Table S-1. Formulas for four eDNA dispersal models

	Plume model	Universal decay model	Universal decay with lag model	Constant model
Model component				
$P_B(x)$ Proportion of eDNA in the bank samples	$P_B(x) = P_{max} (1 - \exp(-\gamma \sqrt{x}))$	$P_B(x) = P_0$	$P_B(x) = P_0$	$P_B(x) = P_0$
Q(x) Quantity of eDNA across two bank samples and one midstream sample	$Q(x) = \frac{\beta_0 F(P_B(x)(1 - r_b) + (1 - P_B(x))(1 - r_m))^x}{V^q}$	$Q(x) = \frac{\beta_0 F(P_B(x)(1 - r_b) + (1 - P_B(x))(1 - r_m))^x}{V^q}$	$Q(x) = \frac{\beta_0 F (1 - \exp(-z\sqrt{x})) (P_B(x)(1 - r_b) + (1 - P_B(x))(1 - r_m))^x}{V^q}$	$Q(x) = \frac{\beta_0 F}{V^q}$
M(x) Amount of eDNA found in any given midstream sample	$M(x) = Q(x)(1 - P_B(x))$	$M(x) = Q(x)(1 - P_B(x))$	$M(x) = Q(x)(1 - P_B(x))$	$M(x) = Q(x)(1 - P_B(x))$
B(x) Amount of eDNA found in any given bankside sample	$B(x) = \frac{P_B(x)Q(x)}{2}$	$B(x) = \frac{P_B(x)Q(x)}{2}$	$B(x) = \frac{P_B(x)Q(x)}{2}$	$B(x) = \frac{P_B(x)Q(x)}{2}$
$R_M(x)$ Midstream sample detection rate	$R_M(x) = \frac{e^{\alpha_0} M(x)^{\alpha_1}}{e^{\alpha_0} M(x)^{\alpha_1} + 1}$	$R_M(x) = \frac{e^{\alpha_0} M(x)^{\alpha_1}}{e^{\alpha_0} M(x)^{\alpha_1} + 1}$	$R_M(x) = \frac{e^{\alpha_0} M(x)^{\alpha_1}}{e^{\alpha_0} M(x)^{\alpha_1} + 1}$	$R_M(x) = \frac{e^{\alpha_0} M(x)^{\alpha_1}}{e^{\alpha_0} M(x)^{\alpha_1} + 1}$
$R_B(x)$ Bankside sample detection rate	$R_B(x) = \frac{e^{\alpha_0}B(x)^{\alpha_1}}{e^{\alpha_0}B(x)^{\alpha_1} + 1}$	$R_B(x) = \frac{e^{\alpha_0}B(x)^{\alpha_1}}{e^{\alpha_0}B(x)^{\alpha_1}+1}$	$R_B(x) = \frac{e^{\alpha_0} B(x)^{\alpha_1}}{e^{\alpha_0} B(x)^{\alpha_1} + 1}$	$R_B(x) = \frac{e^{\alpha_0}B(x)^{\alpha_1}}{e^{\alpha_0}B(x)^{\alpha_1}+1}$

Model graphic legend: vertical axis = eDNA abundance or detection rate; horizontal axis = distance downstream from fish; thick line = midstream samples; thin line = bankside samples.

x = distance downstream; β_0 is a stream-specific coefficient; F = the number of fish; r_b and $r_m =$ eDNA decay rates at the banks and midstream, respectively; V = velocity; Q = is a velocity scaling coefficient; Q = and Q = are rate and shape parameters, respectively, for the detection rate Q = eDNA quantity relationship; Q = is the constant proportion of eDNA found near the banks; Q = is a lag coefficient