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Abstract. We conduct a global inverse analysis of 2010–
2018 GOSAT observations to better understand the fac-
tors controlling atmospheric methane and its accelerating
increase over the 2010–2018 period. The inversion opti-
mizes anthropogenic methane emissions and their 2010–
2018 trends on a 4◦×5◦ grid, monthly regional wetland emis-
sions, and annual hemispheric concentrations of tropospheric
OH (the main sink of methane). We use an analytical solution
to the Bayesian optimization problem that provides closed-
form estimates of error covariances and information content
for the solution. We verify our inversion results with indepen-
dent methane observations from the TCCON and NOAA net-
works. Our inversion successfully reproduces the interannual
variability of the methane growth rate inferred from NOAA
background sites. We find that prior estimates of fuel-related
emissions reported by individual countries to the United Na-
tions are too high for China (coal) and Russia (oil and gas)
and too low for Venezuela (oil and gas) and the US (oil and
gas). We show large 2010–2018 increases in anthropogenic
methane emissions over South Asia, tropical Africa, and
Brazil, coincident with rapidly growing livestock populations
in these regions. We do not find a significant trend in anthro-

pogenic emissions over regions with high rates of production
or use of fossil methane, including the US, Russia, and Eu-
rope. Our results indicate that the peak methane growth rates
in 2014–2015 are driven by low OH concentrations (2014)
and high fire emissions (2015), while strong emissions from
tropical (Amazon and tropical Africa) and boreal (Eurasia)
wetlands combined with increasing anthropogenic emissions
drive high growth rates in 2016–2018. Our best estimate is
that OH did not contribute significantly to the 2010–2018
methane trend other than the 2014 spike, though error corre-
lation with global anthropogenic emissions limits confidence
in this result.

1 Introduction

Methane is the second most important anthropogenic green-
house gas after CO2, with an emission-based radiative forc-
ing of 0.97 W m−2 since preindustrial times (Myhre et al.,
2013). Methane is emitted to the atmosphere from a range of
anthropogenic activities including fuel exploitation, agricul-
ture, waste and wastewater treatment, and biomass burning.
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The main natural source is from wetlands, with minor contri-
butions from geological seeps, forest fires, and termites. At-
mospheric methane has a lifetime of 11.2±1.3 years against
tropospheric oxidation by the hydroxyl radical (OH) (Prather
et al., 2012). Minor sinks include stratospheric loss, oxida-
tion by Cl atoms, and absorption by soils (Kirschke et al.,
2013).

Unlike the steady rise in atmospheric CO2, the rise of
methane has taken place in fits and starts. Observations from
the NOAA network (Dlugokencky, 2020) (https://www.esrl.
noaa.gov/gmd/ccgg/trends_ch4/, last access: 22 June 2020)
show a period of stabilization in the early 2000s, followed
by renewed growth after 2007 that has accelerated since
2014. Annual growth rates averaged 0.50 % a−1 for 2014–
2018 compared to 0.32 % a−1 for 2007–2013. The growth of
atmospheric methane concentrations, if continued at current
rates in coming decades, may significantly negate the climate
benefit of CO2 emission reduction (Nisbet et al., 2019).

However, our understanding of the drivers behind the
methane growth rate is still limited, preventing reliable pro-
jections for future changes. Explanations have differed for
the renewed growth of atmospheric methane since 2007.
A concurrent increase in atmospheric ethane has been in-
terpreted as evidence of an increase in oil and gas emis-
sions (Hausmann et al., 2016; Franco et al., 2016). How-
ever, the assumption that the ethane-to-methane emission ra-
tio should be stable is questionable (Lan et al., 2019). Mean-
while, a concurrent shift towards isotopically lighter methane
has been attributed to an increase in microbial sources either
from livestock or wetlands (Schaefer et al., 2016; Nisbet et
al., 2016). Worden et al. (2017) pointed out that the trend
towards isotopically lighter methane could be explained by
decreases in fire emissions that are isotopically heavy. Based
on methyl chloroform observations, Turner et al. (2017) and
Rigby et al. (2017) suggested that a decrease in the OH sink
may be the cause of the methane regrowth.

To better interpret the methane budget and its recent
trends, we present an inverse analysis of global 2010–2018
methane observations from the GOSAT instrument. GOSAT
provides a long record (starting in 2009) of global high-
quality observations of column methane mixing ratios (Kuze
et al., 2016; Buchwitz et al., 2015). A number of inverse
analyses previously used GOSAT observations to constrain
methane emission estimates (Fraser et al., 2013; Monteil et
al., 2013; Cressot et al., 2014; Alexe et al., 2015; Turner et
al., 2015; Pandey et al., 2016, 2017a; Miller et al., 2019;
F. Wang et al., 2019a; Lunt et al., 2019; Maasakkers et al.,
2019; Janardanan et al., 2020; Tunnicliffe et al., 2020; Yin et
al., 2020). Maasakkers et al. (2019) used 2010–2015 GOSAT
observations to optimize gridded methane emissions, global
OH concentrations, and their 2010–2015 trends. They con-
cluded that increasing methane emissions were driven mainly
by India, China, and tropical wetlands. Our analysis is based
on that of Maasakkers et al. (2019) but extends it to 2018
in order to interpret the post-2014 acceleration. We imple-

ment for that purpose a number of major improvements to the
Maasakkers et al. (2019) methodology including in particu-
lar (1) separate optimization of subcontinental wetland emis-
sions to resolve their seasonal and interannual variability,
(2) correction of stratospheric methane forward model biases
based on ACE-FTS solar occultation satellite data (Waymark
et al., 2014), (3) prior estimates of global fuel exploitation
emissions using national reports submitted to the United Na-
tions Framework Convention on Climate Change (UNFCCC)
(Scarpelli et al., 2020), and (4) optimization of annual hemi-
spheric OH concentrations.

2 Methods

2.1 GOSAT observations

The observation vector for the inversion (y) consists of
column-averaged dry-air methane mole fractions during
2010–2018 observed by the TANSO-FTS instrument on
board the Greenhouse Gases Observing Satellite (GOSAT)
(Kuze et al., 2009). The satellite is in polar sun-synchronous
low-Earth orbit and observes methane by nadir solar
backscatter in the 1.65 µm shortwave infrared absorption
band. Observations are made at around 13:00 local solar
time. We use the University of Leicester version 9 CO2 proxy
retrieval (Parker et al., 2020a). The retrieval has been exten-
sively validated against ground-based column observations
from the Total Carbon Column Observing Network (Wunch
et al., 2011). Validation has also been performed for the
model XCO2 used in the CO2 proxy retrieval (Parker et al.,
2015) and for a specific region (i.e., the Amazon) against air-
craft profile observations (Webb et al., 2016). Overall, the
retrieval has a single-observation precision of 13.7 ppb and a
regional bias of 4 ppbv (Parker et al., 2020a), which is suf-
ficient for a successful methane inversion (Buchwitz et al.,
2015). The inversion ingests a total of 1.5 million successful
GOSAT retrievals. Previous inversions of GOSAT data of-
ten excluded high-latitude observations because of seasonal
bias, large retrieval errors at low solar elevations, and for-
ward model errors for the stratosphere (Bergamaschi et al.,
2013; Turner et al., 2015; Z. Wang et al., 2017; Maasakkers
et al., 2019). The exclusion of high-latitude observations lim-
ited the capability of the inversions to resolve emissions at
high latitudes such as from boreal wetlands and oil and gas
activity in Russia (Maasakkers et al., 2019). Here we use an
improved model bias correction scheme (Sect. 2.5) and in-
clude these high-latitude observations in the inversion.

2.2 State vector

The state vector (x) is the ensemble of variables that we seek
to optimize in the inversion. In this work, the state vector
includes (1) mean 2010–2018 methane emissions from non-
wetland sources (all anthropogenic and natural emissions ex-
cluding wetlands) on a global 4◦× 5◦ grid (1009 elements),
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(2) linear trends of non-wetland emissions on that same
grid (1009 elements), (3) wetland emissions from 14 sub-
continental regions for individual months (1512 elements)
(Fig. 1), and (4) annual mean tropospheric OH concentra-
tions in the Northern and Southern Hemisphere (18 ele-
ments). The reason to treat wetland and non-wetland emis-
sions separately is that wetland emissions have large seasonal
and interannual uncertainties (compared to anthropogenic
emissions); coarsening the spatial resolution when optimiz-
ing wetland emissions allows us to estimate monthly values
for individual years (Bloom et al., 2017). This is a signifi-
cant improvement over the inverse analysis of Maasakkers et
al. (2019), wherein interannual and seasonal errors in prior
wetland emissions were not addressed by the inversion.

Another improvement in the state vector definition rela-
tive to Maasakkers et al. (2019) is to optimize annual mean
OH concentrations in each hemisphere rather than just glob-
ally. Y. Zhang et al. (2018) previously found with an ob-
serving system simulation experiment that it should be pos-
sible to constrain annual mean hemispheric OH concentra-
tions from satellite methane observations. Patra et al. (2014)
suggested that global chemical transport models (CTMs) are
often biased in their inter-hemispheric OH gradient relative
to methyl chloroform observations, and such bias, if not cor-
rected, would propagate to the solution for methane emis-
sions.

2.3 Prior estimates

Prior estimates for methane sources and sinks (xa) are com-
piled from an ensemble of bottom-up studies. Figure 1
shows the spatial distribution of prior emission estimates.
For gridded 4◦× 5◦ anthropogenic emissions, we use as
default the EDGAR v4.3.2 global emission inventory for
2012 (https://edgar.jrc.ec.europa.eu/, last access: 1 Decem-
ber 2017) (Janssens-Maenhout et al., 2017). We supersede
it for the US with the gridded version of the Environmen-
tal Protection Agency greenhouse gas emission inventory for
2012 (Maasakkers et al., 2016). We further supersede it glob-
ally for fuel (oil, gas, and coal) exploitation with the in-
ventory of Scarpelli et al. (2020) for 2012, which spatially
disaggregates the national emissions reported to the United
Nations Framework Convention on Climate Change (UN-
FCCC) (https://di.unfccc.int/, last access: 22 June 2020). All
anthropogenic emissions are assumed to be aseasonal, except
manure management for which we apply local temperature-
dependent corrections (Maasakkers et al., 2016) and rice cul-
tivation for which we apply gridded seasonal scaling factors
from B. Zhang et al. (2016).

For the prior estimates of natural emissions, we take
monthly wetland emissions during 2010–2018 from the
WetCHARTS v1.0 extended ensemble mean (Bloom et al.,
2017) for each subcontinental domain in Fig. 1. To test the
impact of wetland spatial distribution within the subconti-
nental domains on inversion results, we performed a sensitiv-

Figure 1. Spatial distribution of mean 2010–2018 methane emis-
sions used as prior estimates in the inversion of GOSAT data.
The top panel shows wetland emissions, and the bottom panel
shows non-wetland emissions. Blue boxes indicate the 14 sub-
continental regions for which wetland emissions are optimized
for individual months (Sect. 2.2): (1) Alaska+western Canada,
(2) eastern Canada, (3) northern Europe, (4) Siberia, (5) temper-
ate North America, (6) Latin America, (7) the Mediterranean, (8)
East Asia, (9) the Amazon, (10) sub-Saharan Africa, (11) tropical
South Asia, (12) Argentina, (13) southern Africa, and (14) Indone-
sia+Australia.

ity inversion in which prior WetCHARTS emissions in Africa
(regions 10 and 13 in Fig. 1) are increased by a factor of 3 in
the Sudd wetland of South Sudan and decreased by a factor
of 2.5 in the Congo Basin, following Lunt et al. (2019) and as
shown in Fig. S1. Daily global emissions from open fires are
taken from GFEDv4s (van der Werf et al., 2017), which ac-
counts for high methane emissions from peatland fires (Liu et
al., 2020). For geological sources, we scale the spatial distri-
bution from Etiope et al. (2019) to a global total of 2 Tg a−1

inferred from preindustrial-era ice core 14CH4 data (Hmiel
et al., 2020). Termite emissions are from Fung et al. (1991),
totalling 12 Tg a−1.

The prior estimates for 2010–2018 trends in non-wetland
emissions are specified as zero on the 4◦×5◦ grid, except for
interannual variability in fire emissions given by GFEDv4s.
In this manner, all information on the posterior estimate of
anthropogenic emission trends is from the GOSAT observa-
tions.

The prior estimates for the hemispheric tropospheric OH
concentrations are based on a GEOS-Chem full chemistry
simulation (Wecht et al., 2014). The monthly 3-D OH con-
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centration fields from this full chemistry simulation are also
used in the forward model. We optimize hemispheric OH
concentrations as the methane loss frequency [s−1] due to ox-
idation by tropospheric OH (ki) in the Northern and Southern
Hemisphere (i = north or south):

ki =

∫
troposphere, ik

′(T )[OH]nCH4 dv∫
atmospherenCH4 dv , (1)

where nCH4 is methane number density
[molec. cm−3], v is volume, and k′(T )= 2.45×
10−12e−1775/T cm3 molec.−1 s−1 is the temperature-
dependent oxidation rate constant (Burkholder et al., 2015).
In this definition, the denominator of Eq. (1) integrates
over the entire atmosphere, and the numerator integrates
over the hemispheric troposphere. Hence, global methane
loss frequency (or inverse lifetime; k) due to oxidation by
tropospheric OH can be expressed as the sum of hemi-
spheric values (k = 1/τ = knorth

+ ksouth, where τ is the
global lifetime due to oxidation by tropospheric OH). Our
prior estimates from Wecht et al. (2014) are 0.050 a−1

for knorth and 0.043 a−1 for ksouth, which translates to a τ
of 10.7 years and a north-to-south inter-hemispheric OH
ratio of 1.16. In comparison, the methyl chloroform proxy
infers τ of 11.2± 1.3 years (Prather et al., 2012) and an
inter-hemispheric ratio in the range 0.85–0.98 (Montzka
et al., 2000; Prinn et al., 2001; Krol and Lelieveld, 2003;
Bousquet et al., 2005; Patra et al., 2014), while the ACCMIP
model ensemble yields a τ of 9.7± 1.5 years and an
inter-hemispheric ratio of 1.28± 0.10 (Naik et al., 2013).

The Bayesian inversion requires error statistics for the
prior estimates. The prior error covariance matrix (Sa) is con-
structed as follows. For mean non-wetland emissions, we as-
sume 50 % error standard deviation for individual grid cells
and 20 % for each source category when aggregated glob-
ally. For linear trends in non-wetland emissions, we specify
an absolute error standard deviation of 5 % a−1 for individ-
ual grid cells. For wetland emissions, we take the full error
covariance structure (including spatial and temporal error co-
variance) derived from the WetCHARTs ensemble members
for the 14 subcontinental regions (Bloom et al., 2017). For
annual hemispheric OH concentrations, we assign 5 % inde-
pendent errors for individual years on top of a 10 % error for
the 2010–2018 mean.

2.4 Forward model

We use the GEOS-Chem CTM v11.02 as a forward model
(F ) for the inversion (Wecht et al., 2014; Turner et al., 2015;
Maasakkers et al., 2019) that relates atmospheric methane
observations (y) to the state vector to be optimized (x) as
y = F (x). The simulation is conducted at 4◦× 5◦ horizon-
tal resolution with 47 vertical layers (∼ 30 layers in the tro-
posphere) and is driven by 2009–2018 MERRA-2 meteoro-
logical fields (Gelaro et al., 2017) from the NASA Global
Modeling and Assimilation Office (GMAO). The prior simu-

lation is conducted from 2010 to 2018. The initial conditions
are from Turner et al. (2015) with an additional 1-year spin-
up starting from January 2009 to establish methane gradients
driven by synoptic-scale transport (Turner et al., 2015). We
further set the initial conditions on 1 January 2010 to be un-
biased by removing the zonal mean biases relative to GOSAT
observations. Thus, we attribute any model departures from
observations over the 2010–2018 period in the inversion to
errors in sources and sinks over that period.

We use archived 3-D monthly fields of OH concentra-
tions from a GEOS-Chem full chemistry simulation (Wecht
et al., 2014) to compute the removal of methane from oxi-
dation by tropospheric OH. Other minor loss terms include
stratospheric oxidation computed with archived monthly
loss frequencies from the NASA Global Modeling Initiative
model (Murray et al., 2012), tropospheric oxidation by Cl
atoms computed with archived Cl concentration fields from
X. Wang et al. (2019b), and monthly soil uptake fields from
Murguia-Flores et al. (2018). The inversion does not opti-
mize these minor sinks. The loss from oxidation by Cl is
5.5 Tg a−1, accounting for ∼ 1 % of methane loss. It is lower
than the previous estimate of 9 Tg a−1 (Sherwen et al., 2016)
used by Maasakkers et al. (2019) but is consistent with a re-
cent analysis of methane and CO isotopic signatures (Gro-
mov et al., 2018). Use of monthly soil uptake fields from the
Murguia-Flores et al. (2018) climatology of 2000–2009 data
is another update relative to Maasakkers et al. (2019) and
yields a global soil sink of 34 Tg a−1.

2.5 Forward model bias correction

The GEOS-Chem-simulated methane columns have a
latitude-dependent background bias relative to the GOSAT
data (Turner et al., 2015). This is thought to result from ex-
cessive meridional transport in the stratosphere, a common
problem in global models (Patra et al., 2011). In particu-
lar, coarse-resolution global models have difficulty resolving
polar vortex dynamics that control the distribution of strato-
spheric methane in the winter–spring hemisphere (Stanevich
et al., 2020). The GEOS-Chem model evaluation with strato-
spheric sub-columns derived from ground-based TCCON
measurements shows that the stratospheric bias varies sea-
sonally (Saad et al., 2016). Previous GEOS-Chem-based in-
versions of GOSAT data (Turner et al., 2015; Maasakkers
et al., 2019) developed correction schemes by fitting differ-
ences between the prior model simulation and background
GOSAT observations as a second-order polynomial func-
tion of latitude. However, these correction schemes did not
consider the seasonal variation of the stratospheric biases.
Moreover, they could falsely attribute high-latitude model–
GOSAT differences to stratospheric model bias rather than
to errors in prior emissions. Therefore, previous studies ex-
cluded high-latitude observations from their analyses (Turner
et al., 2015; Maasakkers et al., 2019).
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Figure 2. GEOS-Chem stratospheric bias correction based on ACE-
FTS observations. The figure shows the ACE-FTS to GEOS-Chem
ratio of stratospheric methane sub-columns as a function of equiva-
lent latitude and season, averaged over the 2010–2015 period. Grey
shading represents the fitting uncertainty.

Here we improve the stratospheric bias correction by us-
ing satellite observations from ACE-FTS v3.6 (Waymark
et al., 2014; Koo et al., 2017). ACE-FTS is a solar oc-
cultation instrument launched in 2003 that measures verti-
cal profiles of stratospheric methane (Bernath et al., 2005).
We compute correction factors to GEOS-Chem stratospheric
methane sub-columns as a function of season and equiva-
lent latitude based on the ratios of stratospheric methane sub-
columns between the ACE-FTS and GEOS-Chem prior sim-
ulation for 2010–2015 (Fig. 2). A global scaling factor (1.06)
is applied to these correction factors to enforce mass conser-
vation for methane in the stratosphere so that the correction
does not introduce a spurious stratospheric source and sink in
the model simulation. We use equivalent latitude, computed
on the 450 K isentropic surface from MERRA-2 reanaly-
sis fields, as one of the predictors for parameterization. The
equivalent latitude is a coordinate based on potential vorticity
(PV) that maps PV to latitude based on areas enclosed by PV
isopleths (Butchart and Remsberg, 1986), and it is often used
to represent the influence of high-altitude dynamics (e.g., po-
lar vortex) on chemical tracers (Engel et al., 2006; Hegglin
et al., 2006; Strahan et al., 2007). We use the same strato-
spheric bias correction for all years because the correction
does not vary significantly for individual years (Fig. S2). Fig-
ure 2 shows that GEOS-Chem model biases are largely con-
fined to high latitudes of the winter–spring hemisphere. By
having our correction factors be dependent on equivalent lat-
itude and season, we specifically account for the overly weak
polar vortex dynamical barrier in the model as the cause of
the stratospheric bias (Stanevich et al., 2020).

2.6 Inversion procedure

We perform the inversion by minimizing the Bayesian cost
function (Brasseur and Jacob, 2017):

J (x)= (x− xa)
TS−1

a (x− xa)

+ γ (y−Kx)TS−1
O (y−Kx) . (2)

Here, the Jacobian matrix K(= ∂y
∂x
) is a linearized descrip-

tion of the forward model (F ) that relates y (observations) to
x (state vector). We explicitly compute the Jacobian matrix
by perturbing each individual element of x independently in
GEOS-Chem simulations and calculating the sensitivity of
y to that perturbation. xa is the prior estimate for x and
Sa is the prior error covariance matrix (Sect. 2.3). SO is
the observation error covariance matrix including contribu-
tions from the instrument error and the forward model error.
We take SO to be diagonal and compute the variance terms
from the statistics of the residual error (εO = y−F (xa)−
y−F (xa), where the overbar denotes annual averages in
a 4◦× 5◦ grid cell) that represents the random component
of model–observation differences (Heald et al., 2004). This
method of constructing SO has been previously applied to
GOSAT observations by Turner et al. (2015) and Maasakkers
et al. (2019). The observational error standard deviation de-
rived in this manner averages 13 ppbv. γ is the regularization
parameter taken to be 0.05 following Y. Zhang (2018) and
Maasakkers et al. (2019) to account for missing error covari-
ance structure in SO.

Minimizing J (x) (Eq. 2) by solving dJ/dx = 0 analyti-
cally (Rodgers, 2000; Brasseur and Jacob, 2017) yields a best
posterior estimate of the state vector (x̂) and the associated
posterior error covariance matrix (Ŝ) characterizing the error
statistics of x̂:

x̂ = xa +
(
γKTS−1

O K+S−1
a

)−1
γKTS−1

O (y−Kxa) , (3)

Ŝ=
(
γKTS−1

O K+S−1
a

)−1
. (4)

From there we derive the averaging kernel matrix A=
∂x̂/∂x describing the sensitivity of the solution to the true
state:

A= I− ŜS−1
a . (5)

The trace of the averaging kernel matrix is referred to as the
degrees of freedom for signal (DOFS) (Rodgers, 2000) and
represents the number of independent pieces of information
on the state vector that are constrained by the inversion. We
refer to the diagonal terms of A as averaging kernel sensitiv-
ities, which measure the ability of the observations to quan-
tify the individual elements of the state vector (Sheng et al.,
2018c; Maasakkers et al., 2019).

The posterior solution is often presented in reduced dimen-
sionality. For example, spatially resolved emission and trend
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estimates on the 4◦× 5◦ grid can be aggregated to countries,
regions, or global and/or regional emissions from individual
source sectors (oil and gas, livestock, etc.). Let W be a matrix
that represents the linear transformation from the full state
vector to a reduced state vector. The posterior estimation of
the reduced state vector (x̂red) is computed as

x̂red =Wx̂, (6)

with posterior error covariance matrix

Ŝred =WŜWT (7)

and averaging kernel matrix

Ared =WAW∗, (8)

where W∗ =WT(WWT)−1 is the pseudo-inverse of W. The
regional and global budget terms and their error covariance
structures obtained by using this approach are consistent with
the full inversion. In the case of aggregation by sectors, we
construct W on the basis of the relative contribution of the
sector to the prior emissions in each 4◦× 5◦ grid cell. This
does not assume that the prior distribution of sectoral emis-
sions is correct, only that the relative allocation within a
given 4◦× 5◦ grid cell is correct.

3 Evaluation of the inversion results

We conduct a posterior simulation driven by the opti-
mized (posterior) distributions of methane emissions, emis-
sion trends, and OH concentrations to evaluate the inversion.
The posterior simulation results are compared with the train-
ing data (GOSAT) and independent evaluation data includ-
ing TCCON total column measurements (https://tccondata.
org/, last access: 22 June 2020) (Wunch et al., 2011) and
NOAA surface measurements (https://www.esrl.noaa.gov/
gmd/ccgg/flask.php, last access: 22 June 2020) (Dlugo-
kencky et al., 2020). Figure 3 shows the GEOS-Chem com-
parison to the GOSAT data. As expected for a successful
inversion, the posterior simulation achieves a better fit to
GOSAT observations than the prior simulation both spatially
and temporally, with root mean square errors reduced by
70 % (prior: 44 ppbv; posterior: 13 ppbv). The prior simula-
tion shows a negative bias that grows with time and has a
large seasonal structure presumably associated with errors in
wetland emissions. The prior biases also have prominent spa-
tial patterns, particularly in the extratropical Northern Hemi-
sphere and the tropics. All these error features largely vanish
in the posterior simulation through the optimized adjustment
of the state vector (Fig. 3).

Figure 4 presents evaluations against independent 2010–
2018 observations from TCCON and NOAA sites arranged
by latitude. Values are shown as the root mean square error
(RMSE) for individual sites. Figure 4 shows that the inver-
sion substantially improves the agreement between simula-
tions and observations for all TCCON sites and almost all

NOAA surface sites. Average root mean square errors are
reduced by 60 % for TCCON sites (prior: 38 ppbv; poste-
rior: 15 ppbv) and by 42 % for NOAA surface sites (prior:
43 ppbv; posterior: 25 ppbv). The seasonal component of
the errors (root mean square errors computed from monthly
mean model–observation differences after annual mean bi-
ases are removed; not shown in the figure) is reduced on av-
erage by 42 % for TCCON sites (prior: 6.5 ppbv; posterior:
3.8 ppbv) and 30 % for surface sites (prior: 10 ppbv; poste-
rior: 7 ppbv), primarily owing to optimized seasonal varia-
tions in wetland emissions. In addition, we do not find large
interannual variability of posterior biases that could be asso-
ciated with climate oscillations such as ENSO (Fig. S3).

The posterior error covariance matrix Ŝ resulting from an-
alytically solving the Bayesian problem allows us to analyze
the error structure of posterior estimates. Figure 5 plots the
posterior joint probability density functions (PDFs) for pairs
of global budget terms and their trends (computed following
Eqs. 6–7). A strong negative error correlation in the inver-
sion results is found between global anthropogenic emissions
and methane lifetime (r =−0.8), reflecting the limited abil-
ity of the inversion to separate the two. In contrast, error cor-
relations between wetland emissions and methane lifetime
(r =−0.4) as well as between wetland and anthropogenic
emissions (r =−0.2) are much smaller. We find moderate er-
ror correlations between the OH trend and either wetland or
anthropogenic emission trends (r =−0.6). Improved separa-
tion of global budget terms and their trends may be achieved
by including additional information from surface observa-
tions (Lu et al., 2020) and from thermal infrared satellite ob-
servations (Y. Zhang et al., 2018).

Figure 6 further examines the error aliasing of estimates
for anthropogenic and wetland emissions within or between
regions. For this analysis, anthropogenic emissions opti-
mized on the 4◦× 5◦ grid are aggregated to 14 subconti-
nental regions used for estimating wetland emissions. We
find only moderate negative error correlations (r =−0.1
to −0.5) between estimates for anthropogenic and wetland
emissions within the same region (diagonal of top left quad-
rant), suggesting that the inversion is able to separate the two.
Cross-region error correlations are generally small for an-
thropogenic emissions (bottom left quadrant of Fig. 6) but
have a complex structure for wetland emissions (top right
quadrant of Fig. 6). For example, errors are positively corre-
lated between sub-Saharan Africa and southern Africa wet-
lands (r = 0.6) but are negatively correlated between eastern
Canada and northern Europe wetlands (r =−0.4).

4 Results and discussion

4.1 Anthropogenic emissions

Figure 7 shows the correction factors from the inversion to
2010–2018 mean non-wetland emissions (posterior-to-prior
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Figure 3. Difference in methane columns between GEOS-Chem simulations and GOSAT observations. Results are shown for GEOS-Chem
using prior (a, c) and posterior (b, d) state vector estimates as well as for the spatial distribution averaged during 2010–2018 (a, b) and
monthly time series of zonal means in different latitude bands (c, d). Note the different color scales in (a) and (b). Tick marks on the x axes
in (c) and (d) represent January in each year. Figure S6 plots panel (d) in an expanded ordinate scale.

ratios) along with the associated averaging kernel sensitiv-
ities (corresponding diagonal terms of the averaging ker-
nel matrix). We achieve 179 independent pieces of informa-
tion (DOFS) for constraining the emissions on the 4◦× 5◦

grid. The spatial distribution of averaging kernel sensitivities
largely follows the pattern of prior emissions (right panel of
Fig. 5). The inversion provides strong constraints in major
anthropogenic source regions such as East Asia, South Asia,
and South America. The constraints are generally weaker
over North America, Europe, and Africa, indicating that the
inversion provides more diffuse spatial information in these
regions.

We find that the prior emission inventory significantly
overestimates anthropogenic emissions in eastern China
(Fig. 7). The posterior estimate of Chinese anthropogenic
emissions (47± 1 Tg a−1) is 30 % lower than the prior es-
timate (67 Tg a−1) and is also lower than the latest national
report from China to the UNFCCC of 55 Tg a−1 for 2014
(Fig. 8). Based on the relative contribution of each sector
in the prior inventory, we attribute ∼ 60 % of this down-
ward correction to coal mining. The overestimation of an-
thropogenic emissions from China has been reported by pre-
vious global and regional GOSAT inversion studies using dif-
ferent EDGAR inventory versions as prior estimates (Mon-
teil et al., 2013; Thompson et al., 2015; Turner et al., 2015;
Maasakkers et al., 2019; Miller et al., 2019).

Another major downward correction is for the oil- and gas-
producing regions in Russia. We estimate Russia’s anthro-
pogenic emissions to be 20±1 Tg a−1 as opposed to the prior

estimate of 34 Tg a−1 (Fig. 8), and the difference is mainly
attributable to the oil and gas sector (posterior: 15 Tg a−1;
prior: 27 Tg a−1). This finding is consistent with Maasakkers
et al. (2019), though they used a different oil and gas emis-
sion inventory. Russia has been revising downwards its na-
tional emission estimates submitted to the UNFCCC, and our
posterior estimate of total anthropogenic emissions is closer
to the country’s latest submission to the UNFCCC for 2010–
2018 (16 Tg a−1; Fig. 8). The new submission revises oil and
gas methane emissions downward by a factor of 3 relative
to the previous submission used as a prior estimate in our
inversion (Scarpelli et al., 2020).

We find large upward corrections to the prior inventory
over East Africa (Mozambique, Zambia, Tanzania, Ethiopia,
Uganda, Kenya, and Madagascar) and over South America
(Brazil). A previous inversion suggested that corrections for
these regions may be due to an underestimation of prior
wetland emissions (Maasakkers et al., 2019). Our inversion,
which optimizes wetland and anthropogenic emissions sepa-
rately, attributes the underestimation to anthropogenic emis-
sions (see also Sect. 4.3 for wetland results), though there is
some error aliasing between them (r =−0.5 for sub-Saharan
Africa,−0.4 for southern Africa; Fig. 6). We find that the up-
ward correction over eastern Africa generally remains robust
in a sensitivity inversion whereby prior wetland emissions in
a neighboring region (Sudd in South Sudan) are increased by
a factor of 3 (Figs. S4 and 8). Based on prior sectoral infor-
mation, these underestimations are most likely due to live-
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Figure 4. Root mean square errors of prior and posterior GEOS-Chem simulations relative to TCCON observations of dry column methane
mixing ratios (a) and NOAA observations of surface air mixing ratios (b, c). Observation sites are arranged by latitude. Data are for 2010–
2018. Site names are shown along with their latitude and longitude (more information about these sites can be found at https://tccon-wiki.
caltech.edu/ – last access: 22 June 2020 and https://www.esrl.noaa.gov/gmd/dv/site/index.php?program=ccgg – last access: 22 June 2020).
A mountaintop TCCON site located at Zugspitze, Germany (zs; ∼ 3000 m a.s.l.), is excluded because the terrain effect on the total column is
not resolved by the coarse-resolution model.

Figure 5. Error correlations between global anthropogenic emissions, wetland emissions, and tropospheric OH concentrations (methane
lifetime against oxidation by tropospheric OH; τ ) in the inverse solution. Results are shown for both 2010–2018 mean values and 2010–2018
trends. The error correlations are presented as joint probability density functions for pairs of reduced global state vector elements. Confidence
ellipses represent a probability of 0.1 (innermost) to 0.9 (outermost) at intervals of 0.1. The error correlation coefficients are inset.
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Figure 6. Posterior error correlations between regional anthro-
pogenic and wetland emissions. To examine error aliasing at a re-
gional scale, anthropogenic emissions resolved on the 4◦× 5◦ grid
are aggregated to the 14 subcontinental regions in Fig. 1 used for
optimizing wetland emissions. Numbers (1–14) indicate the region
index as in Fig. 1. “A” and “W” stand for anthropogenic and wetland
emissions, respectively. For example, 5A stands for anthropogenic
emissions from temperate North America.

stock emissions, whose bottom-up estimates have large un-
certainties in these developing regions (Herrero et al., 2013).

Another upward correction pattern in South America is
located near Venezuela, a major oil-producing country in
the region. The large correction in Venezuela likely reflects
underestimation of fossil fuel emissions by the national es-
timates for 2010 reported to the UNFCCC. Upward cor-
rections are also seen in central Asia (Iran, Turkmenistan),
where the regional posterior estimates (10.1± 0.9 Tg a−1)
are 49 % higher than the prior (6.8 Tg a−1), with adjust-
ments mainly attributed to the oil and gas sector. This region
has previously been identified by satellite observations as a
methane emission hot spot (Buchwitz et al., 2017; Varon et
al., 2019; Schneising et al., 2020).

The inversion finds small upward corrections over the US
(prior: 28 Tg a−1; posterior: 33±1 Tg a−1) (Fig. 8), resulting
mainly from underestimation of emissions from the oil and
gas sector in the western and south-central US (Fig. 7). This
result is consistent with a high-resolution inversion over the
US using the 2010–2015 GOSAT data, which spatially al-
locates the correction more specifically to oil and gas basins
(Maasakkers et al., 2020). A number of previous studies have
found that emissions from oil and gas production are under-
estimated in the national US inventory (e.g., Kort et al., 2014;
Smith et al., 2017; Peischl et al., 2018; Alvarez et al., 2018;
Y. Zhang et al., 2020; Gorchov Negron et al., 2020).

Small downward corrections with a diffuse pattern are
found over Europe. The posterior estimate of anthropogenic
emissions for the European Union (including the UK) is 16±
0.7 Tg a−1, slightly lower than the prior estimate (21 Tg a−1)
and the UNFCCC national reports (19 Tg a−1 for 2014)
(Fig. 8). Source sector attribution is difficult in this case be-
cause of spatial overlap between emission sectors. The inver-
sion finds only small adjustments to prior emissions for In-
dia (prior: 32 Tg a−1; posterior: 33±0.6 Tg a−1) even though
the information content is relatively large, confirming the
prior inventory used in the inversion. Our estimate, how-
ever, is much higher than a previous inversion study for In-
dia (Ganesan et al., 2017) (22 Tg a−1), the results of which
are in agreement with India’s UNFCCC report (20 Tg a−1 for
2010) (Fig. 8). Our inversion attributes the discrepancy with
the UNFCCC submission mainly to the livestock sector.

4.2 Anthropogenic emission trends

Figure 9 shows the spatial distribution of 2010–2018 trends
for anthropogenic emissions inferred from GOSAT obser-
vations, along with the associated averaging kernel matrix
sensitivities. The GOSAT observations provide 42 pieces of
information to constrain the spatial distribution of anthro-
pogenic emission trends, suggesting that, compared to mean
emissions, the inversion is only able to constrain more dif-
fuse spatial patterns for emission trends. These constraints
are strongest in China and India, but there is also fairly
strong information aggregated over other continental regions.
The prior estimate assumed zero anthropogenic trends any-
where; therefore, the posterior trends are driven solely by the
GOSAT information.

Significant positive trends of anthropogenic emis-
sions are found in South Asia (0.58± 0.16 Tg a−1 a−1

or 1.4± 0.4 % a−1; Pakistan and India), East Africa
(0.22± 0.10 Tg a−1 a−1 or 1.4± 0.6 % a−1; Ethiopia, Tan-
zania, Uganda, Kenya, and Sudan), West Africa (0.28±
0.10 Tg a−1 a−1 or 4.4± 1.4 % a−1; Nigeria, Niger, Ghana,
Côte d’Ivoire, Mali, Benin, Burkina Faso), and Brazil (0.19±
0.15 Tg a−1 a−1 or 0.8± 0.6 % a−1). Based on prior sectoral
fractions in each 4◦× 5◦ grid cell, we attribute these posi-
tive trends mostly to the livestock sector (0.31 Tg a−1 a−1 in
South Asia, 0.13 Tg a−1 a−1 in East Africa, 0.09 Tg a−1 a−1

in West Africa, and 0.17 Tg a−1 a−1 in Brazil). Indeed, ac-
cording to the United Nations Food and Agriculture Office
(UNFAO) statistics (http://www.fao.org/faostat, last access:
22 June 2020), all these regions have had rapid increases
in livestock population. The fastest-growing cattle popula-
tions in the world reported by the UNFAO over the 2010–
2016 period were in Pakistan (1.4×106 heads a−1), Ethiopia
(1.2× 106 heads a−1), Tanzania (1.1× 106 heads a−1), and
Brazil (0.9×106 heads a−1). Moreover, our inversion results
for these regional trends in livestock emissions are gener-
ally consistent in magnitude with the trends from bottom-
up livestock emission inventories (FAOSTAT, IPCC tier I
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Figure 7. Corrections to prior estimates of 2010–2018 mean non-wetland methane emissions. (a) Posterior-to-prior emission ratios. Figure S7
shows the same corrections as posterior–prior emission differences. (b) Averaging kernel sensitivities (diagonal elements of the averaging
kernel matrix). The averaging kernel sensitivities measure the ability of the observations to constrain the posterior solution (0: not at all, 1:
fully). The sum of averaging kernel sensitivities defines the degrees of freedom for signal (DOFS), which is inset.

Figure 8. National and regional estimates of 2010–2018 mean
methane emissions from anthropogenic sources. Included are the
top five individual countries in our posterior estimates, the Euro-
pean Union (including the United Kingdom), and East Africa (in-
cluding Mozambique, Zambia, Tanzania, Ethiopia, Uganda, Kenya,
and Madagascar). The UNFCCC record is from https://di.unfccc.int
(last access: 10 July 2020). Non-Annex I countries do not report
yearly emissions to the UNFCCC, and for those we use the latest
UNFCCC submissions (Brazil, 2015; China, 2014; Ethiopia, 2013;
India, Madagascar, Kenya, 2010; Uganda, Zambia, 2000; Mozam-
bique, Tanzania, 1994). Inset are the averaging kernel sensitivities
for these national and regional aggregated results, which measure
the ability of the observations to constrain the posterior solution (0:
not at all, 1: fully). The dot for East Africa represents the estimate
inferred from a sensitivity inversion with the prior spatial distribu-
tion of African wetlands perturbed.

method; EDGAR v4.3.2 and v5, hybrid tier I method; Chang
et al., 2019, IPCC tier II method) (Fig. 10). Because our
inversion assumes zero prior trends in anthropogenic emis-
sions, the inferred trends are solely informed by satellite ob-
servations and are independent of the bottom-up trends in
Fig. 10.

A positive trend in anthropogenic emissions (0.39±
0.27 Tg a−1 a−1 or 0.8± 0.6 % a−1) is found over China
driven by coal mining (northern China) and rice (south-
ern China), but the magnitude of the trend is smaller than
previous inverse analyses of satellite and surface observa-
tions for time horizons before 2015 (Bergamaschi et al.,
2013; Thompson et al., 2015; Patra et al., 2016; Saunois
et al., 2017; Miller et al., 2019; Maasakkers et al., 2019).
We infer a much stronger trend (0.72± 0.39 Tg a−1 a−1 or
1.6± 0.9 % a−1) for China if we restrict the GOSAT record
to 2010–2016. Our results thus suggest that anthropogenic
emission trends in China peaked midway within the 2010–
2018 record. Indeed, coal production in China peaked in
2013 (Sheng et al., 2019).

The inversion does not find significant 2010–2018
trends in anthropogenic emissions over the US (−0.06±
0.21 Tg a−1 a−1,−0.2±0.6 % a−1). This is generally consis-
tent with the lack of a trend in US emissions over 2000–2014
in inversions collected by the Global Carbon Project (Bruh-
wiler et al., 2017) and over 2010–2015 in a North Amer-
ica regional inversion using GOSAT data (Maasakkers et al.,
2020). It contradicts the 2 % a−1–3 % a−1 positive trend in-
ferred from direct analysis of GOSAT enhancements (Turner
et al., 2016; Sheng et al., 2018a) and the inference of large
positive trends based on increasing concentrations of ethane
and propane (Franco et al., 2016; Hausmann et al., 2016;
Helmig et al., 2016). Bruhwiler et al. (2017) pointed out that
the inference of methane emission trends from a simple anal-
ysis of GOSAT data could be subject to various biases includ-
ing variability in background and seasonal sampling, which
would be accounted for in an inversion. Increasing ethane-to-
methane and propane-to-methane emission ratios over years
may confound the inference of methane emission trends from
ethane and propane records (Lan et al., 2019).

Small negative trends are found in central Asia (Uzbek-
istan, Kazakhstan, Turkmenistan, Afghanistan; −0.17±
0.16 Tg a−1 a−1), Europe (−0.19± 0.15 Tg a−1 a−1), and
Australia (−0.12± 0.07 Tg a−1 a−1). The decrease in cen-
tral Asia is attributed mainly to oil and gas, and the de-
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Figure 9. Anthropogenic methane emission trends for 2010–2018, as informed by GOSAT observations. (a) Relative emission trends on the
4◦×5◦ grid. Absolute emission trends are shown in Fig. S8. (b) Averaging kernel sensitivities that measure the ability of the observations to
constrain the posterior solution (0: not at all, 1: fully). The degrees of freedom for signal (DOFS) are inset.

Figure 10. Regional trends in anthropogenic methane emissions
from livestock. Our GOSAT inversion results for 2010–2018 (with
error standard deviations) are compared to estimates from differ-
ent bottom-up inventories over the 2005–2017 period: Chang et
al. (2019), FAOSTAT (2020), EDGAR v5 (Crippa et al., 2019),
and EDGAR v4.3.2 (Janssens-Maenhout et al., 2017). Results are
shown for South Asia (India and Pakistan), West Africa (Nigeria,
Côte d’Ivoire, Mali, Niger, Burkina Faso, Cameroon, Ghana, and
Benin), East Africa (Ethiopia, Kenya, Uganda, and Tanzania), and
Brazil. By assuming zero prior trends in anthropogenic emissions,
our inversion does not use trend information in any of these bottom-
up inventories; the trends inferred by the inversion are solely from
the GOSAT observations.

crease in Australia is attributed to coal mining and livestock.
Trends over Europe and Russia are too diffuse to be sep-
arated by sectors. No significant trend is found in Russia
(−0.01± 0.25 Tg a−1 a−1).

4.3 Wetland emissions

From the inversion we infer wetland emissions for 14 sub-
continental regions (Fig. 1) and for individual months from

2010 to 2018, thus allowing seasonal and interannual vari-
ability to be optimized. This achieves 167 independent pieces
of information (DOFS) for wetland emissions. The results
are presented as mean seasonal cycles (Fig. 11) and time se-
ries of annual means (Fig. 12). Recent studies have found
that the mean WetCHARTs inventory used here as a prior
estimate is too high in the Congo Basin and too low in the
Sudd region (Lunt et al., 2019; Parker et al., 2020b; Pandey et
al., 2021). Our inversion is unable to resolve this subregional
spatial correction pattern because of coarse resolution in the
wetland state vector (Fig. 1). We therefore perform a sensitiv-
ity inversion with modified prior estimates following Lunt et
al (2019) (Fig. S1), which finds a 20 % (3 Tg a−1) increase in
estimates of the 2010–2018 average for sub-Saharan Africa
and a 7 % (0.6 Tg a−1) increase for southern Africa relative
to the base inversion (Fig. S5). Interannual trends and sea-
sonal cycles are almost unchanged between the two inver-
sions (Fig. S5).

As shown in Figs. 11 and 12, our results find lower wet-
land emissions than the mean of the WetCHARTs ensemble
(prior estimate) over the Amazon, temperate North Amer-
ica (the US), and eastern Canada. The previous inversion of
GOSAT data by Maasakkers et al. (2019) also found overes-
timation of emissions by WetCHARTs in the coastal US and
Canadian wetlands but did not have significant corrections
over the Amazon. The overestimation of wetland emissions
in the US and eastern Canada is also reported in analyses
of aircraft measurements in the southeastern US (Sheng et
al., 2018b) and surface observations in Canada (Baray et al.,
2021), both of which used WetCHARTs v1.0 as prior infor-
mation. The downward correction of North American emis-
sions is consistent with recent WetCHARTs updates (v1.2.1)
that substantially reduce methane emissions across regions
categorized as partial wetland complexes (Lehner and Döll,
2004; Bloom et al., 2017).

The seasonal cycles inferred from the inversion are in gen-
eral consistent with prior information (Fig. 11), although av-
eraging kernel sensitivities indicate that we only have limited
constraints on the seasonality, particularly for high-latitude
regions in Northern Hemisphere winter. This was generally
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expected given the limited GOSAT observational coverage
at high latitudes during winter months. The inversion infers
a sharp and late (May–June) onset of methane emissions
across boreal wetlands, in contrast to an early and gradual
increase starting from March predicted by the prior inven-
tory. This feature in posterior estimates appears to be con-
sistent with aircraft and surface observations over Canada’s
Hudson Bay Lowlands (Pickett-Heaps et al., 2011) and eddy
flux measurements over Alaskan Arctic tundra (Zona et al.,
2016), while the gradual onset in the prior inventory agrees
with aircraft observations over Alaska by Miller et al. (2016).
The negative fluxes right before the onset may reflect strong
soil sinks during spring thaw over these high-latitude re-
gions (Jørgensen et al., 2015). The inversion also indicates
stronger seasonal cycles than the prior inventory in sub-
Saharan Africa and tropical South Asia, which suggests that
WetCHARTs may underestimate the sensitivity of wetland
emissions to precipitation but overestimate their sensitivity
to temperature.

Our posterior estimates of 2010–2018 trends in wet-
land emissions vary greatly by region and are generally
larger than the prior estimates from WetCHARTs (Fig. 12).
Large positive trends are found in the tropics (Ama-
zon:+1.0 Tg a−1 a−1; sub-Saharan Africa:+0.6 Tg a−1 a−1;
southern Africa: +0.4 Tg a−1 a−1) and high latitudes
(Siberia: +0.4 Tg a−1 a−1). Increasing Amazonian wetland
emissions may have been driven by intensification of flood-
ing (Barichivich et al., 2018) or increasing temperature (Tun-
nicliffe et al., 2020) in the region over the past decades. Our
result of increasing tropical Africa wetland emissions is con-
sistent with a previous regional analysis of GOSAT data,
which found a positive trend of 1.5–2.1 Tg a−1 a−1 in the re-
gion for 2010–2016 attributed mainly to wetlands, particu-
larly the Sudd in South Sudan (Lunt et al., 2019). Compared
to steady and linear increases in the tropics, boreal Siberia
and northern Europe show abrupt increases in 2016–2018
for reasons that are unclear (Fig. 12). Decreasing but weaker
trends are found in tropical Southeast Asia (−0.2 Tg a−1 a−1)
and Australia (−0.1 Tg a−1 a−1).

4.3.1 OH concentration

Our inversion infers a global methane lifetime against ox-
idation by tropospheric OH of 12.4± 0.3 a, which is 15 %
longer than the prior estimate (10.7± 1.1 a) and is at the
higher end of the inference from the methyl chloroform
proxy (11.2±1.3 years) (Prather et al., 2012). We find that the
downward correction for OH concentrations is mainly in the
Northern Hemisphere. The north-to-south inter-hemispheric
OH ratio is 1.02± 0.05 in the posterior estimate compared
to 1.16 in the prior estimate and 1.28± 0.10 in the ACCMIP
model ensemble (Naik et al., 2013). It is more consistent with
the observation-based estimate of 0.97± 0.12 (Patra et al.,
2014). No significant 2010–2018 trend is seen in the methane
lifetime (Fig. 13). The OH concentration in 2014 is 5 % lower

than average, which may relate to particularly large peatland
fires over Indonesia in 2014 that would be very large sources
of carbon monoxide (CO) as a sink for OH (Pandey et al.,
2017b).

4.4 Attribution of the 2010–2018 methane trend

Figure 14 shows the 2010–2018 annual methane growth rates
inferred from NOAA background surface measurements
(Dlugokencky, 2020) and from our inversion of GOSAT data.
There is general consistency between the two, with both
showing the highest growth rates in 2014–2015 and a general
acceleration after 2014. Our inversion achieves a much better
match to the interannual variability of the NOAA record than
the previous work of Maasakkers et al. (2019), in large part
because of our optimization of the interannual variability of
wetland emissions.

The bottom panel of Fig. 14 attributes the interannual vari-
ability in the methane growth rate to individual processes as
determined by the inversion. The growth rateGj = [dm/dt]j
in year j (wherem is the global methane mass) is determined
by the balance between sources and sinks:

Gj = Ej − kjmj −Lj . (9)

Here, Ej denotes the global emissions in year j , for which
the inversion provides further sectoral breakdown, kj is the
loss frequency against oxidation by tropospheric OH (Eq. 1),
mj is the total methane mass, and Lj represents the minor
sinks not optimized by the inversion. Let 1Ej = Ej −Eo,
1kj = kj − ko, and 1mj =mj −mo represent the changes
relative to 2010 conditions (Eo, ko, mo) taken as a reference.
We can then write

Gj =
(
Eo+1Ej

)
−
(
ko+1kj

)(
mo+1mj

)
− (Lo+1Lj )

≈
(
Eo− komo−Lo− ko1mj

)
+1Ej −mo1kj ,

(10)

where we have neglected the minor terms 1kj1mj and
1Lj . Here, the growth rate Gj in year j is decomposed into
three terms: (1) a relaxation to steady state based on 2010
conditions (Eo− komo−Lo− ko1mj ), (2) a perturbation to
emissions (1Ej ) that can be further disaggregated by sec-
tors, and (3) a perturbation to OH concentrations (mo1kj ).

We see from the bottom panel of Fig. 14 that the legacy of
the 2010 imbalance sustains a positive growth rate through-
out the 2010–2018 period, but this influence diminishes to-
wards the end of the record. The 2010–2018 trend in an-
thropogenic emissions is linear by design of the inversion
and sustains a steady growth rate over the 2010–2018 pe-
riod as the legacy of the 2010 imbalance declines. Fig-
ure 15 shows the sectoral breakdown of the anthropogenic
trend. The increase in global anthropogenic emissions to-
talling 1.9± 0.8 Tg a−1 a−1 is driven by livestock (0.70±
0.36 Tg a−1 a−1; South Asia, tropical Africa, Brazil), rice
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Figure 11. Seasonal variation in wetland emissions for 14 subcontinental regions (Fig. 1). Values are means for 2010–2018. The prior
estimate is the mean of the WetCHARTs inventory ensemble (Bloom et al., 2017). The posterior estimate is from our inversion of GOSAT
data. Vertical bars are error standard deviations. The reduction of error in the posterior estimate measures the information content provided
by the GOSAT data. Scales are different between panels.

(0.44± 0.18 Tg a−1 a−1; East Asia), and wastewater treat-
ment (0.33±0.13 Tg a−1 a−1; Asia). We find an insignificant
positive global trend in emissions from fuel exploitation (oil,
gas, and coal) (0.18± 0.4 Tg a−1 a−1) (Fig. 15).

The bottom panel of Fig. 14 also shows that the spike in the
methane growth rate in 2014–2015 is attributed to an anoma-
lously low OH concentration in 2014 (5 % lower than 2010–
2018 average; Fig. 13), partly offset by low wetland emis-
sions and anomalously high fire emissions in 2015, mostly
from Indonesia peatlands (Worden et al., 2017). Smolder-
ing peatland fires are particularly large sources of methane
(Liu et al., 2020). The large fire emissions are informed by
the GFED inventory because the interannual variability of
fire emissions is not optimized in our inversion. Despite their
small magnitude relative to wetland and anthropogenic emis-
sions globally, anomalous fire emissions can be an impor-
tant contributor to methane interannual variability (Worden
et al., 2017; Pandey et al., 2017b) both directly by releas-
ing methane and indirectly by decreasing OH concentrations
through CO emissions.

In addition to the 2014–2015 extremum, the NOAA sur-
face observations show an acceleration of methane growth
during the latter part of the 2010–2018 record (Nisbet et
al., 2019), and this is reproduced in our inversion (Fig. 14).

This accelerating growth is driven by strong wetland emis-
sions, particularly in 2016–2018, on top of increasing an-
thropogenic emissions (Fig. 14). Our inversion infers a rela-
tively steady 2010–2018 increase from tropical wetlands (in
particular the Amazon and tropical Africa) and a 2016–2018
surge from extratropical wetlands (in particular boreal Eura-
sia) (Fig. 12). More work is needed to understand the drivers
of changes in wetland emissions.

We estimate from the inversion global mean methane
emissions for 2010–2018 of 512± 4 Tg a−1 (wetlands:
145 Tg a−1; anthropogenic: 336 Tg a−1) and a sink of 489±
4 Tg a−1. This posterior global emission is lower than the
prior estimate (538 Tg a−1) and the 538–593 Tg a−1 range re-
ported by the Global Carbon Project for 2008–2017 (Saunois
et al., 2020). Compared to prior emissions, we estimate lower
emissions for wetlands and fossil fuel and higher emissions
for livestock and rice (Figs. 12 and 15). Meanwhile, we es-
timate a methane lifetime against tropospheric OH oxidation
of 12.4±0.3 years, which is at the high end of 11.2±1.3 years
based on the methyl chloroform proxy (Prather et al., 2012),
though strong error correlations between wetland emissions
and methane lifetime suggest that our inversion has limited
ability to constrain both independently (Fig. 5).
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Figure 12. Wetland emission trends for 2010–2018. The figure shows annual mean emissions for the prior estimate (mean of WetCHARTs
inventory ensemble) and the posterior estimate after inversion of GOSAT data. Values are for the 14 subcontinental regions in Fig. 1 (panels
with a white background) and also aggregated for the extratropics and tropics (panels with a grey background). The trends are from ordi-
nary linear regression. Inset are prior and posterior 2010–2018 average annual emissions (Tg a−1) with 2010–2018 trends (Tg a−1 a−1) in
parentheses. Significant trends at the 95 % confidence level are denoted with *. Note the differences in scales between panels.

Figure 13. Methane loss frequency and lifetime against oxidation
by tropospheric OH for 2010–2018. Values are annual means with
error standard deviations. The loss frequency (k) is as calculated by
Eq. (1) and the lifetime (τ ) is the inverse. The prior estimate from
Wecht et al. (2014) assumes no 2010–2018 trend in OH concentra-
tions; the slight variability seen in the figure is due to temperature.

5 Conclusions

We quantified the regional and sectoral contributions to
global atmospheric methane and its 2010–2018 trend through
the inversion of GOSAT observations. The inversion jointly
optimizes (1) 2010–2018 anthropogenic emissions and their

linear trends on a 4◦× 5◦ grid, (2) wetland emissions in 14
subcontinental regions for individual months, and (3) annual
mean hemispheric OH concentrations for individual years.
An analytical solution to the optimization problem provides
closed-form estimates of posterior error covariances and in-
formation content, allowing us in particular to diagnose er-
ror correlations in our solution. The separate optimization of
wetland and anthropogenic emissions allows us to resolve in-
terannual and seasonal variations in posterior wetland emis-
sions. Our inversion introduces additional innovations, in-
cluding the correction of stratospheric model biases using
ACE-FTS satellite data, and a new bottom-up inventory for
emissions from fossil fuel exploitation based on national re-
ports to the UNFCCC (Scarpelli et al., 2020).

Our optimization of 2010–2018 mean anthropogenic
emissions on the 4◦× 5◦ grid provides strong information
in source regions as measured by averaging kernel sensitiv-
ities. We find that estimates of anthropogenic emissions re-
ported by individual countries to the UNFCCC are too high
for China (coal emissions) and Russia (oil and gas emissions)
and too low for Venezuela (oil and gas) and the US (oil and
gas). We also find that tropical livestock emissions are larger
than previous estimates, particularly in South Asia, Africa,
and Brazil. Our posterior estimate of anthropogenic emis-
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Figure 14. The 2010–2018 annual growth rates in global atmo-
spheric methane. (a) Comparison of annual growth rates inferred
from our inversion of GOSAT data and from the NOAA surface
network (Dlugokencky, 2020). Average methane growth rates for
the period are inset. (b) Attribution of annual growth rates in the
GOSAT inversion to perturbations of emissions (anthropogenic,
wetlands, fires) and OH concentrations relative to 2010 conditions.
The purple bar shows the relaxation of the 2010 budget imbalance
to steady state. See the text for details explaining the breakdown.

Figure 15. The 2010–2018 global methane anthropogenic emis-
sions and emission trends partitioned by individual sectors. Poste-
rior estimates are from our inversion of GOSAT data. Prior esti-
mates for anthropogenic emission trends are zero. Error bars in (b)
show posterior error standard deviations for emission trends. Poste-
rior error standard deviations for mean emissions are small and are
thus not shown in (a).

sions in India (33 Tg a−1) is much higher than its most recent
(2010) report to the UNFCCC (20 Tg a−1), mostly because
of livestock emissions.

The 2010–2018 trends in methane emissions on the 4◦×5◦

grid are successfully quantified in source regions. We find
that large growth in anthropogenic emissions occurs in trop-

ical regions including South Asia, tropical Africa, and Brazil
that can be attributed to the livestock sector. This finding
is consistent with trends in livestock populations. There has
been little discussion in the literature about increasing agri-
cultural methane emissions in these developing countries
(Jackson et al., 2020). Our results also show a 2010–2018
increase in Chinese emissions, but the inferred rate of the
increase is smaller than previously reported in inversions fo-
cused on earlier periods, likely caused by leveling of coal
emissions in China. The 2010–2018 emission trend in the
US is insignificant on the national scale.

We find that global wetland emissions are lower than
the mean WetCHARTs emissions used as a prior estimate,
mostly because of the Amazon. Wetland emissions over
North America are also lower, consistent with previous stud-
ies. In both cases, posterior estimates are all well within the
full WetCHARTs uncertainty range (Bloom et al., 2017). The
seasonality of wetland emissions inferred by the inversion is
in general consistent with WetCHARTs. An exception is in
boreal wetlands where we find negative fluxes in April–May,
possibly reflecting methane uptake as the soil thaws. The in-
version infers increasing wetland emissions over the 2010–
2018 period, superimposed on large interannual variability,
in both the tropics (the Amazon, tropical Africa) and extrat-
ropics (Siberia).

Our optimization of annual hemispheric OH concentra-
tions yields a global methane lifetime of 12.4± 0.3 years
against oxidation by tropospheric OH, with an inter-
hemispheric OH ratio of 1.02. Our best estimate is that the
global OH concentration has no significant trend over 2010–
2018 except for a 5 % dip in 2014.

Taking all these methane budget terms together, our inver-
sion of GOSAT data estimates global mean methane emis-
sions for 2010–2018 of 512 Tg a−1, with 336 Tg a−1 from an-
thropogenic sources, 145 Tg a−1 from wetland sources, and
31 Tg a−1 from other natural sources. Our inferred growth
rate of methane over that period matches that observed at
NOAA background sites, including peak growth rates in
2014–2015 and an overall acceleration over the 2010–2018
period. We attribute the 2014–2015 peaks in methane growth
rates to low OH concentrations (2014) and high fire emis-
sions (2015), and we attribute the overall acceleration to a
sustained increase in anthropogenic emissions over the pe-
riod and strong wetland emissions in the latter part of the
period. Most of the increase in anthropogenic emissions is
attributed to livestock (in tropics), with contributions from
increases in rice and wastewater emissions (Asia). Our best
estimate indicates a positive trend from fuel exploitation, but
this trend is statistically insignificant given the uncertainty of
the inversion. Our finding is in general consistent with a pre-
vious 2010–2015 inversion of GOSAT data (Maasakkers et
al., 2019), although here we use a longer record and capture
the interannual variability better. Our results also agree with
isotopic data, indicating that the rise in methane is driven by
biogenic sources (Schaefer et al., 2016; Nisbet et al., 2016).
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The increase in tropical livestock emissions is quantitatively
consistent with bottom-up estimates. More work is needed to
understand interannual variations in wetland emissions.
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