
Software Sustainability:
Beyond the Tower of Babel

Colin C. Venters
Uni. of Huddersfield

United Kingdom
c.venters@hud.ac.uk

Sedef Akinli Kocak
Vector Institute for AI

Canada
sedef@vectorinstitute.ai

Stefanie Betz
Furtwangen University

Germany
besi@hs-furtwangen.de

Ian Brooks
UWE Bristol

United Kingdom
ian.brooks@uwe.ac.uk

Rafael Capilla
URJC
Spain

rafael.capilla@urjc.es

Ruzanna Chitchyan
Uni. of Bristol

United Kingdom
r.chitchyan@bristol.ac.uk

Letı́cia Duboc
La Salle

Spain
duboc@lasalle.es

Rogardt Heldal
Western Norway Uni. of Applied Sci.

Norway
rogardt.heldal@hvl.no

Ana Moreira
NOVA Uni. Lisbon

Portugal
amm@fct.unl.pt

Shola Oyedeji
Lappeenranta-Lahti University

Finland
oyedeji@lut.fi

Birgit Penzenstadler
Chalmers Uni. of Technology

Sweden
birgitp@chalmers.se

Jari Porras
Lappeenranta-Lahti University

Finland
jari.porras@lut.fi

Norbert Seyff
FHNW

Switzerland
seyff@fhnw.ch

I. CONTEXT

Principally associated with the field of ecology, the topic of
sustainability has emerged as an increasingly important area
of research in a number of sub-fields within the domain of
computing including artificial intelligence, high-performance
computing, human-computer interaction, requirements engi-
neering, and scientific computing [9]. Within the field of
software engineering, sustainability has been identified as an
important topic given modern society’s high dependency on
increasingly complex and ’dangerously fragile’ software sys-
tems, which operate in evolving, distributed eco-systems [17].

In relation to software, there exist at least two distinct
viewpoints for the topic area of software and sustainability:
sustainable software and software engineering for sustain-
ability (SE4S) [13], [5]. The former is concerned with the
principles, practices, and processes that contribute to software
endurance, i.e. technical sustainability, and the latter focuses
on software systems to support one or more dimensions of
sustainability, concerning issues outside the software systems
itself. While a number of communities have attempted to
address the challenges of achieving sustainability from their
different perspectives, there is a severe lack of common
understanding of the fundamental concepts of sustainability
and how it relates to software systems. As a result, there
is no agreed definition of software sustainability or how it
might be achieved. While there have been a number of con-
tributions to formalise a definition of software sustainability,
the concept remains an elusive and ambiguous term with
individuals, groups and organisations holding diametrically
opposed views [18]. This lack of clarity ultimately leads
to confusion, and potentially to ineffective and inefficient

efforts to develop sustainable software systems. Fundamental
to the establishment of a Body of Knowledge of Software
Sustainability is a clear definition of software sustainability.
Our aim is to explore the range of definitions of software
sustainability in order for the software engineering community
to move towards a consensus on how software sustainability
is defined and understood. As such, this paper argues that the
advancement of software sustainability as a field of research
requires a shared and common understanding of the concept.

II. PROBLEM

What does software sustainability mean in the field of
software engineering? Cohen et. al [4] exemplify the issue,
where they argue that maintainability, [sustainability], and
robustness are core aspects of building [sustainable software],
which is underpinned by ensuring a [sustainable] approach to
software development. While few would argue against main-
tainability being a core internal quality of a software system,
the terms sustainability and sustainable are not defined in
context, leaving them open to [mis]interpretation. In addition,
little evidence or practical guidance is offered in the way of
what a sustainable approach to software development is, how
this can be achieved in practice or how sustainability can
be measured or demonstrated. This raises the question, are
the terms and process by which software sustainability can
be achieved widely understood or have they been reduced to
vacuous platitudes?

It is suggested that sustainability is generally understood
as the capacity of a socio-technical system to endure [6],
which aligns with how the term is defined in modern En-
glish [15]. An additional perspective was presented by Lago
et. al [11] who suggested that sustainability was not only the



capacity to endure but to “preserve the function of a system
over an extended period of time [10]. This aligns with the
term’s Latin origin, ”sustinere”, i.e. to maintain. If we accept
the argument that software sustainability is the ”capacity to
endure”, this leads to the natural question of over what time
frame? It has been suggested that a sustainable software is a
software-intensive system that operates for an average software
lifetime of ten and a maximum of thirty years [16]. How
this time frame was derived is unclear. Nevertheless, both
these perspectives suggest that endurance, i.e. longevity, as an
expression of time, and the ability to maintain are key factors
at the heart of understanding sustainability. However, viewing
software sustainability simply in terms of the software systems
capacity to endure over a specified time period requires a clear
mechanism by which it can be demonstrated at design time.
In addition, further research is required to confirm or refute
this position as evidence suggests that software engineering
practitioners’ tended to have a narrow understanding of the
concept of sustainability with a focus on environmental and
economic sustainability [3].

In contrast to viewing software sustainability as a measure
of endurance, a number of definitions have emerged from the
field of software engineering, which align software sustain-
ability to one or more software quality attributes that con-
tribute to the sustainability of the software artefact including
maintainability and extensibility [14], [8]. One of the princi-
pal challenges in defining sustainability as a non-functional
requirement is how to demonstrate that the quality factors
have been addressed in a quantifiable way. Nevertheless, it
is argued that maintainability and evolution of the software
artefact are key enablers to achieving long-living software [7].
As such, it has been argued that while this addresses the
technical dimension of sustainability in developing long-living
software, sustainability applies to both the system and its wider
contexts. As a result, there is a need to take into account the
direct and indirect negative impacts on the economy, society,
individuals, and environment that result from the development,
deployment, and continued use of the software system [12],
[11], [1], [6]. This suggest that a sustainable software product
can only be achieved if the negative and positive impacts on
the dimensions of sustainability are taken into account and can
be demonstrated. While a number of initiatives have attempted
to address this, it remains an open and challenging research
issue [5], [6].

III. SOLUTION

Before the sustainability of a software system can be
measured, it is argued that it must be understood [14]. Defining
software sustainability as its capacity to endure is overly
simplistic and requires greater precision and clarity. We reject
the view proposed by [2] that sustainability is simply another
software quality in its own right, which has equivalence to
other software qualities such as maintainability or extensibility.
From a purely technical perspective, we propose that software
sustainability is a defined as a composite, first-class, non-
functional requirement that is a measure of a range of core

software quality attributes, which includes at a minimum,
maintainability, extensibility, and usability [14], [18], [8].
This position aligns with the Karlskrona Manifesto for Sus-
tainability Design [1], which argues that sustainability is an
overarching concern even if the primary focus of the system
under design is not sustainability, i.e. a concern independent of
the purpose of the system, which requires action on multiple
levels. Further research is required by the community to
confirm or refute this position. However, while this addresses
the technical dimension of sustainability is does not account
for the alignment with the other dimension of sustainability
and the need to take into account the direct and indirect
negative impacts on different dimensions of sustainability
that result from the development, deployment, and continued
use of the software system. How the software engineering
community want to define and measure the sustainability of
software systems remains an open issue that must be addressed
in the development of a Body of Knowledge on Software
Sustainability.

REFERENCES

[1] C. Becker et al. Sustainability design and software: The karlskrona
manifesto. In ICSE 2015: IEEE/ACM 37th Int. Conf. on Soft. Eng.,
volume 2, pages 467–476, 2015.

[2] C. Calero, M. F. Bertoa, and M. Á. Moraga. A systematic literature
review for software sustainability measures. In Greens 2013: 2nd Int.
Workshop on Green and Sustainable Soft., pages 46–53, 2013.

[3] R. Chitchyan et al. Sustainability design in requirements engineering:
State of practice. In ICSE 2016: IEEE/ACM 38th Int. Conf. on Soft.
Eng., pages 533–542, 2016.

[4] J. Cohen et al. The four pillars of research software engineering. IEEE
Soft., 38(01):97–105, jan 2021.

[5] N. Condori-Fernandez and P. Lago. Towards a software sustainability-
quality model: Insights from a multi-case study. In 2019 13th Int. Conf.
on Research Challenges in Info. Sci., pages 1–11, 2019.

[6] L. Duboc et al. Requirements engineering for sustainability: an aware-
ness framework for designing software systems for a better tomorrow.
Requirements Engineering, 25(4):469–492, 2020.

[7] Z. Durdik et al. Sustainability guidelines for long-living software
systems. In ICSM 2012: 28th IEEE Int. Conf. on Soft. Maintenance
(), pages 517–526, 2012.

[8] I. Groher and R. Weinreich. An interview study on sustainability
concerns in software development projects. In SEAA 2017: 43rd
Euromicro Conf. on Soft. Eng. and Adv. Applic., pages 350–358, 2017.

[9] L. M. Hilty and B. Aebischer. ICT Innovations for Sustainability.
Springer International Publishing AG, 2014.

[10] L. M. Hilty et al. The relevance of information and communication
technologies for environmental sustainability – a prospective simulation
study. Env. Modelling & Soft., 21(11):1618 – 1629, 2006.

[11] P. Lago et al. Framing sustainability as a property of software quality.
Comm. ACM, 58(10):70–78, September 2015.

[12] S. Naumann et al. The greensoft model: A reference model for green
and sustainable software and its engineering. Sustainable Computing:
Informatics and Sys., 1(4):294 – 304, 2011.

[13] B. Penzenstadler. Towards a definition of sustainability in and for
software engineering. In ACM Symposium on Applied Computing, pages
1183–1185, 2013.

[14] R. C. Seacord et al. Measuring software sustainability. In ICSM 2003:
Int. Conf. on Soft. Maintenance, pages 450–459, 2003.

[15] Sustainability. Oxford English Dictionary. Oxford Univ. Press, 2021.
[16] T. Tamai and Y. Torimitsu. Software lifetime and its evolution process

over generations. In Proc. Conf. on Soft. Maint., pages 63–69, 1992.
[17] C. Venters et al. Software sustainability: Research and practice from a

software architecture viewpoint. J. of Sys. & Soft., 138:174–188, 2018.
[18] C. C. Venters, C. Jay, L. M S Lau, M.K. Griffiths, V. Holmes, R. R.

Ward, J. Austin, C. E. Dibsdale, and J. Xu. Software sustainability: The
modern tower of babel. CEUR Workshop Proc., 1216:7–12, 2014.


