Submitted to Journal of Agricultural and Food Chemistry

Supporting information for

Biosynthesis and characterization of medium-chain-length polyhydroxyalkanoate with enriched 3-hydroxydodecanoate

monomer from a *Pseudomonas chlororaphis* cell factory

Hui-Ling Li¹, Ru-Xiang Deng¹, Wei Wang^{1*}, Kai-Quan Liu^{2,3}, Hong-Bo Hu^{1,2}, Xian-Qing Huang¹, and Xue-Hong Zhang¹

¹State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China ²State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China

³Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China

⁴National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China

*Corresponding author

E-mail: weiwang100@sjtu.edu.cn (Wei Wang)

Tel: 86-21-3420-7047

Fax: 86-21-3420-5081

Table Captions

Table S1. Primers used in this study.

Table S2. Cell dry weight (CDW), mcl-PHA content, and monomer composition of stepwise genetic engineering *P. chlororaphis* HT66 strains.

Table S3. Thermal and mechanical properties of mcl-PHAs synthesized by HT3 Δ , HT4 Δ , and HT4 Δ ::*C1C2J*, respectively.

Table S4. Comparison of mcl-PHA production using different carbon sources by

 Pseudomonas.

Figure captions

Figure S1. ¹³C-NMR spectrum of mcl-PHA synthesized by $HT4\Delta$::*C1C2J* at 600 MHz.

Figure S2. FTIR spectrum of mcl-PHA synthesized by HT4A::*C1C2J*.

Table S1.

Primers	Primer sequences $(5^2 \rightarrow 3^2)$	
phzE-F1	GGAATTCCCCCTGCGTGAACAAGTGGTGA	
phzE-R1	AGCACCACCTCGTCGGTGGT	phzE
phzE-F2	ACCACCGACGAGGTGGTGCTCCATGCACCATTACGTC	deletion
	ATCATC	deletion
phzE-R2	CGGGATCCCGGCAGGCCGACAAACACATGA	
fadAB-F1	CCGGAATTCGTGCGTGCCCGTCTGAAGTG	
fadAB-R1	TCTTCGGCACGGTTTTCCTT	fad 4 R
fadAB-F2	GAAAACCGTGCCGAAGAGAAAGCCTGGCAGCCCTCA	deletion
	А	deletion
fadAB-R2	TGCTCTAGACGCACCCAGAAGCCGTAATC	
phaZ-F1	GGCGAATTCGCGGGCATATCCAAAGCATC	
phaZ-R1	CCTGGACGAACGGGAACACC	phaZ
phaZ-F2	TGTTCCCGTTCGTCCAGGACGACGGGCATCTGTTCC	deletion
phaZ-R2	GGCAAGCTTCTGTCCTGGGGGGTTGGGCTT	
phaC1-sF	GAGGTCGACGGTATCGATAAGCTTATGAGTAACAAG	
	AATAACGATGACCTG	
phaC1-sR	CACCGCGGTGGCGGCCGCTCTAGATTAACGTTCATGG	
1	ACATAAGTACCC	
phaC2-sF	GAGGTCGACGGTATCGATAAGCTTATGCGAGACAAA	
1	CCAACGGCG	
phaC2-sR	CACCGCGGTGGCGGCCGCTCTAGATCAGCGGACGCG	
1	CACGTAG	
<i>phaG-</i> sF	GAGGTCGACGGTATCGATAAGCTTATGAGGCCAGAA	
1	ATCGCTGT	single gene
phaG-sR	CACCGCGGTGGCGGCCGCTCTAGATCAGATAGCCAG	overexpression
1	GGCATGGT	1
<i>pha.14-</i> sF	GAGGTCGACGGTATCGATAAGCTTATGCCGTATGTTC	
P	CTGTTGCAG	
nha.14-sR	CACCGCGGTGGCGGCCGCTCTAGATCAGACAAAGCA	
printo r ore	GAGGGACAATG	
alkK-sF	GAGGTCGACGGTATCGATAAGCTTATGTTGCAGACTC	
unn si	GCGTTATTC	
alkK_sR		
umr-six		
nhaCl oF		
pnuc1-cr		
nhaCl aD		
pnac1-ck		multiple cone
nha C2 - F		multiple gene
pnaC2-CF		co-overexpression
the C2 D		
phaC2-cR		
	G	

phaG-cF	GAATTCCTGCAGCCCGGGGGGATCCATGAGGCCAGAA
	ATCGCTGT
phaG-cR	CACCGCGGTGGCGGCCGCTCTAGATCAGATAGCCAG
	GGCATGGT
<i>phaJ4-</i> cF	GAATTCCTGCAGCCCGGGGGGATCCATGCCGTATGTTC
	CTGTTGCAG
<i>phaJ4-</i> cR	CACCGCGGTGGCGGCCGCTCTAGATCAGACAAAGCA
	GAGGGACAATG
alkK-cF	GAATTCCTGCAGCCCGGGGGGATCCATGTTGCAGACTC
	GCGTTATTC
<i>alkK</i> -cR	CACCGCGGTGGCGGCCGCTCTAGATTACAGCGTCGA
	AAGAAAGGTG

Table S2.

Strains	Medium	CDW (g/L)	Mcl-PHA	Monomer composition (mol%)				
			content (wt%)	3HHx	ЗНО	3HD	3HDD	3HTD
HT66	KB, glucose, C12	12.71 ± 0.53	45.61 ± 0.87	0.32 ± 0.02	10.95 ± 0.49	39.78 ± 0.31	43.34 ± 2.74	5.61 ± 0.63
$HT66\Delta phzE$	KB, glucose, C12	13.73 ± 1.05	45.73 ± 2.42	0.33 ± 0.07	12.51 ± 0.06	38.26 ± 0.46	43.55 ± 1.77	5.35 ± 0.03
HT66∆ <i>fadAB</i>	KB, glucose, C12	14.69 ± 0.37	51.53 ± 0.92	0.21 ± 0.03	4.53 ± 0.26	34.99 ± 0.50	55.53 ± 2.93	4.74 ± 0.19
$HT3\Delta$	KB, glucose, C12	16.54 ± 0.43	67.82 ± 1.73	0.22 ± 0.01	3.41 ± 0.14	31.89 ± 0.45	58.22 ± 1.53	6.26 ± 0.21
$HT4\Delta$	KB, glucose, C12	16.83 ± 0.20	72.44 ± 3.01	0.08 ± 0.01	3.33 ± 0.23	29.65 ± 0.51	62.17 ± 1.01	4.75 ± 0.19
HT4Δ:: <i>C1</i>	KB, glucose, C12	18.42 ± 0.78	64.60 ± 1.66	0.42 ± 0.03	3.61 ± 0.17	25.82 ± 0.22	64.25 ± 0.55	5.90 ± 0.29
НТ4∆:: <i>С1С2Ј</i>	KB, glucose, C12	18.21 ± 1.36	84.89 ± 1.15	0.05 ± 0.01	1.78 ± 0.11	17.75 ± 0.71	71.64 ± 1.02	8.78 ± 0.31

Table S	S 3.
----------------	-------------

	Thermal property		Me		
	$T_{\rm m}(^{\circ}{\rm C})$	$T_{\rm g}(^{\circ}{\rm C})$	E (MPa)	$\sigma_{\rm mt}$ (MPa)	$arepsilon_b$ (%)
HT3Δ	59.2	-40.7	6.6	4.0	159.4
$HT4\Delta$	60.7	-38.4	12.4	3.4	127.6
НТ4∆:: <i>С1С2Ј</i>	67.3	-34.2	47.7	2.3	27.2

Note: $T_{\rm m}$: melting temperature; $T_{\rm g}$: glass transition temperature; E: Young's modulus; $\sigma_{\rm mt}$: maximum tension strength; $\varepsilon_{\rm b}$: elongation at break.

Tab	le 🖁	S4.
-----	------	-----

Strains	Carbon sources	Medium type	Method	Dry cell weight	PHA content	References
Suams	Carbon sources			(g/L)	(wt%)	
P. putida KTQQ20	Tetradecanoic acid	Rich, LB medium	Inhibition of β -oxidation and deletion of <i>phaG</i>	0.6	77.5	[1]
P. putida CA-3	Volatile fatty acids	Minimum, MS medium		1.6	39	[2]
<i>P. mendocina</i> NKU-Δβ5	Decanoate	Rich, LB medium	Inhibition of β -oxidation, deletion of <i>phaG</i> and <i>phaZ</i>	2.3	48.1	[3]
P. putida KTMQ01	Sodium octanoate	Minimum, MS medium	Deletion of <i>phaZ</i>	4	86.5	[4]
P. entomophila LAC03	Dodecanoic Acid	Rich, LB medium	Inhibition of β -oxidation	9.9	51.9	[5]
<i>P.</i> chlororaphisHT4∆::C1C2J	Glucose, dodecanoic acid	Rich, KB medium	Inhibition of β -oxidation, deletion of <i>phzE</i> and <i>phaZ</i> , overexpression of <i>phaC1</i> , <i>phaC2</i> and <i>phaJ</i>	18.2	84.9	This study
P. mosselii TO7	Crude glycerol	Minimum, MS medium	Fed-batch	1.3	48.4	[6]
P. aeruginosa BP C1	Glucose	Minimum, MS medium		7	14.7	[7]
P. chlororaphis DSM19603	Glycerol	Minimum, medium E	Fed-batch	11.8	19	[8]
P. putida WJPP03	Dodecanoic acid	Rich, LB medium	Batch, genome reduction	6.2	63.1	[9]
Pseudomonas sp.	Corn oil	Minimum, MS medium	Batch	12.5	35.6	[10]
P. citronellolis	Tallow-based biodiesel	Minimum, MS medium	Fed-batch	42	26.6	[11]
Pseudomonas sp. ASC2	Crude glycerol	Minimum, MS medium	Batch	32.3	61.8	[12]

Figure S2.

REFERENCES

(1) Liu, Q.; Luo, G.; Zhou, X. R.; Chen, G. Q., Biosynthesis of poly(3-hydroxydecanoate) and 3hydroxydodecanoate dominating polyhydroxyalkanoates by beta-oxidation pathway inhibited *Pseudomonas putida*. *Metab Eng* **2011**, 13 (1), 11-17.

(2) Cerrone, F.; Choudhari, S. K.; Davis, R.; Cysneiros, D.; O'Flaherty, V.; Duane, G.; Casey, E.;
Guzik, M. W.; Kenny, S. T.; Babu, R. P.; O'Connor, K., Medium chain length polyhydroxyalkanoate
(mcl-PHA) production from volatile fatty acids derived from the anaerobic digestion of grass. *Appl Microbiol Biotechnol* 2014, 98 (2), 611-620.

(3) Zhao, F.; He, F.; Liu, X.; Shi, J.; Liang, J.; Wang, S.; Yang, C.; Liu, R., Metabolic engineering of *Pseudomonas mendocina* NK-01 for enhanced production of medium-chain-length polyhydroxyalkanoates with enriched content of the dominant monomer. *Int J Biol Macromol* **2020**, 154, 1596-1605.

(4) Cai, L.; Yuan, M. Q.; Liu, F.; Jian, J.; Chen, G. Q., Enhanced production of medium-chainlength polyhydroxyalkanoates (PHA) by PHA depolymerase knockout mutant of *Pseudomonas putida* KT2442. *Bioresour Technol* **2009**, 100 (7), 2265-2270.

(5) Chung, A. L.; Jin, H. L.; Huang, L. J.; Ye, H. M.; Chen, J. C.; Wu, Q.; Chen, G. Q., Biosynthesis and characterization of poly(3-hydroxydodecanoate) by beta-oxidation inhibited mutant of *Pseudomonas entomophila* L48. *Biomacromolecules* **2011**, 12 (10), 3559-3566.

(6) Chen, Y. J.; Huang, Y. C.; Lee, C. Y., Production and characterization of medium-chain-length polyhydroxyalkanoates by *Pseudomonas mosselii* TO7. *J Biosci Bioeng* **2014**, 118 (2), 145-152

(7) Phukon, P.; Pokhrel, B.; Konwar, B. K.; Dolui, S. K., Biosynthesis and characterization of a new copolymer, poly(3-hydroxyvalerate-co-5-hydroxydecenoate), from *Pseudomonas aeruginosa*.

Biotechnol Lett 2013, 35 (4), 607-611.

(8) de Meneses, L.; Pereira, J. R.; Sevrin, C.; Grandfils, C.; Paiva, A.; Reis, M. A. M.; Freitas, F., *Pseudomonas chlororaphis* as a multiproduct platform: Conversion of glycerol into high-value biopolymers and phenazines. *N Biotechnol* **2020**, 55, 84-90.

(9) Wang, J.; Ma, W.; Wang, Y.; Lin, L.; Wang, T.; Wang, Y.; Li, Y.; Wang, X., Deletion of 76 genes relevant to flagella and pili formation to facilitate polyhydroxyalkanoate production in *Pseudomonas putida*. *Appl Microbiol Biotechnol* **2018**, 102 (24), 10523-10539.

(10) Chaudhry, W. N.; Jamil, N.; Ali, I.; Ayaz, M. H.; Hasnain, S., Screening for polyhydroxyalkanoate (PHA)-producing bacterial strains and comparison of PHA production from various inexpensive carbon sources. *Annals of Microbiology* **2010**, 61 (3), 623-629.

(11) Muhr, A.; Rechberger, E. M.; Salerno, A.; Reiterer, A.; Schiller, M.; Kwiecień, M.; Adamus, G.; Kowalczuk, M.; Strohmeier, K.; Schober, S.; Mittelbach, M.; Koller, M., Biodegradable latexes from animal-derived waste: Biosynthesis and characterization of mcl-PHA accumulated by *Ps. citronellolis*. *Reactive and Functional Polymers* 2013, 73 (10), 1391-1398.

(12) Muangwong, A.; Boontip, T.; Pachimsawat, J.; Napathorn, S. C., Medium chain length polyhydroxyalkanoates consisting primarily of unsaturated 3-hydroxy-5-*cis*-dodecanoate synthesized by newly isolated bacteria using crude glycerol. *Microb Cell Fact* **2016**, 15, 55.