benchmark execution.

Y axis Time of single benchmark repetition.

Initial measurements quite slow

Stabilization possibly jumpy



cbea

Warm Up

Some reasons behind warm up eliminated in our setup

Most power management features disabled

Initial and maximum heap size equal and fixed

Most (but not all) benchmarks stable after first repetition

But the elephant in the room is just-in-time compilation

Initial measurements quite slow

Stabilization possibly jumpy



cbea

Warm Up

Some reasons behind warm up eliminated in our setup

Most power management features disabled

Initial and maximum heap size equal and fixed

Most (but not all) benchmarks stable after first repetition

But the elephant in the room is just-in-time compilation

Initial measurements quite slow

Stabilization possibly jumpy



cbea

Warm Up

Some reasons behind warm up eliminated in our setup

Most power management features disabled

Initial and maximum heap size equal and fixed

Most (but not all) benchmarks stable after first repetition

But the elephant in the room is just-in-time compilation

Initial measurements quite slow

Stabilization possibly jumpy



cbea

How Much Compilation On Average ?



cbea

How Much Compilation On Average ?

Plot Info
Input Cumulative compiler thread execution times collected during

benchmark execution across all benchmarks.

Computation Average processor utilization for compiler threads
relative to single core across benchmark suites.

X axis Time from start of the benchmark execution.

Y axis Processor utilization for compiler threads.



cbea

How Much Compilation On Average ?



cbea

How Much Compilation On Average ?

More complex benchmarks
induce more compilation



cbea

How Much Compilation On Average ?

More complex benchmarks
induce more compilation

Compilation
never really stops



cbea

How Much Compilation Per Benchmark ?



cbea

Detecting Warm Up

What do we want from warm up ?

Make sure we measure code produced by the last tier compiler

Move past the most egregious performance changes

Do not waste too much time on warm up

What we do

Monitor activity of background compiler threads

Establish thresholds across 60 s sliding window
The first window with activity within 10% of minimum is warm

I The algorithm is not online
I Used with runs of 300 s to 600 s
I Will always identify some repetitions as warm



cbea

Do We Warm Up Enough ?



cbea

Do We Warm Up Enough ?

Plot Info
Input Benchmark repetition times and compiler thread execution

times across all benchmarks from many runs.

Computation Relative difference between the first repetition time
considered warm and the last repetition time (which is the most
warm we have).

X axis Relative difference in the repetition times.

Y axis Count of runs with that difference.

Color Distinguishes benchmarks.

Simply How much will performance change after warm up ?



cbea

Do We Warm Up Enough ?



cbea

Do We Warm Up Enough ?

Symmetry is important



cbea

Do We Warm Up Enough ?

Symmetry is important

Constant
compilation

churn



cbea

Do We Warm Up Enough ?

Symmetry is important

Constant
compilation

churn
Leaky

benchmark



cbea

Do We Warm Up Too Much ?



cbea

Do We Warm Up Too Much ?

Plot Info
Input Benchmark repetition times and compiler thread execution

times across all benchmarks from many runs.

Computation How far before the first repetition considered warm
did we see a repetition at least as short.

X axis Distance between the first fast cold repetition and the first
warm repetition.

Y axis Count of runs with that distance.

Color Distinguishes benchmarks.

Simply How long before warm up are benchmarks already fast ?



cbea

Do We Warm Up Too Much ?



cbea

Do We Warm Up Too Much ?

Less complex benchmarks
show peak performance

before compilation subsides



cbea

What About (Much) Longer Warm Up ?



cbea

What About (Much) Longer Warm Up ?

Plot Info
Input Benchmark repetition times for an arbitrarily selected

benchmarks and platforms.

X axis Time from start of the benchmark execution.

Y axis Time of single benchmark repetition.



cbea

What About (Much) Longer Warm Up ?



cbea

What About (Much) Longer Warm Up ?

Nice behavior except for outliers

Sudden changes after long stability

Very slowly deteriorating performance



cbea

Take Away So Far …

Some warm up properties complicate detection from time measurements

Performance can change at any time into benchmark execution

Performance changes possibly rather sudden

Performance changes in both directions

Reaching measurement stability not really the goal here

Looking (only) at repetition times possibly wrong
Warm up detection surprisingly important

I Too much warmup is prohibitive resource hog
I Too little warmup produces useless measurements



cbea

Outline

1 Quick Platform Overview

2 Handling Warm Up

3 Detecting Changes

4 Handling More Runs

5 Handling Different Metrics

6 Troublesome Performance Changes



cbea

Detecting Changes

A time series change point detection problem with a few twists

We have more correlated time series rather than just one

We can add more data points to any version if required

Data points are in fact hierarchical sets from runs

We are more interested in changes near series end

Almost no assumptions about data distribution

We use bootstrap confidence intervals of mean differences

https://doi.org/10.1007/s10515-015-0188-0

Colors show runs

https://doi.org/10.1007/s10515-015-0188-0


cbea

Detecting Changes

A time series change point detection problem with a few twists

We have more correlated time series rather than just one

We can add more data points to any version if required

Data points are in fact hierarchical sets from runs

We are more interested in changes near series end

Almost no assumptions about data distribution

We use bootstrap confidence intervals of mean differences

https://doi.org/10.1007/s10515-015-0188-0

Colors show runs

https://doi.org/10.1007/s10515-015-0188-0


cbea

Detecting Changes

A time series change point detection problem with a few twists

We have more correlated time series rather than just one

We can add more data points to any version if required

Data points are in fact hierarchical sets from runs

We are more interested in changes near series end

Almost no assumptions about data distribution

We use bootstrap confidence intervals of mean differences

https://doi.org/10.1007/s10515-015-0188-0

Colors show runs

https://doi.org/10.1007/s10515-015-0188-0


cbea

Detected Changes In Numbers
What share of versions have changes and how reliably are they detected ?

Renaissance 0.10 rx-scrb 4% 100% 0% scrfm-h 2% 50% 50% sci.spl 4% 100% 0% FJStr 7% 100% 0%

bench R D I sc-doku 1% 50% 50% scxb-h 2% 92% 8% serial 2% 75% 25% FltOdd 12% 50% 50%

aka-uct 1% 100% 0% sc-kmns 6% specs-l 1% 100% 0% sunflow 3% 100% 0% FndNgt 3% 62% 8%

als 5% 100% 0% sc-stmb 1% sunfl-l 2% 100% 0% xml.trn 3% 50% 50% FntNgtR 2% 50% 0%

chi-sqr 2% 100% 0% scrb 5% 100% 0% tmt-d 3% 25% 75% xml.val 2% 75% 25% FldSum 3% 100% 0%

db-shot 2% ScalaBench (with DaCapo) trdb-d 1% 100% 0% Internal Micros FldSumR 0% 0% 33%

dec-tre 2% 100% 0% bench R D I trds-l 2% 89% 11% bench R D I ForSum 1% 50% 0%

dotty 5% appar-d 3% 100% 0% xalan-l 2% 90% 10% StrDev 4% 33% 67% ForSumR 2% 12% 75%

fin-chi 1% 100% 0% avror-l 1% SPECjvm2008 (modified) SFndNeg 3% 36% 50% GrpRem 5% 85% 0%

fin-htt 3% 100% 0% batik-s 3% 67% 33% bench R D I SFldSum 3% 25% 50% MapOne 7% 76% 14%

fj-kmns 5% 100% 0% eclps-s 1% cmp.cmp 2% SForSum 3% 42% 11% NetDot 3% 57% 0%

fut-gen 0% factr-d 1% 100% 0% cmp.sun 2% SMapRed 3% 43% 21% NetEig 2% 62% 25%

gauss 1% fop-d 2% 100% 0% compr 4% 75% 25% STwoAvg 4% 60% 30% Reduce 1% 50% 50%

log-reg 6% 100% 0% h2-d 2% 100% 0% cry.aes 4% 100% 0% TSP 4% 100% 0% STMLst 2% 50% 0%

mne 5% 100% 0% jythn-l 1% 100% 0% cry.rsa 2% 100% 0% TxtSDF 2% 80% 10% STMMap 3% 100% 0%

mov-len 6% kiama-d 2% 89% 11% cry.sgn 4% 75% 25% TxtRDD 2% 100% 0% Scan 1% 43% 57%

nai-bay 2% luidx-d 1% 100% 0% derby 1% 60% 40% WrdCnt 1% 100% 0% SrtRDD 2% 70% 30%

neo-ana 4% 100% 0% lusrc-l 2% 50% 44% mpega 4% 100% 0% BufDec 6% 78% 15% StdDev 3% 25% 44%

pg-rank 1% 100% 0% pmd-l 3% 67% 33% sci.ffl 1% 67% 33% BufEnc 6% 88% 12% StrCnt 2% 50% 50%

par-mne 4% 100% 0% scc-l 1% 100% 0% sci.lul 1% 50% 0% ChrCnt 2% 100% 0% StrDem 2% 50% 0%

philos 2% scdoc-l 1% 100% 0% sci.mtc 3% 88% 12% ChrHis 3% 73% 20% StrPer 4% 93% 0%

reactr 2% 100% 0% scp-l 2% 17% 83% sci.sol 3% 100% 0% FJHis 7% 100% 0%

R - versions with changes D - manually confirmed I - invalid situations



cbea

Detected Changes In Numbers
What share of versions have changes and how reliably are they detected ?

Renaissance 0.10 rx-scrb 4% 100% 0% scrfm-h 2% 50% 50% sci.spl 4% 100% 0% FJStr 7% 100% 0%

bench R D I sc-doku 1% 50% 50% scxb-h 2% 92% 8% serial 2% 75% 25% FltOdd 12% 50% 50%

aka-uct 1% 100% 0% sc-kmns 6% specs-l 1% 100% 0% sunflow 3% 100% 0% FndNgt 3% 62% 8%

als 5% 100% 0% sc-stmb 1% sunfl-l 2% 100% 0% xml.trn 3% 50% 50% FntNgtR 2% 50% 0%

chi-sqr 2% 100% 0% scrb 5% 100% 0% tmt-d 3% 25% 75% xml.val 2% 75% 25% FldSum 3% 100% 0%

db-shot 2% ScalaBench (with DaCapo) trdb-d 1% 100% 0% Internal Micros FldSumR 0% 0% 33%

dec-tre 2% 100% 0% bench R D I trds-l 2% 89% 11% bench R D I ForSum 1% 50% 0%

dotty 5% appar-d 3% 100% 0% xalan-l 2% 90% 10% StrDev 4% 33% 67% ForSumR 2% 12% 75%

fin-chi 1% 100% 0% avror-l 1% SPECjvm2008 (modified) SFndNeg 3% 36% 50% GrpRem 5% 85% 0%

fin-htt 3% 100% 0% batik-s 3% 67% 33% bench R D I SFldSum 3% 25% 50% MapOne 7% 76% 14%

fj-kmns 5% 100% 0% eclps-s 1% cmp.cmp 2% SForSum 3% 42% 11% NetDot 3% 57% 0%

fut-gen 0% factr-d 1% 100% 0% cmp.sun 2% SMapRed 3% 43% 21% NetEig 2% 62% 25%

gauss 1% fop-d 2% 100% 0% compr 4% 75% 25% STwoAvg 4% 60% 30% Reduce 1% 50% 50%

log-reg 6% 100% 0% h2-d 2% 100% 0% cry.aes 4% 100% 0% TSP 4% 100% 0% STMLst 2% 50% 0%

mne 5% 100% 0% jythn-l 1% 100% 0% cry.rsa 2% 100% 0% TxtSDF 2% 80% 10% STMMap 3% 100% 0%

mov-len 6% kiama-d 2% 89% 11% cry.sgn 4% 75% 25% TxtRDD 2% 100% 0% Scan 1% 43% 57%

nai-bay 2% luidx-d 1% 100% 0% derby 1% 60% 40% WrdCnt 1% 100% 0% SrtRDD 2% 70% 30%

neo-ana 4% 100% 0% lusrc-l 2% 50% 44% mpega 4% 100% 0% BufDec 6% 78% 15% StdDev 3% 25% 44%

pg-rank 1% 100% 0% pmd-l 3% 67% 33% sci.ffl 1% 67% 33% BufEnc 6% 88% 12% StrCnt 2% 50% 50%

par-mne 4% 100% 0% scc-l 1% 100% 0% sci.lul 1% 50% 0% ChrCnt 2% 100% 0% StrDem 2% 50% 0%

philos 2% scdoc-l 1% 100% 0% sci.mtc 3% 88% 12% ChrHis 3% 73% 20% StrPer 4% 93% 0%

reactr 2% 100% 0% scp-l 2% 17% 83% sci.sol 3% 100% 0% FJHis 7% 100% 0%

R - versions with changes D - manually confirmed I - invalid situations

Most benchmarks
exhibit changes



cbea

Detected Changes In Numbers
What share of versions have changes and how reliably are they detected ?

Renaissance 0.10 rx-scrb 4% 100% 0% scrfm-h 2% 50% 50% sci.spl 4% 100% 0% FJStr 7% 100% 0%

bench R D I sc-doku 1% 50% 50% scxb-h 2% 92% 8% serial 2% 75% 25% FltOdd 12% 50% 50%

aka-uct 1% 100% 0% sc-kmns 6% specs-l 1% 100% 0% sunflow 3% 100% 0% FndNgt 3% 62% 8%

als 5% 100% 0% sc-stmb 1% sunfl-l 2% 100% 0% xml.trn 3% 50% 50% FntNgtR 2% 50% 0%

chi-sqr 2% 100% 0% scrb 5% 100% 0% tmt-d 3% 25% 75% xml.val 2% 75% 25% FldSum 3% 100% 0%

db-shot 2% ScalaBench (with DaCapo) trdb-d 1% 100% 0% Internal Micros FldSumR 0% 0% 33%

dec-tre 2% 100% 0% bench R D I trds-l 2% 89% 11% bench R D I ForSum 1% 50% 0%

dotty 5% appar-d 3% 100% 0% xalan-l 2% 90% 10% StrDev 4% 33% 67% ForSumR 2% 12% 75%

fin-chi 1% 100% 0% avror-l 1% SPECjvm2008 (modified) SFndNeg 3% 36% 50% GrpRem 5% 85% 0%

fin-htt 3% 100% 0% batik-s 3% 67% 33% bench R D I SFldSum 3% 25% 50% MapOne 7% 76% 14%

fj-kmns 5% 100% 0% eclps-s 1% cmp.cmp 2% SForSum 3% 42% 11% NetDot 3% 57% 0%

fut-gen 0% factr-d 1% 100% 0% cmp.sun 2% SMapRed 3% 43% 21% NetEig 2% 62% 25%

gauss 1% fop-d 2% 100% 0% compr 4% 75% 25% STwoAvg 4% 60% 30% Reduce 1% 50% 50%

log-reg 6% 100% 0% h2-d 2% 100% 0% cry.aes 4% 100% 0% TSP 4% 100% 0% STMLst 2% 50% 0%

mne 5% 100% 0% jythn-l 1% 100% 0% cry.rsa 2% 100% 0% TxtSDF 2% 80% 10% STMMap 3% 100% 0%

mov-len 6% kiama-d 2% 89% 11% cry.sgn 4% 75% 25% TxtRDD 2% 100% 0% Scan 1% 43% 57%

nai-bay 2% luidx-d 1% 100% 0% derby 1% 60% 40% WrdCnt 1% 100% 0% SrtRDD 2% 70% 30%

neo-ana 4% 100% 0% lusrc-l 2% 50% 44% mpega 4% 100% 0% BufDec 6% 78% 15% StdDev 3% 25% 44%

pg-rank 1% 100% 0% pmd-l 3% 67% 33% sci.ffl 1% 67% 33% BufEnc 6% 88% 12% StrCnt 2% 50% 50%

par-mne 4% 100% 0% scc-l 1% 100% 0% sci.lul 1% 50% 0% ChrCnt 2% 100% 0% StrDem 2% 50% 0%

philos 2% scdoc-l 1% 100% 0% sci.mtc 3% 88% 12% ChrHis 3% 73% 20% StrPer 4% 93% 0%

reactr 2% 100% 0% scp-l 2% 17% 83% sci.sol 3% 100% 0% FJHis 7% 100% 0%

R - versions with changes D - manually confirmed I - invalid situations

Most benchmarks
exhibit changes

Detection mostly
reliable enough



cbea

Detected Changes In Numbers
What share of versions have changes and how reliably are they detected ?

Renaissance 0.10 rx-scrb 4% 100% 0% scrfm-h 2% 50% 50% sci.spl 4% 100% 0% FJStr 7% 100% 0%

bench R D I sc-doku 1% 50% 50% scxb-h 2% 92% 8% serial 2% 75% 25% FltOdd 12% 50% 50%

aka-uct 1% 100% 0% sc-kmns 6% specs-l 1% 100% 0% sunflow 3% 100% 0% FndNgt 3% 62% 8%

als 5% 100% 0% sc-stmb 1% sunfl-l 2% 100% 0% xml.trn 3% 50% 50% FntNgtR 2% 50% 0%

chi-sqr 2% 100% 0% scrb 5% 100% 0% tmt-d 3% 25% 75% xml.val 2% 75% 25% FldSum 3% 100% 0%

db-shot 2% ScalaBench (with DaCapo) trdb-d 1% 100% 0% Internal Micros FldSumR 0% 0% 33%

dec-tre 2% 100% 0% bench R D I trds-l 2% 89% 11% bench R D I ForSum 1% 50% 0%

dotty 5% appar-d 3% 100% 0% xalan-l 2% 90% 10% StrDev 4% 33% 67% ForSumR 2% 12% 75%

fin-chi 1% 100% 0% avror-l 1% SPECjvm2008 (modified) SFndNeg 3% 36% 50% GrpRem 5% 85% 0%

fin-htt 3% 100% 0% batik-s 3% 67% 33% bench R D I SFldSum 3% 25% 50% MapOne 7% 76% 14%

fj-kmns 5% 100% 0% eclps-s 1% cmp.cmp 2% SForSum 3% 42% 11% NetDot 3% 57% 0%

fut-gen 0% factr-d 1% 100% 0% cmp.sun 2% SMapRed 3% 43% 21% NetEig 2% 62% 25%

gauss 1% fop-d 2% 100% 0% compr 4% 75% 25% STwoAvg 4% 60% 30% Reduce 1% 50% 50%

log-reg 6% 100% 0% h2-d 2% 100% 0% cry.aes 4% 100% 0% TSP 4% 100% 0% STMLst 2% 50% 0%

mne 5% 100% 0% jythn-l 1% 100% 0% cry.rsa 2% 100% 0% TxtSDF 2% 80% 10% STMMap 3% 100% 0%

mov-len 6% kiama-d 2% 89% 11% cry.sgn 4% 75% 25% TxtRDD 2% 100% 0% Scan 1% 43% 57%

nai-bay 2% luidx-d 1% 100% 0% derby 1% 60% 40% WrdCnt 1% 100% 0% SrtRDD 2% 70% 30%

neo-ana 4% 100% 0% lusrc-l 2% 50% 44% mpega 4% 100% 0% BufDec 6% 78% 15% StdDev 3% 25% 44%

pg-rank 1% 100% 0% pmd-l 3% 67% 33% sci.ffl 1% 67% 33% BufEnc 6% 88% 12% StrCnt 2% 50% 50%

par-mne 4% 100% 0% scc-l 1% 100% 0% sci.lul 1% 50% 0% ChrCnt 2% 100% 0% StrDem 2% 50% 0%

philos 2% scdoc-l 1% 100% 0% sci.mtc 3% 88% 12% ChrHis 3% 73% 20% StrPer 4% 93% 0%

reactr 2% 100% 0% scp-l 2% 17% 83% sci.sol 3% 100% 0% FJHis 7% 100% 0%

R - versions with changes D - manually confirmed I - invalid situations

Most benchmarks
exhibit changes

Detection mostly
reliable enough

Microbenchmarks
sometimes misbehave



cbea

Manual Change Classification
We examined all detected performance changes in ad hoc version intervals

Benchmarks not necessarily represented equally

More measurements added when not sure

We have no classification information about false negatives

Likely impacts especially small changes relative to variance



cbea

Manual Change Classification
We examined all detected performance changes in ad hoc version intervals

Benchmarks not necessarily represented equally

More measurements added when not sure

We have no classification information about false negatives

Likely impacts especially small changes relative to variance

Plot Info
Input Benchmark repetition times for arbitrarily selected pairs of

platform versions with suspected change.

X axis Benchmark repetitions and runs ordered sequentially.

Y axis Time of single benchmark repetition.

Color Distinguishes versions.



cbea

Classification Example: Trivial

An obvious difference that is trivial to classify

Very low variance both within run and between runs

Difference of large relative magnitude

If all data looked like this we would have little to talk about …

Samples from version one

Samples from version two



cbea

Classification Example: Trivial

An obvious difference that is trivial to classify

Very low variance both within run and between runs

Difference of large relative magnitude

If all data looked like this we would have little to talk about …

Samples from version one

Samples from version two



cbea

Classification Example: Small Change

Computed difference in average repetition time around 0.6%
Variance between runs large relative to the computed difference
Outliers large relative to the computed difference
Maybe we need more data ?



cbea

Classification Example: Small Change

Computed difference in average repetition time around 0.6%
Variance between runs large relative to the computed difference

Outliers large relative to the computed difference

Maybe we need more data ?

Variance between runs



cbea

Classification Example: Small Change

Computed difference in average repetition time around 0.6%
Variance between runs large relative to the computed difference

Outliers large relative to the computed difference

Maybe we need more data ?

Variance between runs

Instruction count difference
may appear convincing



cbea

Classification Example: Outlier Definition Issues

Computed difference in average repetition time around 0.9%
The computed difference very much depends on outlier filtering

Are we sure we have enough data ?

Assume 10% change in outlier runs and 10% chance of such runs

This would result in an average repetition time change of 0.9%
There is around 35% chance of getting 10 fine runs

Obviously the example can be stretched in various directions



cbea

Classification Example: Outlier Definition Issues

Computed difference in average repetition time around 0.9%
The computed difference very much depends on outlier filtering

Are we sure we have enough data ?

Assume 10% change in outlier runs and 10% chance of such runs

This would result in an average repetition time change of 0.9%
There is around 35% chance of getting 10 fine runs

Obviously the example can be stretched in various directions

Outlier run



cbea

Classification Example: Outlier Definition Issues

Computed difference in average repetition time around 0.9%
The computed difference very much depends on outlier filtering

Are we sure we have enough data ?

Assume 10% change in outlier runs and 10% chance of such runs

This would result in an average repetition time change of 0.9%
There is around 35% chance of getting 10 fine runs

Obviously the example can be stretched in various directions

Outlier run



cbea

Do We Have Too Many Benchmarks ?



cbea

Do We Have Too Many Benchmarks ?

Plot Info
Input All detected performance changes across measurement history.

Computation Count how many benchmarks are impacted by
particular compiler version commits.

X axis Count of benchmarks changing together on the same commit.

Y axis Share of compiler versions with that count.



cbea

Do We Have Too Many Benchmarks ?



cbea

Do We Have Too Many Benchmarks ?

Majority of changes
limited to single

benchmark



cbea

Do Benchmarks Change Together ?



cbea

Do Benchmarks Change Together ?

Plot Info
Input All detected performance changes across measurement history.

Computation Count how many times a given pair of benchmarks
changed performance on the same commit.

X and Y axes Individual benchmarks.

Size How often the two benchmarks changed performance together.

Color Distinguishes benchmark suites.



cbea

Do Benchmarks Change Together ?



cbea

Do Benchmarks Change Together ?

Only few benchmarks
often change with another



cbea

Do Benchmarks Change Together ?

Only few benchmarks
often change with another

Some benchmarks almost
never change with another



cbea

Do Benchmarks Change Together ?

Only few benchmarks
often change with another

Some benchmarks almost
never change with another

Artifact of one suite
not being around so long



cbea

Take Away So Far …

We probably do not have too many (or even enough) benchmarks

Overlap in performance changes relatively rare

Not really clear how to define coverage !

Change detection reliability per se not an issue

Change definition issues beyond math

Requires reasonable measurement procedure

Some benchmarks may require special attention



cbea

Outline

1 Quick Platform Overview

2 Handling Warm Up

3 Detecting Changes

4 Handling More Runs

5 Handling Different Metrics

6 Troublesome Performance Changes



cbea

Handling More Runs

A single benchmark run does not really tell the whole story …



cbea

Handling More Runs

A single benchmark run does not really tell the whole story …

Compact results
coming from

one run



cbea

Handling More Runs

A single benchmark run does not really tell the whole story …

Compact results
coming from

one run



cbea

Handling More Runs

A single benchmark run does not really tell the whole story …

Compact results
coming from

one run

More runs
give more
variability



cbea

How Many Runs Needed …
… to compute average performance with at most 1% error in 99% of cases ?

Renaissance 0.10 rx-scrb 49 65 26 19 scrfm-h 33 13 44 34 sci.spl 4 9 1 99+ NetDot 1 1 12 30

bench C8 C11 E8 E11 sc-doku 99+ 99+ 99+ 99+ scxb-h 99+ 99+ 99+ 99+ serial 14 23 99+ 99+ NetEig 1 1 67 19

aka-uct 15 99+ 86 99+ sc-kmns 8 5 27 19 specs-l 12 5 11 8 sunflow 9 13 7 3 Reduce 72 99+ 99+ 99+

als 6 7 99+ 99+ sc-stmb 93 68 99+ 99+ sunfl-l 6 16 99+ 18 xml.trn 10 7 9 7 STMLst 99+ 70 99+ 49

chi-sqr 99+ 99+ 99+ 99+ scrb 99+ 99+ 99+ 99+ tmt-d 8 9 19 9 xml.val 1 30 16 30 STMMap 99+ 99+ 99+ 99

db-shot 99+ 99+ 56 39 ScalaBench (with DaCapo) trdb-d 17 26 18 25 Internal Micros Scan 99+ 99+ 99+ 99+

dec-tre 99+ 55 99+ 99+ bench C8 C11 E8 E11 trds-l 7 5 3 5 bench C8 C11 E8 E11 SrtRDD 99+ 99+ 99+ 99+

dotty 13 16 21 8 appar-d 99+ 99+ 27 41 xalan-l 35 26 28 23 BufDec 1 93 40 99+ StdDev 99+ 99+ 99+ 1

fin-chi 99+ 99+ 99+ 99+ avror-l 8 7 18 7 SPECjvm2008 (modified) BufEnc 6 1 1 5 StrCnt 78 45 98 30

fin-htt 25 21 19 24 batik-s 2 1 2 1 bench C8 C11 E8 E11 ChrHis 99+ 99+ 52 91 StrDem 99+ 99+ 99+ 99+

fj-kmns 70 6 23 69 eclps-s 10 11 cmp.cmp 8 5 ChrCnt 99+ 99+ 99+ 99+ StrDev 1 1 2 2

fut-gen 99+ 99+ 99+ 99+ factr-d 99+ 99+ 99+ 99+ cmp.sun 5 16 FltOdd 2 99+ 11 1 SFndNeg 99+ 99+ 99+ 99+

gauss 99+ 99+ 99+ 99+ fop-d 17 16 10 25 compr 4 99+ 15 16 FndNgt 2 1 1 1 SFldSum 99+ 1 99+ 99+

log-reg 10 11 21 40 h2-d 24 32 33 87 cry.aes 13 21 99+ 9 FntNgtR 1 1 1 2 SForSum 1 1 35 99+

mne 99+ 99+ 99+ 99+ jythn-l 31 99+ 44 70 cry.rsa 11 9 6 7 FJHis 2 1 1 3 SMapRed 99+ 99+ 1 27

mov-len 5 8 10 4 kiama-d 39 51 46 18 cry.sgn 9 13 5 14 FJStr 17 7 91 66 StrPer 99+ 99+ 99+ 57

nai-bay 10 4 99+ 99+ luidx-d 62 50 23 27 derby 28 8 35 70 FldSum 1 99+ 99+ 99+ STwoAvg 50 99+ 99+ 99+

neo-ana 99+ 99+ 100 99+ lusrc-l 42 30 27 11 mpega 1 1 1 2 FldSumR 1 1 1 1 TxtSDF 80 21 99+ 45

pg-rank 99+ 99+ 99+ 62 pmd-l 32 61 99+ 14 sci.ffl 99+ 99+ 99+ 99+ ForSum 1 1 99+ 99+ TxtRDD 99+ 99+ 53 85

par-mne 99+ 84 99+ 38 scc-l 99+ 99+ 23 20 sci.lul 1 1 1 1 ForSumR 99+ 1 1 4 TSP 99+

philos 99+ 99+ 99+ 99+ scdoc-l 99+ 20 46 19 sci.mtc 12 6 99+ 1 GrpRem 99+ 99+ 5 35 WrdCnt 40 25 26 52

reactr 36 42 99+ 99+ scp-l 10 19 52 96 sci.sol 1 1 1 1 MapOne 99+ 99+ 99+ 99+



cbea

How Many Runs Needed …
… to compute average performance with at most 1% error in 99% of cases ?

Renaissance 0.10 rx-scrb 49 65 26 19 scrfm-h 33 13 44 34 sci.spl 4 9 1 99+ NetDot 1 1 12 30

bench C8 C11 E8 E11 sc-doku 99+ 99+ 99+ 99+ scxb-h 99+ 99+ 99+ 99+ serial 14 23 99+ 99+ NetEig 1 1 67 19

aka-uct 15 99+ 86 99+ sc-kmns 8 5 27 19 specs-l 12 5 11 8 sunflow 9 13 7 3 Reduce 72 99+ 99+ 99+

als 6 7 99+ 99+ sc-stmb 93 68 99+ 99+ sunfl-l 6 16 99+ 18 xml.trn 10 7 9 7 STMLst 99+ 70 99+ 49

chi-sqr 99+ 99+ 99+ 99+ scrb 99+ 99+ 99+ 99+ tmt-d 8 9 19 9 xml.val 1 30 16 30 STMMap 99+ 99+ 99+ 99

db-shot 99+ 99+ 56 39 ScalaBench (with DaCapo) trdb-d 17 26 18 25 Internal Micros Scan 99+ 99+ 99+ 99+

dec-tre 99+ 55 99+ 99+ bench C8 C11 E8 E11 trds-l 7 5 3 5 bench C8 C11 E8 E11 SrtRDD 99+ 99+ 99+ 99+

dotty 13 16 21 8 appar-d 99+ 99+ 27 41 xalan-l 35 26 28 23 BufDec 1 93 40 99+ StdDev 99+ 99+ 99+ 1

fin-chi 99+ 99+ 99+ 99+ avror-l 8 7 18 7 SPECjvm2008 (modified) BufEnc 6 1 1 5 StrCnt 78 45 98 30

fin-htt 25 21 19 24 batik-s 2 1 2 1 bench C8 C11 E8 E11 ChrHis 99+ 99+ 52 91 StrDem 99+ 99+ 99+ 99+

fj-kmns 70 6 23 69 eclps-s 10 11 cmp.cmp 8 5 ChrCnt 99+ 99+ 99+ 99+ StrDev 1 1 2 2

fut-gen 99+ 99+ 99+ 99+ factr-d 99+ 99+ 99+ 99+ cmp.sun 5 16 FltOdd 2 99+ 11 1 SFndNeg 99+ 99+ 99+ 99+

gauss 99+ 99+ 99+ 99+ fop-d 17 16 10 25 compr 4 99+ 15 16 FndNgt 2 1 1 1 SFldSum 99+ 1 99+ 99+

log-reg 10 11 21 40 h2-d 24 32 33 87 cry.aes 13 21 99+ 9 FntNgtR 1 1 1 2 SForSum 1 1 35 99+

mne 99+ 99+ 99+ 99+ jythn-l 31 99+ 44 70 cry.rsa 11 9 6 7 FJHis 2 1 1 3 SMapRed 99+ 99+ 1 27

mov-len 5 8 10 4 kiama-d 39 51 46 18 cry.sgn 9 13 5 14 FJStr 17 7 91 66 StrPer 99+ 99+ 99+ 57

nai-bay 10 4 99+ 99+ luidx-d 62 50 23 27 derby 28 8 35 70 FldSum 1 99+ 99+ 99+ STwoAvg 50 99+ 99+ 99+

neo-ana 99+ 99+ 100 99+ lusrc-l 42 30 27 11 mpega 1 1 1 2 FldSumR 1 1 1 1 TxtSDF 80 21 99+ 45

pg-rank 99+ 99+ 99+ 62 pmd-l 32 61 99+ 14 sci.ffl 99+ 99+ 99+ 99+ ForSum 1 1 99+ 99+ TxtRDD 99+ 99+ 53 85

par-mne 99+ 84 99+ 38 scc-l 99+ 99+ 23 20 sci.lul 1 1 1 1 ForSumR 99+ 1 1 4 TSP 99+

philos 99+ 99+ 99+ 99+ scdoc-l 99+ 20 46 19 sci.mtc 12 6 99+ 1 GrpRem 99+ 99+ 5 35 WrdCnt 40 25 26 52

reactr 36 42 99+ 99+ scp-l 10 19 52 96 sci.sol 1 1 1 1 MapOne 99+ 99+ 99+ 99+

Perhaps 1%
is asking too much ?



cbea

How Many Runs Needed …
… to compute average performance with at most 5% error in 99% of cases ?

Renaissance 0.10 rx-scrb 2 2 1 1 scrfm-h 2 1 1 1 sci.spl 1 1 1 99+ NetDot 1 1 12 30

bench C8 C11 E8 E11 sc-doku 67 18 99+ 99+ scxb-h 8 6 25 99+ serial 2 8 3 13 NetEig 1 1 2 4

aka-uct 1 4 3 4 sc-kmns 2 1 1 1 specs-l 1 1 3 1 sunflow 1 1 1 1 Reduce 14 11 8 15

als 1 2 7 14 sc-stmb 2 2 4 6 sunfl-l 1 1 2 1 xml.trn 1 1 1 1 STMLst 6 21 8 1

chi-sqr 23 22 36 26 scrb 20 10 25 42 tmt-d 1 1 2 1 xml.val 1 3 1 3 STMMap 18 99+ 24 4

db-shot 7 6 2 1 ScalaBench (with DaCapo) trdb-d 1 3 1 1 Internal Micros Scan 9 14 34 8

dec-tre 11 1 6 7 bench C8 C11 E8 E11 trds-l 3 1 1 1 bench C8 C11 E8 E11 SrtRDD 4 7 5 19

dotty 1 1 1 1 appar-d 99+ 99+ 3 2 xalan-l 1 1 4 1 BufDec 1 5 8 2 StdDev 45 99+ 99+ 1

fin-chi 5 21 26 6 avror-l 2 1 1 1 SPECjvm2008 (modified) BufEnc 1 1 1 5 StrCnt 3 9 7 1

fin-htt 1 1 1 1 batik-s 1 1 1 1 bench C8 C11 E8 E11 ChrHis 4 10 4 3 StrDem 99+ 26 99+ 51

fj-kmns 1 3 2 1 eclps-s 2 2 cmp.cmp 1 1 ChrCnt 11 7 3 5 StrDev 1 1 2 2

fut-gen 6 6 3 8 factr-d 6 7 38 59 cmp.sun 1 4 FltOdd 1 45 6 1 SFndNeg 11 9 18 12

gauss 25 13 99+ 99+ fop-d 1 3 1 1 compr 1 3 1 2 FndNgt 2 1 1 1 SFldSum 34 1 99+ 99+

log-reg 6 8 2 2 h2-d 1 2 1 2 cry.aes 1 1 11 4 FntNgtR 1 1 1 1 SForSum 1 1 21 44

mne 7 13 29 12 jythn-l 3 9 1 3 cry.rsa 1 1 1 1 FJHis 1 1 1 3 SMapRed 67 57 1 1

mov-len 1 1 1 1 kiama-d 1 6 2 1 cry.sgn 1 1 1 14 FJStr 1 5 3 2 StrPer 13 99+ 99+ 1

nai-bay 1 1 60 100 luidx-d 1 1 1 2 derby 2 1 1 2 FldSum 1 3 73 70 STwoAvg 25 40 99+ 99+

neo-ana 41 8 10 14 lusrc-l 1 1 3 1 mpega 1 1 1 1 FldSumR 1 1 1 1 TxtSDF 3 1 8 10

pg-rank 7 5 5 2 pmd-l 1 2 13 1 sci.ffl 21 14 33 7 ForSum 1 1 81 80 TxtRDD 11 10 1 8

par-mne 8 5 99+ 1 scc-l 5 11 1 1 sci.lul 1 1 1 1 ForSumR 10 1 1 4 TSP 72

philos 10 99+ 14 38 scdoc-l 4 1 1 1 sci.mtc 1 1 12 1 GrpRem 7 7 4 9 WrdCnt 1 5 2 3

reactr 2 1 23 10 scp-l 1 1 1 3 sci.sol 1 1 1 1 MapOne 14 16 99+ 99+



cbea

How Accuracy Relates To Run Count ?



cbea

How Accuracy Relates To Run Count ?

Plot Info
Input Benchmark repetition times for an arbitrarily selected

benchmark and platform.

Computation Size of 99% confidence interval for the mean relative
to the mean

X axis How many times the benchmark was run.

Y axis Confidence interval width.



cbea

How Accuracy Relates To Run Count ?



cbea

How Accuracy Relates To Run Count ?

Roughly follows 1/
√
n



cbea

Take Away So Far …

Running benchmarks only once may not be enough

Non deterministic compilation visible especially with microbenchmarks

But the presented tables also include simple cases of high variance

Aiming for excessive accuracy backfires quickly

Reasonable accuracy is a function of more than just the benchmark

Tooling should consider benchmarks together with platforms

Not yet sure how often relevant parameters tend to change



cbea

Outline

1 Quick Platform Overview

2 Handling Warm Up

3 Detecting Changes

4 Handling More Runs

5 Handling Different Metrics

6 Troublesome Performance Changes



cbea

Runs Needed When Different Metrics Used …
… to compute average performance with at most 1% error in 99% of cases.

Renaissance 0.10 rx-scrb 49 46 25 scrfm-h 33 69 75 sci.spl 4 4 23 NetDot 1 1 1

bench time clk ins sc-doku 99+ 99+ 99+ scxb-h 99+ 99+ 39 serial 14 14 2 NetEig 1 1 1

aka-uct 15 16 21 sc-kmns 8 8 7 specs-l 12 27 14 sunflow 9 9 11 Reduce 72 99+ 60

als 6 4 4 sc-stmb 93 99+ 99+ sunfl-l 6 6 8 xml.trn 10 11 1 STMLst 99+ 99+ 99+

chi-sqr 99+ 99+ 99+ scrb 99+ 99+ 99+ tmt-d 8 14 45 xml.val 1 3 1 STMMap 99+ 99+ 99+

db-shot 99+ 99+ 99+ ScalaBench (with DaCapo) trdb-d 17 99+ 99+ Internal Micros Scan 99+ 99+ 32

dec-tre 99+ 99+ 99+ bench time clk ins trds-l 7 12 7 bench time clk ins SrtRDD 99+ 99+ 25

dotty 13 14 6 appar-d 99+ 99+ 99+ xalan-l 35 99+ 99+ BufDec 1 1 1 StdDev 99+ 99+ 99+

fin-chi 99+ 99+ 99+ avror-l 8 32 88 SPECjvm2008 (modified) BufEnc 6 6 2 StrCnt 78 99+ 63

fin-htt 25 49 15 batik-s 2 2 1 bench time clk ins ChrHis 99+ 99+ 55 StrDem 99+ 99+ 99+

fj-kmns 70 81 60 eclps-s 10 12 1 cmp.cmp 8 8 8 ChrCnt 99+ 99+ 50 StrDev 1 1 9

fut-gen 99+ 99+ 99+ factr-d 99+ 99+ 99+ cmp.sun 5 5 11 FltOdd 2 2 1 SFndNeg 99+ 99+ 99+

gauss 99+ 99+ 99+ fop-d 17 17 6 compr 4 4 1 FndNgt 2 1 1 SFldSum 99+ 99+ 99+

log-reg 10 11 2 h2-d 24 10 12 cry.aes 13 13 1 FntNgtR 1 1 1 SForSum 1 1 1

mne 99+ 99+ 99+ jythn-l 31 31 9 cry.rsa 11 11 3 FJHis 2 2 3 SMapRed 99+ 99+ 99+

mov-len 5 8 9 kiama-d 39 66 51 cry.sgn 9 9 18 FJStr 17 23 11 StrPer 99+ 99+ 34

nai-bay 10 9 99 luidx-d 62 7 5 derby 28 28 5 FldSum 1 1 1 STwoAvg 50 51 38

neo-ana 99+ 99+ 99+ lusrc-l 42 54 29 mpega 1 1 1 FldSumR 1 1 1 TxtSDF 80 99+ 29

pg-rank 99+ 99+ 99+ pmd-l 32 16 11 sci.ffl 99+ 99+ 1 ForSum 1 1 1 TxtRDD 99+ 99+ 34

par-mne 99+ 99+ 99+ scc-l 99+ 99+ 99+ sci.lul 1 1 1 ForSumR 99+ 99+ 1 WrdCnt 40 65 32

philos 99+ 99+ 50 scdoc-l 99+ 99+ 99+ sci.mtc 12 12 23 GrpRem 99+ 99+ 99+

reactr 36 85 48 scp-l 10 65 56 sci.sol 1 1 1 MapOne 99+ 99+ 99+

time - wall clock time clk - thread clock time ins - instruction count



cbea

Different Metrics Not Always In Sync



cbea

Different Metrics Not Always In Sync

Plot Info
Input Benchmark repetition times and dynamic instruction counts

for all pairs of platform versions with suspected change.

X axis Change in average repetition time.

Y axis Change in average instruction count.



cbea

Different Metrics Not Always In Sync



cbea

Different Metrics Not Always In Sync

Sometimes things
work quite well



cbea

Different Metrics Not Always In Sync

Sometimes things
work quite well

Sometimes
instructions
may not be
the culprit



cbea

Different Metrics Not Always In Sync

Sometimes things
work quite well

Sometimes
instructions
may not be
the culprit

Perhaps
memory
bound ?



cbea

Wall Clock Time Changes Not Always Portable



cbea

Wall Clock Time Changes Not Always Portable

Plot Info
Input Benchmark repetition times for arbitrarily selected pairs of

platform versions with suspected change.

X axis Change in average repetition time on our hardware.

Y axis Change in average repetition time on cloud hardware.



cbea

Wall Clock Time Changes Not Always Portable



cbea

Wall Clock Time Changes Not Always Portable

Even large local changes
may not reproduce



cbea

Wall Clock Time Changes Not Always Portable

Even large local changes
may not reproduce

Improvement vs regression
also platform specific



cbea

Wall Clock Time Changes Not Always Portable

Even large local changes
may not reproduce

Improvement vs regression
also platform specific

Note
Measurement variance not shown …



cbea

Take Away So Far …

Looking at more execution metrics can improve accuracy

Can help developers trust detected time changes

Or even direct investigation of change causes

Not really clear how to combine multiple (possibly) conflicting results

Some metrics changing and some not

Some platforms improving and some regressing

Some benchmarks improving and some regressing



cbea

Outline

1 Quick Platform Overview

2 Handling Warm Up

3 Detecting Changes

4 Handling More Runs

5 Handling Different Metrics

6 Troublesome Performance Changes



cbea

Regression Example: Processor Scheduling I

Code
A microbenchmark that locates the first negative array item.

def run () {
for (i <- 0 until REPEATS) {

blackhole += findNegative (numbers)
}

}

def findNegative (numbers: Array[Int]): Option[Int] = {
numbers.find(_ < 0)

}

What the measurements said
Clear repetition time change between roughly 230ms and roughly 170ms
No change in other observed counters like instruction count
Observed multiple times in versions across several days
Commit changes often clearly unrelated



cbea

Regression Example: Processor Scheduling II
Assembly
Compilation results in reasonably compact assembly code.

0x00007f115c894c00: cmp %r13d,%edi ;loop iteration count test
0x00007f115c894c03: jbe 0x00007f115c89561c
0x00007f115c894c09: mov 0x10(%rdx,%r13,4),%r10d ;fetch array item
0x00007f115c894c0e: test %r10d,%r10d ;negative test
0x00007f115c894c11: jl 0x00007f115c894c2a ;found negative
0x00007f115c894c17: test %eax,0x1942d3e9(%rip) ;safepoint poll
0x00007f115c894c1d: inc %r13d
0x00007f115c894c20: cmp %r13d,%edi ;loop iteration count test (again)
0x00007f115c894c23: jg 0x00007f115c894c00

Analysis
Inner loop executes at IPC 6 when fast or IPC 4.5 when slow
Performance difference inflated from mere 0.5 cycle per iteration
Instruction scheduler counters report different μops port use as the reason
Actual scheduler choice only indirectly influenced by code



cbea

Regression Example: Inlining Heuristic I

Code
A microbenchmark that filters odd array items.

def run () {
for (i <- 0 until REPEATS) {

blackhole += filterOdd (numbers).length
}

}

def filterOdd (numbers: ArrayBuffer[Int]): ArrayBuffer[Int] = {
numbers.filter (_ % 2 == 1)

}

What the measurements said
Times always stable within each run
Repetition time of a run flipping between 5 s and 5.6 s
Rarely observed runs with repetition times of roughly 3.4 s
Share of runs with each time sometimes changes between versions



cbea

Regression Example: Inlining Heuristic II

Analysis
Fast and slow runs differed in what code gets inlined
Inlining heuristic (also) relies on low level graph size of the callee

If callee previously compiled, a cached value was used

If callee not yet compiled, an estimate was made

Caller and callee invocation counters necessarily similar
Hence compilation jobs launched close together in time
That increases the likelihood of the inliner flipping



cbea

Take Away So Far …

Reasons for performance change
not always directly connected to committed code

Especially microbenchmarks may exhibit fragile performance

Responsibility for addressing changes therefore not clear

Hard to tell whether performance regression should be addressed

Especially with benchmarks that
do not represent application performance

Effort needed to investigate reasons is not very predictable



cbea

Broader Context

Multiple testing scenarios employed

Quick benchmark run every commit

Thorough benchmark run every week

Interactive performance change detection (us)

Every commit

Fast but low detection ability

Useful to catch major bugs fast

Every week

Resource intensive but high detection ability

Useful to keep track of overall development

Significant changes investigated manually



cbea

Thank You !

Do not treat all benchmarks the same …
… using similar run sizes or expecting similar accuracy is not a good idea

Microbenchmarks should get special treatment …
… good for seeing specific changes but bad for judging practical impact

Evaluation cannot stay with developers only …
… users determine important workloads

Contribute to Renaissance …
… and we will start benchmarking your code too :-)

https://d3s.mff.cuni.cz

Our work is kindly sponsored by Oracle Labs.

https://d3s.mff.cuni.cz


cbea

Thank You !

Do not treat all benchmarks the same …
… using similar run sizes or expecting similar accuracy is not a good idea

Microbenchmarks should get special treatment …
… good for seeing specific changes but bad for judging practical impact

Evaluation cannot stay with developers only …
… users determine important workloads

Contribute to Renaissance …
… and we will start benchmarking your code too :-)

https://d3s.mff.cuni.cz

Our work is kindly sponsored by Oracle Labs.

https://d3s.mff.cuni.cz


cbea

Thank You !

Do not treat all benchmarks the same …
… using similar run sizes or expecting similar accuracy is not a good idea

Microbenchmarks should get special treatment …
… good for seeing specific changes but bad for judging practical impact

Evaluation cannot stay with developers only …
… users determine important workloads

Contribute to Renaissance …
… and we will start benchmarking your code too :-)

https://d3s.mff.cuni.cz

Our work is kindly sponsored by Oracle Labs.

https://d3s.mff.cuni.cz


cbea

Thank You !

Do not treat all benchmarks the same …
… using similar run sizes or expecting similar accuracy is not a good idea

Microbenchmarks should get special treatment …
… good for seeing specific changes but bad for judging practical impact

Evaluation cannot stay with developers only …
… users determine important workloads

Contribute to Renaissance …
… and we will start benchmarking your code too :-)

https://d3s.mff.cuni.cz

Our work is kindly sponsored by Oracle Labs.

https://d3s.mff.cuni.cz


cbea

Thank You !

Do not treat all benchmarks the same …
… using similar run sizes or expecting similar accuracy is not a good idea

Microbenchmarks should get special treatment …
… good for seeing specific changes but bad for judging practical impact

Evaluation cannot stay with developers only …
… users determine important workloads

Contribute to Renaissance …
… and we will start benchmarking your code too :-)

https://d3s.mff.cuni.cz

Our work is kindly sponsored by Oracle Labs.

https://d3s.mff.cuni.cz

	Quick Platform Overview
	Handling Warm Up
	Detecting Changes
	Handling More Runs
	Handling Different Metrics
	Troublesome Performance Changes

