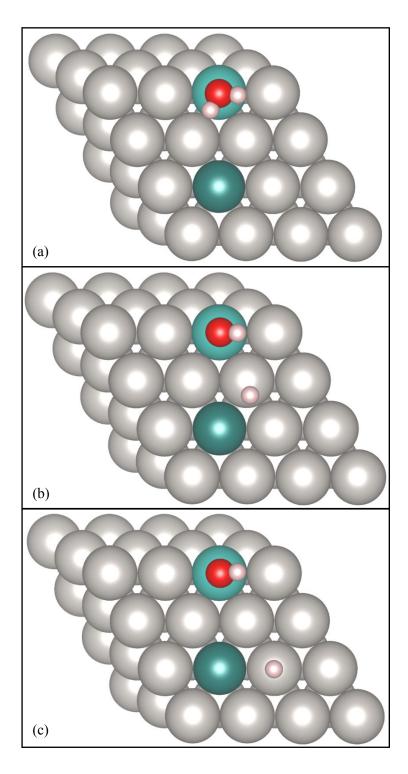
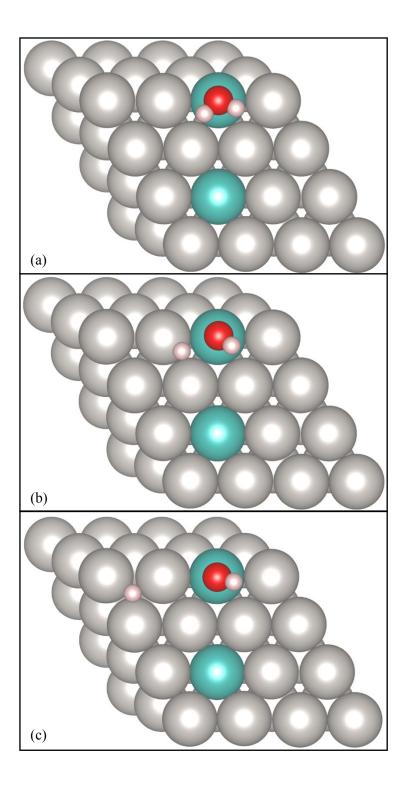
Supplementary Information

A Theoretical Study of an Almost Barrier-Free Water Dissociation on a Platinum (111) Surface Alloyed with Ruthenium and Molybdenum

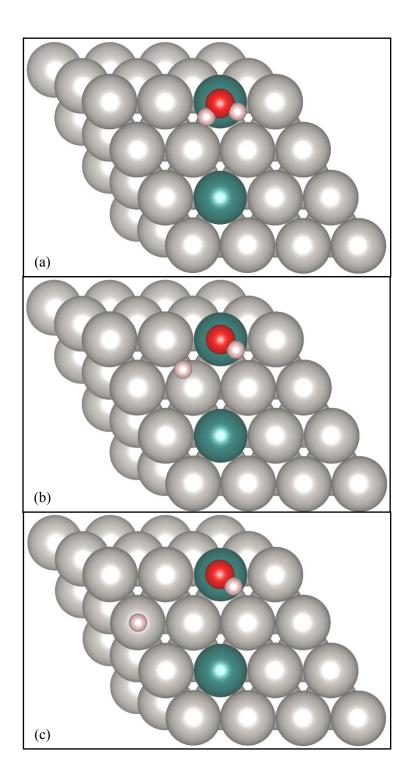
Wahyu Tri Cahyanto^{1*}, Siti Zulaehah², Wahyu Widanarto¹, Farzand Abdullatif¹, Mukhtar effendi¹, Hideaki Kasai³


¹Department of Physics, Universitas Jenderal Soedirman, Jl. dr. Soeparno Utara, Grendeng, Purwokerto, 53122, INDONESIA

²Department of Mechanical Engineering, Universitas Perwira Purbalingga, Jl. S. Parman No. 53, Purbalingga, 53313, INDONESIA


³Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, JAPAN

*Corresponding author:


Wahyu Tri Cahyanto, Email: wahyu.cahyanto@unsoed.ac.id

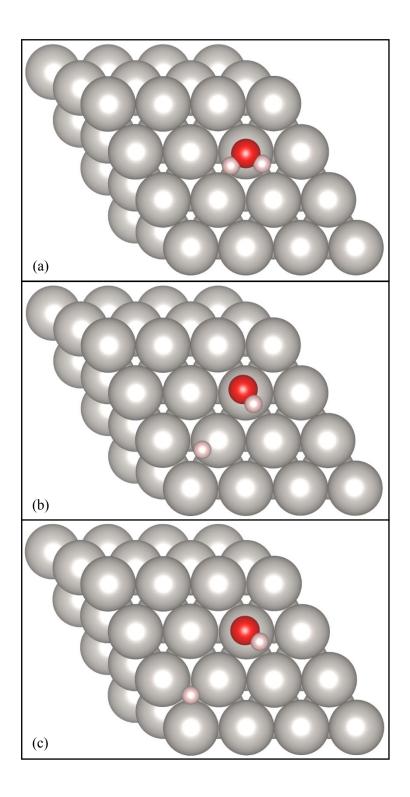

Figure S1 Atomic coordinates of the H_2O dissociation process over the Pt(111)-Ru-Mo surface for (a) initial states, (b) transition states and (c) final states. The adsorption energies of H_2O_{ad} in the initial states, H_{ad} and OH_{ad} in the transition states and H_{ad} and OH_{ad} in the final states with ZPE corrections are 1.50, 7.38 and 6.79 eV, respectively. The activation energy required to dissociate an H_2O monomer on this surface is 0.14 eV.

Figure S2 Atomic coordinates of the H_2O dissociation process over the Pt(111)-Mo surface for (a) initial states, (b) transition states and (c) final states. The adsorption energies of H_2O_{ad} in the initial states, H_{ad} and OH_{ad} in the transition states and H_{ad} and OH_{ad} in the final states with ZPE corrections are 1.37, 6.55 and 6.89 eV, respectively. The activation energy required to dissociate an H_2O monomer on this surface is 0.20 eV.

Figure S3 Atomic coordinates of the H_2O dissociation process over the Pt(111)-Ru surface for (a) initial states, (b) transition states and (c) final states. The adsorption energies of H_2O_{ad} in the initial states, H_{ad} and OH_{ad} in the transition states and H_{ad} and OH_{ad} in the final states with ZPE corrections are 1.04, 6.13 and 6.11 eV, respectively. The activation energy required to dissociate an H_2O monomer on this surface is 0.56 eV.

Figure S4 Atomic coordinates of the H_2O dissociation process over the pure Pt(111) surface for (a) initial states, (b) transition states and (c) final states. The adsorption energies of H_2O_{ad} in the initial states, H_{ad} and OH_{ad} in the transition states and H_{ad} and OH_{ad} in the final states with ZPE corrections are 0.30, 6.86 and 5.90 eV, respectively. The activation energy required to dissociate an H_2O monomer on this surface is 0.646 eV.