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S1 General Details

All moisture and air sensitive materials were manipulated using standard high-vacuum Schlenk-line
techniques and MBraun gloveboxes and stored under an atmosphere of dried and deoxygenated
dinitrogen. All gases were supplied by BOC gases UK. All glassware items, cannulae and Fisherbrand
1.2 um retention glass microfibre filters were dried in a 160 °C oven overnight before use.

Hexane, tetrahydrofuran and toluene for use with moisture and air sensitive compounds were dried
using a Vac Atmospheres solvent purification system and stored over activated 4 A molecular sieves.
The solvent was cycled through a drying column containing molecular sieves for 12 hours before
collection. All solvents were degassed and stored for 2 days prior to use. Benzene-dg and pyridine-ds
were refluxed over potassium metal for 24 hours, freeze-pump-thaw degassed and distilled by trap-
to-trap distillation prior to use. All solvents were purchased from Sigma-Aldrich or Fisher Scientific.

NaOSiMe; was sublimed prior to use and phthalic anhydride and succinic anhydride were sublimed
three times prior to use. Cyclohexene oxide, ()-propylene oxide and (+)-limonene oxide were dried
over CaH, and distilled prior to use. Ha(pTP),t Hs(mTPY),! Hi,(mTerTP!),2 2-adamantyl-p-cresol,?
NaN(SiMes),,* [NEt,],CeCls,> and NaODipp® 7 were prepared using published methods. All other
chemicals were used as received.

Unless stated otherwise, all NMR spectroscopic analyses were recorded at 298 K using a Bruker Avance
I11 500.12 MHz spectrometer with *H NMR spectra run at 500.12 MHz, 3C NMR spectra run at 126
MHz and 2°Si NMR spectra at 99.37 MHz. The 'H NMR spectra were referenced internally using residual
solvent signals and are reported relative to external tetramethylsilane. Chemical shifts are quoted in
ppm and coupling constants in Hz. IR spectra were recorded using a Nicolet Avatar 360 FT-IR
spectrometer between 4000-400 cm™ on a powdered sample. Elemental analyses were carried out at
the London Metropolitan University.

SEC analyses of the filtered polymer samples were carried out in SEC grade THF at a flow rate of 1
mL.min?at 35 °Con a 1260 Infinity Il GPC/SEC single detection system with mixed bed C PLgel columns
(300 x 7.5 mm). MALDI-ToF MS analyses were performed using a Bruker Daltonics UltrafleXtreme™
MALDIToF/ToF MS instrument. The sample to be analysed, dithranol matrix and Kl (cationizing agent)
were dissolved in THF at 10 mg.mL? and the solutions were mixed in a 2:2:1 volume ratio, respectively.
A droplet (2 uL) of the resultant mixture was spotted on to the sample plate and submitted for MALDI-
ToF MS analysis.



S2 Compound Syntheses

$2.1 Synthesis of H,(pTPA9)
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neat, 130 °C, 5 h

Equation S1: Synthesis of Hy(pTPAd).

A 250 mL round-bottomed flask was charged with 2-adamantyl-p-cresol (3.52 g, 14.5 mmol, 4.4 equiv.),
terephthalaldehyde (0.440 g, 3.3 mmol, 1 equiv.), p-toluenesulfonic acid (0.063 g, 0.33 mmol, 0.1 equiv.) and a
stir bar, the contents heated to 130 °C and stirred for 5 hours. The resulting red-orange solid was suspended in
acetonitrile (200 cm3) and stirred with sonication until the mixture was homogenous. The light red mixture was
then filtered and dried under suction, washed with boiling ethanol (3 x 50 cm3) and dried under dynamic vacuum
for 16 hours at 50 °C to give the pale red/pink solid H4(pTPA9). Yield: 3.81 g (82%).

'H NMR (500 MHz, benzene-dg) 6,7.08 (br, 4H, Ar-H), 7.07 (br, 4H, Ar-H), 6.73 (s, 4H, Ar-H), 5.63 (s, 2H, benzylic
C-H), 4.98 (s, 4H, -OH), 2.19, (m, 24H, -CH,), 2.11 (br, 12H), 2.02 (br, 12H), 1.74 (m, 24H, -CH,).

13C{*H} NMR (126 MHz, benzene-dg) : 151.9 (ArC), 140.5 (ArC), 138.3 (ArC), 130.6 (ArC), 130.2 (ArC), 128.7 (ArC),
67.8 (benzylic CH), 47.7, 40.9, 37.4, 37.3, 29.6, 25.8, 21.2.

Elemental analysis (C76Hgq004): C 85.51%, H 8.50%, N 0.00% calculated; C 85.33%, H 8.37%, N 0.00% found.

Figure S1: 'H NMR spectrum of H,(pTPA9) in C¢Ds.
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Figure S2: 3C{*H} NMR spectrum of H,(pTPA9) in C¢Ds.
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$2.2 Synthesis of H,(mTPAd)
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Equation S2: Synthesis of Hy(mTPAd),

Synthesised by analogous procedure to H,(pTPAY). 2-adamantyl-p-cresol (3.52 g, 14.5 mmol, 4.4 equiv.),
isophthalaldehyde (0.440 g, 3.3 mmol, 1 equiv.) and p-toluenesulfonic acid (0.063 g, 0.33 mmol, 0.1 equiv.) were
combined, heated to 130 °C and stirred for 5 hours. An identical work-up yielded H,(mTPAd) as a pale-yellow
solid, yield: 3.05 g (66%).

1H NMR (500 MHz, benzene-dg) 6 7.05 (br, 8H, Ar-H), 6.71 (br, 4H, Ar-H), 5.53 (s, 2H, benzylic C-H), 4.95 (s, 4H,
-OH), 2.18, (m, 24H, -CH,), 2.12 (br, 12H), 2.03 (br, 12H), 1.76 (m, 24H, -CH,).

BC{'H} NMR (126 MHz, benzene-dg) 6. 151.8 (ArC), 142.1 (ArC), 138.3 (ArC), 131.2 (ArC), 130.2 (ArC), 130.0,
128.9 (ArC), 128.5 (ArC), 128.4 (ArC), 128.0 (ArC), 48.1, 40.9, 37.4, 37.3, 29.6, 21.2.

Elemental analysis (C;6Hg004): C 85.51%, H 8.50%, N 0.00% calculated; C 85.67%, H 8.78%, N 0.00% found.

Figure S3: 'H NMR spectrum of H,(mTPA9) in C¢De.
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Figure S4: 3C{tH} NMR spectrum of H,(mTPA9) in C¢Dg.
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$2.3 Synthesis of [NEt,],[Ce,Cl¢(pTP!)]

| | s\ WCl S
i) 4 NaN(SiMes), NEtl2|  quuCe—=cl  Cla, /....uo
ii) 2 [NEt4],CeClg 7\ cl=—Ce
Ha(pTPY) - o o /
-4 HN(SIM€3)2
-4 NaCl
-2 NEt,Cl

2-p-'Bu

Equation S3: Synthesis of [NEt,],[Ce,Clg(pTPY)].

H4(pTPY) (1.11 g, 1.20 mmol, 1 equiv.) and NaN(SiMejs), (0.850 g, 4.90 mmol 4.1 equiv.) were dissolved in THF (25
mL) and the resulting yellow-brown solution stirred for 2 hours. [NEt,],CeClg (1.55 g, 2.52 mmol, 2.1 equiv.) was
suspended in THF (15 mL) at 0 °C and to this was slowly added the Na,(pTP!) solution, forming a deep purple
solution which was stirred vigorously for 16 hours at room temperature. The mixture was centrifuged then
cooled in an ice-bath, filtered via cannula whilst cold and the volatiles of the filtrate evaporated under reduced
pressure presenting the crude product as a purple solid. This material was dried under reduced pressure then
triturated with hexane (3 x 10 mL) before drying again, yielding [NEt,],[Ce,Cls(pTP!)] 2-p-*Bu (1.12 g, 56%) as a
purple powder.

1H NMR (500 MHz, pyridine-ds) 8, 8.14 (d, J = 2.5 Hz, 2H Aryloxide A), 8.08 (d, J = 2.5 Hz, 2H Aryloxide B), 7.82
(s, 2H, benzyl protons), 7.60 (s, 4H, spacer), 7.48 (d, J = 2.5 Hz, 2H, Aryloxide A), 7.16 (d, J = 2.5 Hz, 2H Aryloxide
B), 3.32 (g, 16H, (*N(CH,CH3),), 1.91 (s, 18H, 'Bu), 1.53 (s, 18H, tBu), 1.41 (s, 18H, ‘Bu), 1.40 (s, 18H, 'Bu), 1.20 (t,
24H, (*N(CH,CHs)a).

B3C{*H} NMR (126 MHz, pyridine-ds) : 170.0 (g, ArC-0), 166.5 (g, ArC-0), 143.4 (g, ArC), 139.0 (g, ArC), 138.2 (q,
ArC), 137.8 (q, ArC), 134.0 (g, ArC), 133.8 (g, ArC), 130.1 (spacer, ArC-H), 125.6 (Aryloxide B ArC-H), 124.9
(Aryloxide A ArC-H), 119.4 (Aryloxide A ArC-H), 119.1 (Aryloxide B ArC-H), 53.0 (*N(CH,CHs),), 45.1 (benzylic C-
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H), 36.2 (g, 'Bu), 36.1 (q, Bu), 35.0 (q, 'Bu), 34.8 (q, 'Bu), 33.1 (CHs, 'Bu), 33.0 (CHs, 'Bu), 32.5 (CH3, Bu), 32.3 (CHs,
'Bu), 7.8 (*N(CH,CHs)4).

IR: Vmax/cm™ 2951m, 1433m, 12525, 1120, 1010m, 830s, 530s, 432s.

Elemental analysis ([NEt,],[Ce,Cls(pTPt)(THF),]): C 58.17%, H 7.88%, N 1.54% calculated; C 58.22%, H 7.41%, N
1.94% found.

Figure S5: 'H NMR spectrum of [NEt,],[Ce,Clg(pTPt)] in CsDsN.
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Figure S6: 3C{*"H} NMR spectrum of [NEt,],[Ce,Clg(pTP!)] in CsDsN.
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$2.4 [NEt,],[Ce,Cl,(0SiMes)4(pTPY)]

Method A
S .
NEL \ “\\\\\OS|Me3 cl /
NEtal2 | G Ce—=Cl 2 chwnO
, THF,0°C, 2 h , Ha(pTPY) o - MesSio= /
2 [NEty],CeClg + 8 NaOSiMe; ——————> 2" [NE;]CeCl(OSiMes); " ——————> OSiMe; 1o sio ©
-8 NaCl -4 HOSiMeg 3
-2 NEt,Cl

1-p-Bu

Equation S4: Synthesis of [NEt;],[Ce,Cl,(0SiMes),(pTP!)] by in situ formation of a “Ce-siloxide” complex.

[NEt,],CeClg (613 mg, 1 mmol, 2 equiv.) and sodium trimethylsiloxide (449 mg, 4 mmol, 8 equiv.) were combined
in a Schlenk flask, cooled in a salt-ice bath, and suspended in THF (15 mL). The yellow suspension was stirred at
0 °C for 2 hours before adding dropwise to a THF solution (15 mL) of Hu(pTP?t) (462 mg, 0.5 mmol, 1 equiv.) over
a period of 20 minutes. An initial green colour was observed which afterwards turned red-brown once the
addition was completed. The reaction was stirred for a further 16 hours and the now purple mixture was
centrifuged, filtered via cannula and the solids extracted with toluene (2 x 10 mL). The filtrates were combined,
volatiles were removed under reduced pressure giving the crude product, which was recrystallised from hot
toluene yielding [NEt,],[Ce,Cl,(0OSiMes)4(pTPt)] 1-p-tBu as a purple solid (740 mg, 72%).

1H NMR (500 MHz, pyridine-ds) 8, 7.64 (s, 4H), 7.63 (d, J = 2.4 Hz, 4H), 7.34 (d, ) = 2.4 Hz, 4H), 6.96 (s, 1H, benzylic
C-H), 6.88 (s, 1H, benzylic C-H), 3.21 (g, 16H, (*N(CH,CHs)4), 1.94 (s, 36H, tBu), 1.40 (s, 36H, tBu), 1.17 (t, 24H,
(*N(CH,CHs)4), 0.43 (s, 36H, OSiMe;).

13C DEPTQ NMR (126 MHz, pyridine-ds) 6. 167.4 (g, ArC-0), 144.8 (g, ArC), 138.5 (q, ArC), 138.4 (g, ArC), 135.4
(q, ArC), 129.2 (spacer, ArC-H), 125.2 (ArC-H), 119.9 (ArC-H), 53.2 (*N(CH,CHj3)4), 36.5 (q, *Bu), 35.0 (g, 'Bu), 33.2
(CHs, 'Bu), 32.7 (CH3, 'Bu), 8.0 (*N(CH,CH3)4), 5.4 (CH3, OSiMes).



295i NMR (99 MHz, pyridine-ds) & 7.47

Elemental analysis ([NEt,],[Ce,Cl,(0SiMes).(pTP)(THF),]): C 59.11%, H 8.83%, N 1.38% calculated; C 58.73%, H
8.81%, N 1.41% found.

IR: Vmax/CM™ 2952w, 1434w, 1251m, 1239m, 981w, 897s, 832s, 744m.

Method B
S .
\ \\\\\OS|Me3 S
[NEts], 4 NaOSiMe; [NEt], ce=—=ci  Clu, | .0
THF, reflux, 16 h
-4 NaCl
2-p-'Bu 1-p-Bu

Equation S5: Synthesis of [NEt,],[Ce,Cl,(0SiMes),(pTP!)] from 2-p-tBu.

To a purple THF solution (20 mL) of [NEt,],[Ce,Cls(pTPt)] (1.00 g, 0.61 mmol, 1 equiv.) was added, with stirring,
a clear THF solution (20 mL) of sodium trimethylsiloxide (273 mg, 2.44 mmol, 4 equiv.). The resulting purple
solution was heated under reflux for 16 hours before allowing to cool to room temperature, centrifuged, filtered
via cannula and the solids extracted with toluene (2 x 10 mL). The filtrates were combined, volatiles were
removed under reduced pressure giving the crude product, which was recrystallised from hot toluene yielding
[NEt,],[Ce,Cl,(0SiMe3)4(pTPt)] 1-p-tBu as a purple solid (790 mg, 69%).

Figure S7: *H NMR spectrum of [NEt,],[Ce,Cl,(OSiMe;)4(pTP!)] in CsDsN.
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Figure S8: Section of variable temperature 'H NMR spectra of [NEt,],[Ce,Cl,(OSiMes)4(pTPY)] in

CsDsN.
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Figure S9: 13C DEPTQ NMR spectrum of [NEt,],[Ce,Cl,(OSiMes)4(pTPY)] in CsDsN.
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$2.5 [NEt,],[Ce,Cl,(0SiMes),(mTPY)]

8 NaOSiMes, [NEty]2
THF,0°C,2h t
2 [NEt;],CeCls ——— > 2" [NEt,]JCeCl(OSiMe3), " _ NP
-8 NaCl -4 HOSiMe;
-2 NEt,Cl

1-m-'Bu

Equation S6: Synthesis of [NEt,],[Ce,Cl,(0SiMe3),(mTPY)].
By analogous procedure to S2.4A.

[NEt,],CeClg (681 mg, 1.11 mmol, 2 equiv.) and sodium trimethylsiloxide (498 mg, 4.44 mmol, 8 equiv.) were
combined in a Schlenk flask, cooled in a salt-ice bath, and suspended in THF (15 mL). The yellow suspension was
stirred at 0 °C for 2 hours before adding dropwise to a THF solution (15 mL) of Hy(mTPt) (513 mg, 0.55 mmol, 1
equiv.). An initial green colour was observed which afterwards turned red-brown once the addition was
completed. The reaction was stirred for a further 16 hours and worked up in an identical manner to S2.4A. The
purple solid [NEt,],[Ce,Cl,(0OSiMes),(mTPt)] 1-m-*Bu was obtained (735 mg, 71%).

1H NMR (500 MHz, pyridine-ds) 84 7.56 (m, 1H), 7.53 (m, 1H), 7.43 (m, 1H), 7.40 (m, 1H) 7.35 (m, 4H), 7.31 (m,
4H), 6.94 (s, 2H, benzylic C-H) 3.33 (q, 16H, (*N(CH,CHs)4), 2.02 (br s, 36H, Bu), 1.36 (s, 36H, Bu), 1.23 (t, 24H,
(*N(CH,CHs)s), 0.45 (br s, 36H, OSiMes).

13C DEPTQ NMR (126 MHz, pyridine-ds) 6¢ 166.6 (g, ArC-0), 147.0 (g, ArC), 146.6 (g, ArC), 134.9 (g, ArC), 134.8
(g, ArC), 119.7 (ArC-H), 119.5 (ArC-H), 52.8 (*N(CH,CHs)4), 36.2 (q, tBu), 36.0 (g, 'Bu), 33.0 (CH3, 'Bu), 32.9 (CH,,
tBu), 32.4 (CHs, 'Bu), 31.9 (CHs, 'Bu), 7.6 (*N(CH,CHs)4), 3.0 (CH3, OSiMe;).
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295i NMR (99 MHz, pyridine-ds) &; 1.40.

Elemental analysis ([NEt,],[Ce,Cl,(0SiMes)s(mTPt)(THF),]): C 59.11%, H 8.83%, N 1.38% calculated; C 59.58%, H
8.62%, N 1.53% found.

IR: Vmax/CcmM™ 2952w, 1595w, 1435w, 1255m, 972w, 891m, 832s, 744m.

Figure S10: *H NMR spectrum of [NEt,],[Ce,Cl,(0SiMe;)4(mTP!)] in CsDsN.
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Figure S11: 13C DEPTQ NMR spectrum of [NEt,],[Ce,Cl,(0SiMe;),(mTPY)] in CsDsN.
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$2.6 [NEt,],[Ce,Cl,(0SiMejs),(pTPAY)]

S\ \\\\OSiMe3 3
8 NaOSiMes, INEtal: | ageyyi.Ce—=Cl  Clu, /| opd
0 iom—Ce"'
THF,0°C,2h H4(prAd) hd \ Me3SiO /
2 [NEty],CeClg 2" [NEt4]CeCI(OSiMeg), " ——— » 0" OsiMes .o YO
-8 NaCl -4 HOSiMes 39!
-2 NEt,Cl

1-p-Ad

Equation S7: Synthesis of [NEt,],[Ce,Cl,(0SiMe;),(pTPAd)].
By analogous procedure to S2.4A.

[NEt,],CeClg (515 mg, 0.840 mmol, 2 equiv.) and sodium trimethylsiloxide (377 mg, 3.36 mmol, 8 equiv.) were
combined in a Schlenk flask, cooled in a salt-ice bath, and suspended in THF (15 mL). The yellow suspension was
stirred at 0 °C for 2 hours before adding dropwise to a THF solution (15 mL) of H4(pTPA9) (623 mg, 0.42 mmol, 1
equiv.). An initial green colour was observed which afterwards turned red-brown once the addition was
completed. The reaction was stirred for a further 16 hours and worked up in an identical manner to S2.4A. The
purple solid [NEt,],[Ce,Cl,(0SiMes),(pTPAY)] 1-p-Ad was obtained (592 mg, 60%).

1H NMR (500 MHz, pyridine-ds) 8, 7.21 (s, 4H, Ar-H), 7.18-7.13 (m, 4H, Ar-H), 7.02-6.96 (m, 4H, Ar-H), 6.71 (s,
1H, benzylic C-H), 6.40 (s, 1H, benzylic C-H), 3.02 (q, 16H, (*N(CH,CHs).), 2.74-2.66 (m, 18H, -CH,), 2.44 (s, 18H),
2.35 (s, 6H), 2.28-2.20 (m, 6H, -CH,), 2.10 (s, 6H), 1.96-1.76 (m, 18H), 1.15 (t, 24H, (*N(CH,CHs),), 0.40 (s, 36H,
0OSiMe3s).
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13C DEPTQ NMR (126 MHz, pyridine-ds) 8¢ 155.9 (g, ArC-0), 138.6 (q, ArC), 137.2 (q, ArC), 129.9 (ArC-H), 129.1
(ArC-H), 128.3 (ArC-H), 127.9 (ArC-H), 126.2 (ArC-H) 53.0 ("N(CH,CH)s), 42.2, 41.5, 41.3 (-CH,), 38.5, 38.3, 37.90
(-CH,), 30.5, 30.4, 30.0 (-CH), 7.9 (*N(CH,CHs)a).

29S5i NMR (99 MHz, pyridine-ds) 6s; 10.48

Elemental analysis ([NEt,],[Ce,Cl,(0SiMes)4(pTPAY)(THF),]): C 61.82%, H 8.25%, N 1.29% calculated; C 61.37%, H

7.95%, N 1.28% found.

Figure S12: Section of variable temperature 'H NMR spectra of [NEt,],[Ce,(OSiMes)s(pTPA9)] in

CsDsN.
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Figure S13: 'H NMR spectrum of [NEt,],[Ce,Cl,(OSiMes).(pTPA)] in C.
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Figure S14: 13C DEPTQ NMR spectrum of [NEt,],[Ce,Cl,(0SiMes),(pTPA4)] in CsDsN.
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$2.7 [NEt,];[Ce,Cl,(0SiMes),(mTPAd)]

8 NaOSiMes,

THF,0°C,2h
2 [NEty],CeCly ————————=

-8 NaCl
-2 NEt,Cl

Equation $8: Synthesis of [NEt,],[Ce,Cl,(0SiMe;),(mTPAd)].

By analogous procedure to S2.4A.

2 " [NEt,]CeCI(OSiMe3), "

70 60 50 40 30 20 10 0
s .
\  OSiMe; S
[NEt4], Adgu.Ce—=Cl CI"..C/e,,...\OAd
_ HymTP) ro” LSO N
-4 HOSIMe;

1-m-Ad

[NEt,],CeClg (515 mg, 0.840 mmol, 2 equiv.) and sodium trimethylsiloxide (377 mg, 3.36 mmol, 8 equiv.) were
combined in a Schlenk flask, cooled in a salt-ice bath, and suspended in THF (15 mL). The yellow suspension was
stirred at 0 °C for 2 hours before adding dropwise to a THF solution (15 mL) of H,(mTPAd) (623 mg, 0.42 mmol, 1
equiv.). An initial green colour was observed which afterwards turned red-brown once the addition was
completed. The reaction was stirred for a further 16 hours and worked up in an identical manner to S2.4A. The
purple solid [NEt,],[Ce,Cl,(0SiMes)s(mTPA4)] 1-m-Ad was obtained (648 mg, 65%).

1H NMR (500 MHz, pyridine-ds) 6y 7.31-7.28 (m, 2H, Ar-H), 7.20-7.17 (m, 2H, Ar-H), 7.13-7.11 (m, 2H, Ar-H),
7.09-7.06 (m, 2H, Ar-H), 7.02-6.98 (m, 2H, Ar-H), 6.90 (s, 2H, Ar-H), 3.00 (m, 16H, (*N(CH,CH3)4), 2.72-2.67 (m,
12H), 2.44 (m, 12H), 2.37-2.33 (m, 12H), 2.30-2.24 (m, 12H), 1.94-1.70 (m, 24H), 1.14 (m, 24H, (*N(CH,CHs),),

0.42 (s, 36H, OSiMe;).
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13C DEPTQ NMR (126 MHz, pyridine-ds) 8¢ 155.9 (g, ArC-0), 129.9 (ArC-H), 129.1 (ArC-H), 128.3 (ArC-H), 127.9
(ArC-H), 126.2 (ArC-H), 117.7 (ArC-H), 53.0 (*N(CH,CHs)a), 42.2, 41.5, 41.3 (-CH,), 38.3, 38.1, 37.90 (-CH,), 30.5,
30.0 (-CHs), 29.8, 8.0 (*N(CH,CH)4), 2.49 (CH3, OSiMes).

29S5i NMR (99 MHz, pyridine-ds) 8; -7.59

Elemental analysis ([NEt,],[Ce,Cl,(0SiMes)4(mTPAd)(THF),]): C61.82%, H 8.25%, N 1.29% calculated; C 62.21%,
H 8.92%, N 1.16% found.

Figure S15: 'H NMR spectrum of [NEt,],[Ce,Cl,(0SiMes),(mTPA4)] in CsDsN.
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Figure S16: 13C DEPTQ NMR spectrum of [NEt,],[Ce,Cl,(0SiMes)4(pTPA4)] in CsDsN.
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3 «OSiMes s 2 NaOSiMes P\ O5Mes e sio py
[NEty] Me3SiO,, [ Ad _pyridi [NEty] S =OSiM 2/ Ad
4l2 Ado"'"'ce‘OSiMe “Ce™O ds-pyridine, 412 OAd.(-Cc\e iMes g O
3 o He\
v 110°C,16h Me3SiO
Mo” b MesSIo” /[ Noa > O DsiMey o o
cl -2 NaCl Me;3SiO
1-p-Ad 1*-p-Ad

Equation S9: Synthesis of [NEt,;],[Ce,(0OSiMes)s(pTP!)] from 2-p-tBu.

A J. Young's tap NMR tube was charged with a ds-pyridine solution (0.6 mL) of 1-p-Ad (25 mg, 0.01 mmol, 1
equiv.) and sodium trimethylsiloxide (2.0 mg, 0.02 mmol, 2 equiv.). Once sealed, the solution was heated at 110
°C for 16 hours. No change was observed in the 'H NMR spectrum, however a few dark crystals grew from the
concentrated solution, identified by X-ray crystallography as 1*-p-Ad.

$2.9 [NEt,],[Ce,Cl4(ODipp),(pTP")]

S\ S S\ ODipp S
o \\\\\
NEtL | uuece—ci  Cl, [ o | 2NaoDipp INEt) | umce—=cl  Clu, [ o
o CI—?e\ THF, reflux, 16 h O/ \ Dlppo—?e
Cl (0] Cl (0]
Cl -2 NaCl cl
2-p-'Bu 3

Equation S10: Synthesis of [NEt,],[Ce,Cl,(ODipp),(pTPY)].

To a purple THF solution (20 mL) of [NEt,],[Ce,Cls(pTP!)] (1.00 g, 0.61 mmol, 1 equiv.) was added, with stirring,
a clear THF solution (20 mL) of sodium 2,6-diisopropylphenoxide (243 mg, 1.22 mmol, 2 equiv.). The resulting
purple solution was heated under reflux for 16 hours before allowing to cool to room temperature, centrifuged,
filtered via cannula and the solids extracted with THF (2 x 10 mL). The filtrates were combined, solvent was
evaporated under reduced pressure and the crude product dried yielding [NEt,],[Ce,Cl4(ODipp),(pTPt)] 3 (910
mg, 76%) as a purple solid.

IH NMR (500 MHz, pyridine-ds) 6, 7.96 (d, J = 2.5 Hz, 2H), 7.90 (d, J = 2.5 Hz, 2H), 7.54 (s, 4H, spacer), 7.41 (d, J
= 2.5 Hz, 2H), 7.35 (s, 2H, benzylic C-H), 7.27 (d, J = 7.7 Hz, 2H, Dipp), 7.19 (d, ) = 7.7 Hz, 2H, Dipp), 7.17 (d, ) =
2.5 Hz, 2H), 6.87 (t, ) = 7.7 Hz, 1H, Dipp), 6.80 (t, J = 7.7 Hz, 1H, Dipp), 4.17 (sept, J = 6.6 Hz, 2H, Dipp), 3.80
(sept, J = 6.6 Hz, 2H, Dipp), 3.33 (q, 16H, (*N(CH,CHs)a), 1.76 (s, 18H, 'Bu), 1.71 (s, 18H, 'Bu), 1.34 (d, J = 6.6 Hz,
12H, Dipp), 1.33 (s, 18H, tBu), 1.30 (s, 18H, Bu), 1.23 (t, 24H, (*N(CH,CHs)s).

13C DEPTQ NMR (126 MHz, pyridine-ds) 8¢ 169.4 (g, ArC-0), 168.9 (g, ArC-0), 167.8 (g, ArC-0), 165.7 (q, ArC-0),
152.8 (q, ArC), 143.7 (q, ArC), 143.1 (q, ArC), 139.9 (q, ArC), 139.2 (q, ArC), 138.4 (q, ArC), 138.1 (q, ArC), 137.8
(g, ArC), 137.1 (g, ArC), 134.4 (g, ArC), 134.2 (g, ArC), 130.1 (ArC-H), 126.5 (ArC-H), 122.9 (ArC-H), 122.8 (ArC-
H), 119.3 (ArC-H), 119.1 (ArC-H), 118.1 (ArC-H), 53.2 (*N(CH,CHs),), 46.1 (benzylic C-H), 36.2 (q, 'Bu), 36.1 (q,
‘Bu), 35.1 (q, 'Bu), 34.9 (q, 'Bu), 33.3 (CH3, 'Bu), 33.0 (CH3, 'Bu), 32.4 (CH3, 'Bu), 31.8 (CH3, 'Bu), 28.4 (CH(CHs),),
28.1 (CH(CHs),), 25.9 (CH(CHs),), 25.6 (CH(CH3),), 25.0 (CH(CHs),), 8.0 (*N(CH,CHs)a).

Elemental analysis ([NEt;],[Ce,Cl4(ODipp),(pTP)(THF),]): C 64.04%, H 8.45%, N 1.33% calculated; C 64.07%, H
8.35%, N 1.09% found.
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Figure S17: 'H NMR spectra of [NEt,],[Ce,Cl,(ODipp),(pTPY)] in CsDsN.
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IH-1H NOESY spectrum of [NEt,],[Ce,Cl,(ODipp),(pTP!)] in CsDsN. The only cross-peaks observable are
that related to the NEt, counterions — located at 3.3 and 1.2 ppm.
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Figure S18: 13C DEPTQ NMR spectrum of [NEt,],[Ce,Cl,(ODipp),(pTPY)] in CsDsN.
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$2.10 Synthesis of [NEt,],[Ce,Cls(mTerTP!)]

[NEty], s O Cl ., S
i) 4 NaN(SiMe3), \ & Clm—cmgy
i) 2 [NEt4],CeClg ou:Ce—=Cl /
Ha(mTerTPY) > o
-4 HN(SiMe3),
-4 NaCl
-2 NEt,Cl i ]

Equation S11: Synthesis of [NEt,],[Ce,Clg(mTerTPY)].
By analogous procedure to S2.3.

Hi(mTerTPt) (269 mg, 0.25 mmol, 1 equiv.) and NaN(SiMe3z), (183 mg, 1.00 mmol 4 equiv.) were dissolved in THF
(10 mL) and the resulting clear solution stirred for 2 hours. [NEt,],CeCls (307 mg, 0.50 mmol, 2 equiv.) was
suspended in THF (10 mL) at 0 °C and to this was slowly added the Nas(mTerTPt) solution, forming a purple
solution which was stirred for 16 hours at room temperature. The mixture was centrifuged and cooled in an ice-
bath, filtered via cannula whilst cold and the volatiles evaporated under reduced pressure. The crude product
was dried, then triturated with hexane (3 x 10 mL) before drying again, yielding [NEt,],[Ce,Cls(mTerTP!)] 4 (351
mg, 77%) as a purple solid.

1H NMR (500 MHz, pyridine-ds) 6y 8.33 (s, 1H, Ar-H), 8.25 (s, 1H, Ar-H), 8.18 (s, 1H, Ar-H), 7.83 (m, 2H, Ar-H),
7.72 (m, 2H, Ar-H), 7.70 (m, 2H, Ar-H), 7.49 (s, 1H, Ar-H), 7.40 (s, 1H, Ar-H), 7.38 (s, 1H, Ar-H), 7.36 (m, 2H, Ar-H),
7.35 (m, 2H, Ar-H), 7.31 (m, 1H, Ar-H), 7.30 (m, 1H, Ar-H), 7.28 (m, 2H, Ar-H), 6.82 (s, 2H, benzylic C-H), 3.32 (q,
16H, (*N(CH,CHs).), 1.86 (br's, 18H, 'Bu), 1.64 (9H, tBu), 1.49 (s, 18H, Bu), 1.36 (s, 9H, 'Bu), 1.33 (s, 9H, 'Bu), 1.31
(s, 9H, 'Bu), 1.19 (t, 24H, (*N(CH,CH3)a).

13C DEPTQ NMR (126 MHz, pyridine-ds) 6 168.2 (q, ArC-0), 149.5 (q, ArC), 143.5 (g, ArC), 141.2 (g, ArC), 133.0
(ArC-H), 129.3 (ArC-H), 128.8 (ArC-H), 128.5 (ArC-H), 127.6 (ArC-H), 120.1 (ArC-H), 53.0 (*N(CH,CHs),), 44.4
(CHs, 'Bu), 36.1 (g, 'Bu), 36.0 (g, 'Bu), 34.9 (q, 'Bu), 33.1 (CH3, 'Bu), 32.8 (CH3, 'Bu), 30.9 (CHs, Bu), 26.3 (q, 'Bu),
7.8 (*N(CH,CHs),).

Elemental analysis ([NEt,],[Ce,Cls(mTerTPt)(THF),]): C 60.55%, H 8.65%, N 1.40% calculated; C 60.44%, H
8.76%, N 1.39% found.
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Figure $19: 'H NMR spectrum of [NEt,],[Ce,Clg(mTerTPt)] in CsDsN.
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$2.11 Synthesis of neutral di-Ce(IV) complex

THF
rt, 16 h

(NH4),Ce(NO3)s + 6 NaOSIEt, >  Ce(OSiEty),
-6 NaNO;

-2 HOSIEt,
-2 NH,

Equation S$12: Synthesis of Ce(OSiEts),.

Prepared using the method described by Anwander et al. and Evans et al. ® A colourless THF solution (2 mL) of
NaOSiEt; (212.4 mg, 1.38 mmol, 6 equiv.) was added dropwise to a vigorously stirring orange THF suspension (2
mL) of (NH,4),Ce(NO3)s (125.8 mg, 0.230 mmol, 1 equiv.). The mixture became a cloudy yellow suspension and
gas evolution was observed for about 1 hour. Stirring was continued for 16 hours after which the white
suspension was centrifuged, filtered and the filtrate evaporated to dryness by heating under vacuum at 40 °C
for 5 hours. A sticky yellow solid was obtained (95 mg, 62%).

1H NMR (500 MHz, pyridine-ds) 8, 1.11 (t, J = 7.5 Hz, 36H), 0.71 (q, J = 7.5 Hz, 24H).

s OSiEt,

>
S
N

OmmCé_'S

THF e
Ce
60 °C, 16 h o \. SO\
2 Ce(OSiEts); + Hy(pTPY > OSiEt; , o)
-4 HOSIEt;

Equation S13: Synthesis of [Ce(OSiEt3)4(pTPY)]; s = solvent

In a Schlenk flask, Ha(pTP) (55 mg, 0.060 mmol, 1 equiv.) was dissolved in THF (10 mL). To this clear, stirring
solution, a pale yellow THF solution (3 mL) of Ce(OSiEts), (80 mg, 0.120 mmol, 2 equiv.) was added dropwise.
The mixture immediately turned a deep purple colour, and the reaction was heated at 60 °C with stirring for 16
hours. Volatiles were evaporated under reduced pressure and the residue washed with hexane (2 x 5 mL) before
drying at 50 °C for 6 h. [Ce(OSiEts)4(pTP!)] 5 was obtained as a purple solid (70 mg, 68%).

1H NMR (500 MHz, pyridine-ds) 6, 7.94 (2H, Ar-H), 7.44 (2H, Ar-H), 7.30 (2H, Ar-H), 7.08 (s, 4H, spacer Ar-H), 7.02
(2H, Ar-H), 1.44 (s, 36H, 'Bu), 1.35 (s, 36H, 'Bu), 1.13 (t, J = 7.5 Hz, 36H), 0.73 (q, J = 7.5 Hz, 24H).

13C DEPTQ NMR (126 MHz, pyridine-ds) ¢ 166.8 (q, ArC-0), 145.4 (q, ArC), 140.9 (q, ArC), 137.9 (q, ArC), 134.3
(g, ArC), 130.1 (ArC-H), 129.7 (ArC-H), 125.5 (ArC-H), 120.5 (ArC-H), 44.0 (benzylic C-H), 36.0 (q, 'Bu), 35.6 (q,
tBu), 34.9 (g, 'Bu), 32.7 (CH3, Bu), 31.2 (CHs, 'Bu), 26.3 (g, 'Bu), 8.4 (OSICH,CHs), 8.2 (OSiCH,CH), 7.7 (OSiCH,CHs),
7.2 (OSiCH,CHs).

295i NMR (99 MHz, pyridine-ds) 85 13.09.

Elemental analysis ([Ce,(OSiEts)4(pTP!)(THF)4]): C 62.05%, H 9.54%, N 0.00% calculated; C 62.37%, H 9.81%, N
0.00% found.
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Figure S21: '"H NMR spectrum of [Ce(OSiEts)4(pTPY)] in CsDsN. Residual THF is also present.
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Figure $22: 3C DEPTQ NMR spectrum of [Ce(OSiEt;)4(pTPt)] in CsDsN.
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$2.12 Cyclic voltammetry studies

Measurements were conducted in THF using 0.1 M [nBusN][PF¢] as a supporting electrolyte. The
mass of complex used was that required to form a 0.01 mM solution.

Table S1: Reduction potentials of selected di-Ce(IV) complexes.

Complex | E, vs Fc/Fc*

\Y
1-p-'Bu -2.47
2-p-‘Bu -1.98
3 -1.18

Figure S23: Cyclic voltammograms of selected di-Ce(IV) complexes. = = scan direction
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§2.13 UV-Vis

All UV-Vis spectra were recorded in THF, using concentrations of 3 x 10 M for 1-p-‘Bu, 1-m-‘Bu, 2-p-
tBu and 3; 1 x 10> M for 1-p-Ad; 3 x 10 M 1-m-Ad.

Figure S24: UV-Vis spectra of selected di-Ce(IV) complexes.
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Table S2: A\, values of selected di-Ce(IV) complexes.

Compound Armax
nm

1-p-'Bu 406.5

1-m-'Bu 447.5
1-p-Ad 504
1-m-Ad 455
2-p-'‘Bu 505

3 476.5
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S3 ROCOP Protocols

$3.1 Example procedure for PA/CHO reactions, using [NEt,],[Ce,Cl,(OSiMe;),(pTP!)] as catalyst.

0=, _o0 o
[cat]:[PA]:[CHO] = 1:100:800 1
neat, time, 100 °C HTO o Ko) OH

Y

PA CHO . _

Equation S14: General reaction for anhydride/epoxide ROCOP.

In the glovebox a glass vial with Teflon-coated lid was charged with [NEt,],[Ce,Cl,(0OSiMes)4(pTPY)] (14.2 mg,
0.0075 mmol, 1 equiv.) phthalic anhydride (111.1 mg, 0.75 mmol, 100 equiv.) and a stir bar. Cyclohexene oxide
(0.60 mL, 6.0 mmol, 800 equiv.) was added, the vial closed and then taken out of the glovebox. The reaction
mixture was heated to 100 °C with constant stirring and after the appropriate reaction time the vial was opened
to air and quenched by addition of CDCl; (0.5 mL). A sample of the crude polymer was analysed by 'H NMR
spectroscopy. The polymer was purified by evaporating volatiles under vacuum, dissolving the residue in a
minimum volume of dichloromethane and precipitating the polymer by addition to stirring pentane.

SEC samples were prepared by filtering a solution (4 mg.mL? in SEC grade THF) of the purified polymer.

For MALDI-ToF samples, the purified polymer, dithranol matrix and Kl (cationizing agent) were dissolved in THF
at 10 mg.mL?, and the solutions were mixed in a 2:2:1 volume ratio, respectively. A droplet (2 uL) of the resultant
mixture was spotted on to the sample plate and submitted for MALDI-ToF MS analysis.

Diagnostic resonances of poly(cyclohexene phthalate):1° 'H NMR (500 MHz, CDCls) &, 7.59 (br m, 2 x Ar-H), 7.41
(br m, 2 x Ar-H), 5.15 (br, 2 x OC-H), 2.23 (br m, -CH,), 1.76 (br m, -CH,), 1.53 (br m, -CH,), 1.37 (br m, -CH,).
13{1H} NMR (500 MHz, CDCls) &, 166.8 (O-CH-CH-OC=0), 132.2 (ArC), 131.2 (ArC), 129.0 (ArC), 74.8 (O-CH-CH-
0C=0), 30.0 (CH,-CH,-CH-0), 23.5 (CH,-CH,-CH-0).

Figure S25: 'H NMR spectrum of poly(cyclohexene phthalate) in CDCl; produced by a 2.5 h reaction
with catalyst 3.
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Figure $26: 3C{*H} NMR spectrum of poly(cyclohexene phthalate) in CDCl; produced by a 2.5 h
reaction with catalyst 3, 100 equiv. PA and 800 equiv. CHO.
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Figure S27: 'H NMR spectrum of poly(cyclohexene phthalate) in CDCls, produced by a 2 h reaction with
catalyst 1-p-'Bu, 10 equiv. PA and 80 equiv. CHO. The small peak at 0.07 ppm can be attributed to
silicone grease present in the CDCI; (confirmed in a spectrum of blank solvent). It is also observed in
the spectrum in Figure S7 above, therefore is not due to a —OSiMe; initiated polymer. Trace polyether,
THF and hexane are also visible.
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Table S3: Data for PA/CHO ROCOP at multiple time-points®

% PA % Ester

Entry Catalyst Loading | Time Conversion® | Linkages® TOFe M, (exp)? b¢
mol% h mol.h? g.mol?
1 1-m-'Bu 1.0 0.50 49 94 98 4690 1.29
1-m-'Bu 1.0 0.75 86 97 115 5240 131
1-m-'Bu 1.0 1.25 99 97 79 7120 1.32
7730 (5180) 1.07 (1.24)
4 1-p-'Bu 1.0 0.50 29 94
3420 1.05
5 1-p-'Bu 1.0 1.25 83 96 66 6070 1.23
6 1-p-'Bu 1.0 2.00 100 96 50 7360 1.22
7 1-m-Ad 1.0 0.17 38 91 229 2700 1.09
8 1-m-Ad 1.0 0.33 82 97 246 2800 1.08
9 1-m-Ad 1.0 0.50 99 97 198 4400 1.10
10 1-p-Ad 1.0 0.50 51 97 102 3940 1.12
10100 (6200) 1.06 (1.27)
11 1-p-Ad 1.0 0.75 84 97 112
4130 1.07
10620 (6730) 1.07 (1.28)
12 1-p-Ad 1.0 1.25 99 99 79
4460 1.07
13 2-p-'Bu 1.0 0.50 30 93 60 4420 1.05
6620 (4230) 1.07 (1.26)
14 2-p-‘Bu 1.0 1.25 67 92 54
2580 1.09
9140 (5700) 1.05 (1.24)
15 2-p-'Bu 1.0 2.00 99 89 50
4090 1.07
15920 (7720) 1.07 (1.32)
16 3 1.0 0.50 23 88 46
4530 1.22
16230 (7840) 1.08 (1.35)
17 3 1.0 2.00 85 95 43
5860 1.14
17890 (8360) 1.07 (1.38)
18 3 1.0 2.50 99 99 40
6490 1.14
19 4 1.0 1.00 42 93 42 - -
10180 (6530) 1.05 (1.23)
20 4 1.0 2.00 97 94 49
4590 1.06
21 5 1.0 1.00 27 61 27 - -
22 5 1.0 2.00 87 71 49 9400 1.38
23 [NEt,),CeCl¢f 2.0 2.00 87 83 22 2700 1.23

aStandard conditions: Reactions were run at 100 °C with a molar ratio of catalyst:PA:CHO of 1:100:800.
bDetermined by 'H NMR spectroscopy (CDCls) by integrating the normalized resonances for PA (7.95 ppm) and
the phenylene signals in polyester (7.30-7.70 ppm). ‘Determined by 'H NMR spectroscopy (CDCls) by integrating
the normalized resonances for ester linkages (5.10 ppm). 9Determined by SEC in THF using narrow-M,
polystyrene standards to calibrate the instrument; M, multiplied by a correction factor of 1.85.1! Double entries
represent bimodal distributions; the numbers in parentheses represent the total M, and B values. ®Turnover
frequency (TOF) = (number of moles of anhydride consumed/number of moles of catalyst)/time. 2.0 mol%
catalyst loading.
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Table S4: Raw M,and M,, data corresponding to runs in Table S3.

Entry Catalyst M,, (raw, exp)® | M, (raw, exp)® | M, (corr, exp)® be
g.mol? g.mol? g.mol?
1 1-m-'Bu 3270 2540 4690 1.29
1-m-'Bu 3710 2830 5240 131
1-m-'Bu 5090 3850 7120 1.32
4465 (3480) 4180 (2800) 7730 (5180) 1.07 (1.24)
4 1-p-'Bu
1950 1850 3420 1.05
5 1-p-'Bu 4050 3280 6070 1.23
6 1-p-'Bu 4870 3980 7360 1.22
7 1-m-Ad 1600 1460 2700 1.09
8 1-m-Ad 1630 1510 2800 1.08
9 1-m-Ad 2620 2380 4400 1.10
10 1-p-Ad 2380 2130 3940 1.12
5770 (4260) 5460 (3350) 10100 (6200) 1.06 (1.27)
11 1-p-Ad
2440 2230 4130 1.07
6120 (4650) 5740 (3640) 10620 (6730) 1.07 (1.28)
12 1-p-Ad
2590 2410 4460 1.07
13 2-p-'Bu 2500 2390 4420 1.05
3820 (2890) 3580 (2290) 6620 (4230) 1.07 (1.26)
14 2-p-'Bu
1520 1400 2580 1.09
5190 (3800) 4940 (3080) 9140 (5700) 1.05 (1.24)
15 2-p-'Bu
2362 2210 4090 1.7
16 3 9210 (5500) 8610 (4170) 15920 (7720) 1.07 (1.32)
3000 2450 4530 1.22
17 3 9500 (5720) 8770 (4240) 16230 (7840) 1.08 (1.35)
3600 3170 5860 1.14
18 3 10310 (6230) 9670 (4520) 17890 (8360) 1.07 (1.38)
4000 3510 6490 1.14
19 4 - - - -
20 4 5780 (4330) 5500 (3530) 10180 (6530) 1.05 (1.23)
2640 2480 4590 1.06
21 5 - - - -
22 5 7020 5080 9400 1.38
23 [NEt,],CeClgf 1790 1460 2700 1.23

2Double entries represent bimodal distributions; the numbers in parentheses represent the total M,,, M, and B
values. °M,, multiplied by a correction factor of 1.85. B = M,,/M.,. For total molar masses, the entire peak and
shoulders were integrated; for bimodal samples the minimum between the two peaks was chosen as the
boundary between the two integrated areas.
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$3.2 Example procedure for ROCOP substrate scope

In the glovebox a glass vial with Teflon-coated lid was charged with 1-m-Ad (18.1 mg, 0.0075 mmol, 1 equiv.)
and the relevant anhydride (0.75 mmol, 100 equiv.), and a stir bar.

For CHO and LO reactions, the relevant epoxide (6.0 mmol, 800 equiv.) was added, the vial closed and then
taken out of the glovebox.

For PO reactions, propylene oxide (0.42 mL, 6.0 mmol, 800 equiv.) and toluene (1.5 mL) were added the vial
closed and then taken out of the glovebox.

The reaction mixture was heated to 100 °C with constant stirring. After the appropriate reaction time the vial
was opened to air and the contents rinsed into a round-bottom flask with dichloromethane, volatiles were
removed under vacuum and the crude polymer analysed by *H NMR spectroscopy (CDCl;). The polymer was
purified by dissolving in a minimum volume of dichloromethane and precipitating by addition to stirring pentane.

SEC/MALDI-TOF sample preparations are identical as for the PA/CHO reactions.

Diagnostic resonances of poly(propylene phthalate):> *H NMR (600 MHz, CDCls) 64 7.70 (br m, 2H, Ar-H), 7.48
(br m, 2H, Ar-H), 5.41 (br, 1H, (CO)O-CH(CHs)-CH,), 4.40 (br m, 2H, (CO)O-CH(CHs)-CH,), 1.35 (br, 3H, (CO)O-
CH(CHs)CH,). (Residual pentane visible in spectrum below.)

Figure S28:H NMR spectrum of poly(propylene phthalate) in CDCl3 produced by a 2.5 h reaction with catalyst
1-m-Ad, 100 equiv. PA and 800 equiv. PO.
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Diagnostic resonances of poly(propylene succinate):*3 *H NMR (500 MHz, CDCl3) &, 5.12 (br, 1H, (CO)O-CH(CHs)-
CH2), 4.17 (m, 1H, (CO)O-CH(CH;)-CH,), 4.07 (m, 1H, (CO)O-CH(CH3)-CH,), 2.61 (m, 4H, (CO)-CH2-CH2-(C0)), 1.22
(d, 4H, (CO)O-CH(CHs)-CH,).

Figure $29:*H NMR spectrum of poly(propylene succinate) in CDCl3 produced by a 2.5 h reaction with catalyst
1-m-Ad, 100 equiv. SA and 800 equiv. PO.
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Diagnostic resonances of poly(cyclohexene succinate):* 'H NMR (500 MHz, CDCls) &y 4.80 (br, 2 x OC-H), 2.54
(br, 4H, (CO)-CH,-CH,-(CQ)), 2.01 (br, 4H, cyclohexyl CH,), 1.70 (br, 4H, cyclohexyl CH,).

Figure $30: 'H NMR spectrum of poly(cyclohexene succinate) in CDCl; produced by a 0.5 h reaction with
catalyst 1-m-Ad, 100 equiv. SA and 800 equiv. CHO.

- 1800

(o) 1700
I 1600
(9) (9) T s

/’ 1400

4.80
257
2,01

1.70

- y / / k1300
: F 1200
k1100
F 1000
F-900
800
k700

- 600

400
k300
1 200
|

/
o 4 f--100

|

|
JUA

|
l
A ) KJ

~ e <

L O S L B s s S S B A B S S S S S LS B S S S SR IS S S B
5.2 5.1 50 4.9 4.8 4.7 4.6 45 44 43 42 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7/ 2.6 2.5 2.4 2.3 2.2 21 2.0 1.9 1.8 1.7 1.6 1.5
f1 (ppm)

33



Diagnostic resonances of poly(limonene phthalate):!> 'H NMR (500 MHz, CDCl5)
84 7.64-7.30 (br m, 4H, ArH), 5.41 (br, 1H, OCCH), 4.55 (m, 2H, C=CH,).

Figure S31:*H NMR spectrum of poly(limonene phthalate) in CDCl; produced by a 18 h reaction with catalyst
1-m-Ad, 100 equiv. PA and 800 equiv. LO.
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Diagnostic resonances of poly(limonene succinate):1® *H NMR (500 MHz, CDCls) 6, 5.20 (br, 1H, OCCH), 4.82 (m,
2H, C=CH,), 2.65 (br, 4H, (CO)-CH,-CH,~(CO)).

Figure $32:*H NMR spectrum of poly(limonene succinate) in CDCl; produced by a 18 h reaction with catalyst 1-
m-Ad, 100 equiv. SA and 800 equiv. LO.
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Table S5: Substrate scope using 1-m-Ad as catalyst.?

Entry /

[V
fc?:::%: c:)v'r:;'i‘:‘r:t?;n Solvent | TON® = TOF Est/‘; R (e“:;)e M, (exp)e = De
mol.h? g.mol? g.mol?
5330 4990 1.07
1/1mol% PO/PA toluene | 100 40 96 (5520) (3890) (1.42)
1790 1640 1.09
23853 19370 1.23
2¢/ 0.5 mol% PO/PA toluene 99 11 97 (20660) (13510) | (1.53)
6290 5750 1.09
8490 7740 1.10
3¢/ 1 mol% LO/PA neat 82 5 94 (6370) (4740) (1.34)
3280 3020 1.09
4¢ /1 mol% CHO/SA neat 92 184 90 4070 2790 1.46
5¢/ 0.5 mol% CHO/SA neat 98 11 88 5200 3860 1.35
5320 3890 1.37
6 /1 mol% PO/SA toluene 98 39 92 (1560) (1220) (1.28)
1090 1070 1.02
1720 1540 1.11
7¢/ 1 mol% LO/SA neat 89 5 86 (1890) (1250) (1.51)
768 760 1.01

aStandard conditions: Reactions were run at 100 °C for 2.5 h with a molar ratio of 1-m-Ad:anhydride:epoxide of
1:100:800. Due to the low boiling point of PO toluene was used as solvent in the indicated reactions.

bDetermined by 'H NMR spectroscopy (CDCl;) by integrating the normalized resonances for anhydride and
polyester (conversion); and for ester and ether linkages (selectivity). 18 h reaction time. 90.5 h reaction time.
eNo correction factor has been applied for M,. Double entries represent bimodal distributions, the numbers in
parentheses represent the total M, and B values. B = M,,/M,. ‘Based on two polymer chains formed per catalyst
molecule, where M, (calc) = (molar mass of repeat unit x %anhydride conversion)/(catalyst loading x 2). To the

best of our knowledge, no correction factors have been reported for these monomer combinations which limits

the comparison of the observed and calculated M, values for these monomer combinations.
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$3.3 Rate equation determination experiments

In the glovebox a 10 cm3 ampoule was charged with 1-p-tBu (56.6 mg, 0.03 mmol, 1 equiv.) and phthalic
anhydride (444.3 mg, 3.0 mmol, 100 equiv.), and a stir bar. Cyclohexene oxide (2.4 mL, 24 mmol, 800 equiv.) was
added and the reaction mixture was then heated to 100 °C with constant stirring. At the start of the reaction
and every 15 minutes thereafter, a few drops of the reaction mixture were transferred via cannula, and any
reaction halted, by addition to a NMR tube containing 0.5 mL CDCl;at 0 °C. The *H NMR spectrum of each sample
was recorded, allowing monitoring of PA conversion and % ester linkages over time. [1-p-'Bu] was varied by
changing the mass of 1-p-'Bu and keeping all other variables constant. [CHO] was altered by decreasing the
volume used from the standard 800 equiv. CHO and replacing the lost volume with the same volume of toluene.
[PA] was calculated from the *H NMR spectra.
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Plot of rate constants vs. catalyst concentration
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Figure S33: Kinetic plots. Top: Plot showing how the rate of PA consumption changes with different loadings of 1-p-*Bu. Each
line represents a different % catalyst loading (i.e., concentration), and it is clear that the steeper lines for higher catalyst
concentrations represent faster PA consumption. Middle: Plot showing how the rate of PA consumption changes with
different concentrations of CHO, but a constant concentration of 1-p-tBu. Each line represents a different CHO concentration,
written in terms of CHO equivalents here for simplicity. We observe higher rates for higher CHO concentrations. Bottom:
Plot of the rate constants (k) determined at each value of [1-p-*Bu] against the values of [1-p-tBu]. The data fit a straight line
of best fit, suggesting that the overall polymerisation reaction has a first order dependence on catalyst concentration.

S$3.4 ROCOP Mechanistic discussion

By considering all of the kinetic data we have obtained, together with that published elsewhere, some
details around the general ROCOP mechanism can be summarised.'”- 8 Initial reaction rates are not affected by
the amount of anhydride consumption, suggesting a zero order dependence on anhydride concentration. The
initiation is deduced to be first order with respect to both catalyst concentration and epoxide concentration.
Therefore the rate expression for this process can be expressed as: rate = k[catalyst][epoxide]. For the initiation
step, MALDI-ToF mass spectrometry is useful for identifying possible end-groups for polymer chains, which are
effectively also the initiating groups for starting polymerisations, i.e. the anion which first attacks and ring-opens
an epoxide coordinated to a metal.

The propagation step, however, is more complicated to investigate compared to the initiation, and with
respect to studying plausible mechanisms. The simplest, or most ideal, possibility is for the opened epoxide to
attack a coordinated anhydride molecule, with the epoxide tether now disassociating from the metal. This is
followed by a new epoxide molecule coordinating, which is in turn attacked by the now ring-opened anhydride,
leaving space for a new anhydride molecule and the process repeats. All of this could occur around a single metal
center, or a “chain-shuttling” mechanism could exist based upon two proximal metal centers — the latter is
depicted in Figure S28. The propagation step can be further complicated by the presence of competing processes
such as transesterification and ether insertions.
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Figure S34: Plausible mechanism for propagation step that involves metal-metal cooperativity.
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S$3.5 SEC Traces
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Figure $35: SEC trace for PA/CHO co-polyester formed by 1-m-tBu (Table S3 Entry 3).
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Figure $36: SEC trace for PA/CHO co-polyester formed by 1-p-'Bu (Table S3 Entry 4).
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Figure $37: SEC trace for PA/CHO co-polyester formed by 1-p-Bu (Table S3 Entry 5).
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Figure $38: SEC trace for PA/CHO co-polyester formed by 1-p-'Bu (Table S3 Entry 6).
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Figure $39: SEC trace for PA/CHO co-polyester formed by 1-m-Ad (Table S3 Entry 9).
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Figure S40: SEC trace for PA/CHO co-polyester formed by 1-p-Ad (Table S3 Entry 11).
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Figure S41: SEC trace for PA/CHO co-polyester formed by 1-p-Ad (Table S3 Entry 12).
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Figure S42: SEC trace for PA/CHO co-polyester formed by 2-p-tBu (Table S3 Entry 15).
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Figure S43: SEC trace for PA/CHO co-polyester formed by 3 (Table S3 Entry 18).
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Figure S44: SEC trace for PA/CHO co-polyester formed by 4 (Table S3 Entry 20).
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Figure S45: SEC trace for PA/CHO co-polyester formed by 5 (Table S3 Entry 22).
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Figure S46: SEC trace for PA/CHO co-polyester formed by [NEt,],CeClg (Table S3 Entry 23).
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Figure S47: SEC trace for PA/PO co-polyester formed by 1-m-Ad (Table S5 Entry 2).
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Figure S48: SEC trace for PA/LO co-polyester formed by 1-m-Ad (Table S5 Entry 3).
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Figure S49: SEC trace for SA/CHO co-polyester formed by 1-m-Ad (Table S5 Entry 5).

$3.6 MALDI Data
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Figure S50: MALDI-ToF spectrum for PA/CHO co- polyester formed by 1-m-tBu (Table S3 Entry 3).
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Figure S51: MALDI-ToF spectrum for PA/CHO co-polyester formed by 1-p-'Bu (Table S3 Entry 5).
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Figure S52: MALDI-ToF spectrum for the PA/CHO co-polyester formed by 1-m-Ad (Table S3 Entry 9).
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Figure S53: MALDI-ToF spectrum for the PA/CHO co-polyester formed by 2-p-tBu (Table S3 Entry 13).
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Figure S54: MALDI-ToF spectrum for PA/CHO co-polyester formed by 3 (Table S3 Entry 17).
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Figure S$55: MALDI-ToF spectrum for PA/PO co-polyester formed by 1-m-Ad (Table S4 Entry 1).
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Figure $56: MALDI-ToF spectrum for SA/PO co-polyester formed by 1-m-Ad (Table S4 Entry 4).
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S4. Crystallography

Single crystal X-ray diffraction data were collected using an Excalibur Eos diffractometer, fitted with a CCD area
detector and using MoKa. radiation (A = 0.71073 A) at 190 K. The molecular structure of 1*-p-Ad was solved using
SHELXT®® and least-square refined using SHELXL?® in Olex2.2! Hydrogen atoms were treated by constrained
refinement.

Figure S57: Solid-state structure of the dianion [1*-p-Ad]* with selected C and non-C/H atoms shown at 50% ellipsoid
probability, coordinated solvent and selected C atoms drawn capped stick, peripheral C & O atoms drawn wireframe.
Tetraethylammonium cations, all H atoms and two pyridine lattice solvent molecules omitted for clarity. Selected bond
distances (A) and angles (°) for 1*-p-Ad: Cel-O1 2.231(2), Cel-02 2.209(2), Cel-03 2.151(3), Cel-04 2.154(3), Cel-0O5
2.168(3), Ce1-N1 2.659(3), 01-Ce1-02 85.35(9), 01-Ce1-03 87.96(10), 02-Ce1-04 98.58(10), 02-Ce1-05 90.47(10), O3-Cel-
04 98.45(11), 03-Ce1-N1 79.46(11).
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Table S6: Crystallographic data for 1*-p-Ad.

Crystal data

CCDC deposition no. | 2032589

Chemical formula Ci0aH150C€,N,04Sig-2(CsHyoN)-4(CsHsN)
M, 2613.93

Crystal system, Triclinic, P1

space group

Temperature (K) 190

a, b, c(A) 14.1625 (7), 14.4859 (7), 19.8390 (8)
a, B,y (%) 97.975 (4), 105.839 (4), 112.170 (4)
v (A9 3490.0 (3)

V4 1

Radiation type Mo Ka

W (mm-1) 0.75

Crystal size (mm)

0.19 x 0.14 x 0.08

Data collection

Diffractometer Xcalibur, Eos

Absorption Analytical

correction CrysAlis PRO 1.171.40.54a (Rigaku Oxford Diffraction, 2019) Analytical numeric absorption correction using a
multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S.
(1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in
SCALE3 ABSPACK scaling algorithm.

Toniny T 0.805, 0.896

No. of measured,
independent and
observed [/ > 20(/)]

66835, 14152, 11546

reflections

Rint 0.084

(5iN B/N)max (A1) 0.625
Refinement

R[F2 > 0.054, 0.123, 1.08

20(F?)], wR(F2), S

No. of reflections 14152

No. of parameters 763

H-atom treatment H-atom parameters constrained
AP ooy Do (€ A7) 1.69, —0.80
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