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Figure S1 shows the sensitivity analysis for the sample ML-3 at 1.25 μm beam offset, where 

the absolute difference in the modeled thermal phase for each parameter of interest is changed by 

10%. Sensitivity analysis shows that by using a frequency range of 300 kHz to 8 MHz, the 

sensitivity to the parameter of interest is reasonably large compared to the phase noise (  0.2 ≲

deg), rendering anisotropic thermal conductivity measurements possible. We note that the 

sensitivity to GSiO2/Si is comparable to kr. GSiO2/Si, extracted from measurements made on the 

same substrate coated with Al, was kept constant for the analysis of the ML samples. The 

obtained GSiO2/Si = 27.02 ± 0.78 MW/m2K is in agreement with our previous measurements [S1]. 

Furthermore, we are using a constant value of 250 MW/m2K as the effective conductance across 

the ML/SiO2 layers (GML/SiO2), in agreement with reference [S2]. Isotropic thermal conductivities 

of kSiO2 = 1.32 W/mK & kSi = 145 W/mK and volumetric heat capacities of CSiO2 = 1.59 MJ/m3K 

& CSi = 1.64 MJ/m3K have been used for the SiO2 and Si layers.

Figure S1. Thermal phase sensitivity to 10% change in the parameters labeled for sample ML-3 

(tPt = 2.8nm, tCo = 1.6nm, q = 32) at 1.25 μm beam offset. The grey region is within the 

experimental phase noise of 0.2 deg.
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To further explore how well we can distinguish the kz and kr fitted values, we present contours 

of uncertainty arising from correlation between kr and kz. This is performed by calculating the 

mean square error between model and measured data for combinations of kr and kz values using 

the mean square error
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in this expression,  is the number of frequency points and  and  represent phase values 𝑝 𝑋𝑚,𝑖 𝑋𝑑,𝑖

from the model and the measurement at the i-th frequency point, respectively [S3]. Figure S2 

shows the contours of kr and kz combinations for ML-1 (with the largest correlation between kr 

and kz) and ML-5 (with the smallest correlation between kr and kz), which produce a standard 

deviation smaller than , where  represents the best fit. The correlation for ML-1 is 2𝜎𝑚𝑖𝑛 𝜎𝑚𝑖𝑛

present, as evident by the contour’s diagonal. However, the correlations are restricted to narrow 

ranges in kr and kz for good fits, rendering the extracted values meaningful. The correlation for 

ML-5 is weak, indicating the fit to these two parameters is relatively independent. However, the 

contours are broad for kz, indicating a larger uncertainty for the extraction of this parameter. This 

is due to the low thermal resistance for this ML sample having the fewest number of interfaces.
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Figure S2. Contour plots of the correlation in the fitted values for kr and kz for ML-1 (tPt = 

0.7nm, tCo = 0.4nm, q = 128) and ML-5 (tPt = 44.8nm, tCo = 25.6nm, q = 2). The contour lines 

map the combinations of kr and kz values that yield , twice the mean square error obtained 2𝜎𝑚𝑖𝑛

for the best fits (symbols).

The FDTR analysis presented in this work assumes that heat is deposited at the surface of the 

sample, while due to the finite absorption depth of laser light, this assumption is not always 

appropriate. To check the effect of this assumption, the top 10 nm of the ML was replaced with a 

1 nm layer with ten times the volumetric heat capacity and ten times thermal conductivity of the 

MLs [S4]. This mimics light energy absorption within the optical absorption depth of the 

metallic multilayer. This yields the TBC values reported in Figure S3. Although a shift in TBC 

values exists when the finite absorption of light is considered (Figure S3 vs Figure 3 in the main 

text), a similar trend can be seen where the derived TBC values depend on the interface density 

and surpass EDMM and MTL predictions.
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Figure S3. Pt/Co thermal boundary conductance extracted from FDTR fits, considering light’s 

finite absorption depth, compared with the predictions from EDMM and MTL.
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