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Abstract— Software change prediction (SCP) is the process of 

identifying change-prone software classes using various 

structural and quality metrics by developing predictive 

techniques. The previous studies done in this field strongly 

confer the correlation between the quality of metrics and the 

performance of such SCP models. Past SCP studies have also 

applied different feature reduction (FR) techniques to address 

issues of high dimensionality, feature irrelevance, and feature 

repetition. Due to the vast variety of metric suites and FR 

techniques applied in SCP, there is a need to analyze and 

compare them. It will help in identifying the most crucial 

features and the most effective FR techniques. So, in this 

research, we conduct experiments to compare and contrast 60 

Object-Oriented plus 26 Graph-based metrics and 11 state-of-

the-art FR techniques previously employed for SCP over a 

range of 6 Java projects and 3 diverse classifiers. The AUC-

ROC measures and statistical tests over experimental SCP 

models indicate that FR techniques are effective in SCP. Also, 

there exist significant differences in the performance of the 

different FR techniques. Furthermore, from this extensive 

experimentation, we were able to identify a set of the most 

effective FR techniques and the most crucial metrics which can 

be used to build effective SCP models. 
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I. INTRODUCTION  

Iterative software development, functionality updates, and 
extensive software maintenance support are becoming a 
standard in today's dynamic software industry. 
Accommodating customer’s demands, code refactoring, 
changes in technology, and fault correction are some of the 
reasons which contribute to code changes leading to newer 
versions and releases of the software [1]. These change-related 
activities can be costly and time-consuming for large and 
long-running software projects. Hence, industries are 
nowadays employing Software Change Prediction (SCP) to 
identify the classes that are most prone to changes in the 
subsequent releases of the software [2, 3, 4]. Identification of 
such change-prone classes aids in careful planning, easy 
maintenance, and proper management of the software 
projects. It helps the project managers to focus their limited 
resources on such change-prone classes in advance. It 
ultimately leads to the development of high-quality software 
that is maintained and updated in the scheduled time [2]. 

Recently, various Machine Learning (ML) techniques have 
been used to predict the change-proneness of the classes [2-5]. 
These techniques use a variety of independent features for 
prediction like OO metrics [5], class dependency graph-based 

metrics [6], class evolution-based metrics [7], developer-
related factors [8], etc. Many studies often combine different 
metric suites to obtain higher performance in SCP [9]. 
However, this increases the dimensionality of the dataset and 
inadvertently introduces many irrelevant and redundant 
features [10]. Working with such high-dimensional datasets 
brings several challenges like high-computation costs and 
overfitting of models [11]. 

Many feature reduction (FR) techniques have been developed 
to counter these issues. These techniques reduce the 
dimensionality of data by eliminating the features which are 
not correlated or useful in finding the outcome variable. Past 
SCP studies have applied filter-based ranking, wrapper-based 
subset selection, neural-network based, metaheuristic and 
extraction-based methods to find effective feature 
representations [2, 4, 12-16].  

Since many diverse metrics have been used and a large variety 
of FR techniques are available to select the best among these 
metrics, it is crucial to analyse and compare them. This 
observation motivates us to conduct an extensive comparative 
study of 11 FR techniques in SCP. We use relevant Object-
Oriented (OO) metrics and Graph-based metrics as 
independent features since they are the 2 most popularly used 
metric suites in SCP [2-4, 13, 17]. The experiments are 
conducted on 6 new datasets that we have collected through 
proprietary tools. AUC-ROC is used along with statistical 
tests for evaluation. The objective of our study is three-fold. 
Firstly, this study will help in the identification of the most 
important metrics in SCP. Secondly, this study will help in the 
identification of the most effective FR techniques for SCP. 
Finally, we can observe how the utility of these metrics and 
FR techniques varies with changes in the classification 
techniques. 

Broadly, our study answers the following research questions 
(RQs) - 

1. What is the significance of using FR techniques in 
SCP? 

2. Which FR technique is most effective in SCP? Does 
the type of classifier influence the choice of FR 
technique?  

3. Which features are most important in SCP? 

The major contributions of this study are - 

1. The study evaluates the performance of 11 FR 
techniques for SCP. These 11 techniques belong to 



 

diverse categories of FR techniques like filter-based, 
wrapper-based, extraction-based, neural-network based, 
and metaheuristic techniques. To the best of the author's 
knowledge, this is the first extensive study that compares 
FR techniques in SCP.   

2. The study is conducted on 6 new Java datasets that we 
have collected using open-source and proprietary tools. 
These datasets have OO metrics and graph-based metrics 
as independent features. The datasets are diverse in terms 
of domain, size, source of origin, and class-ratio. Further, 
the use of 3 classification techniques - Support Vector 
Machine (SVM), Naive Bayes (NB), and Decision Tree 
(DTree) with all combinations of 11 FR techniques and 
6 datasets increases the generalizability of our results.  

3. To establish the basic performance of the classifiers we 
use AUC-ROC as the performance measure since it is 
the recommended choice for the imbalanced SCP 
datasets. To increase the significance of our findings, the 
Friedman test along with the post-hoc double Scott-
Knott test is used for further validation of performance 
of the FR techniques. 

The rest of the paper is organized into 6 sections. Section II 
describes the past SCP studies and the various FR used by 
them. Section III provides details about the 11 FR techniques 
that are compared in this study. Section IV elaborates the 
experimental framework which includes the data collection 
procedure, independent features - OO metrics and graph-
based metrics, classification techniques, performance 
indicators, statistical tests, and the overall experimental setup. 
Section V presents the experimental findings and answers the 
RQs mentioned above. Section VI presents the threats to 
validity. Section VII concludes the study and future work. 

II. LITERATURE REVIEW 

For doing software-related predictive modelling we first 
study the software project, process, and product, and then 
extract the metrics that describe them. Malhotra and Bansal 
[17] reviewed SCP studies and found that product-based 
metrics such as CK [10], Lorenz and Kidd [18], MOOD [19], 
QMOOD [20], etc. have been predominantly used in this field 
for model training. Malhotra et al. [2] surveyed 38 SCP 
studies and found that most of them used OO metrics for 
software change prediction. Catolino et al. [8] proposed a 
study with the use of developer-related metrics to enhance the 
prediction performance in SCP by 22% as compared to 
single-version models. Kagdi and Melatic [7] proposed a 
study that focuses on the need to combine single-version and 
evolutionary dependencies based on multiple versions.  The 
study concluded that the combination improves the overall 
performance of SCP. Yang et al. [21] proposed a different 
approach for training SCP models by using metrics based on 
the graphical structure of the software. Bhattacharya et al. [6] 
reflected the utility of graph-based metrics for software 
predictive modelling fields like bug severity, maintenance, 
and defect prediction. Giger et al [22] advocated using a 
combination of OO and graph-based metrics. 

To cover all the aspects of modern software, a large set of 
features are considered for model training. This increase in 
the feature set size causes problems related to high data 

dimensionality like unsatisfactory results of predictive 
classifiers [23, 24, 25]. These studies suggest the use of FR 
techniques to eliminate repetitive and irrelevant features. 

Blum and Langley [26], Tang et al. [27], Chandrashekar, and 
Sahin [28] have given invaluable insights surveying and 
explaining the work in ML on FR techniques. FR techniques 
can be broadly classified into different groups based on the 
approach and framework followed by them. Some of them 
are -filter-based methods, wrapper-based methods, feature 
extraction-based methods, evolutionary methods, and neural 
network-based methods. Malhotra et al. [2] conducted a 
review of primary studies on SCP and found 58% of them 
were using FR techniques. Chi-Square test [8], CFS [9], 
wrapper method [14], PSO [15], Genetic Algorithm [16], 
PCA [23] are some of the techniques that have been 
previously used in SCP for the specified purpose. 

Since a large variety of metrics and FR techniques have been 
applied in SCP, there is a need to compare them to identify 
the most effective ones. Many such comparative studies are 
already present for software related fields like software risk 
analysis, software cost estimation, key class identification, 
and software defect prediction. On the contrary, no 
comparative study providing definitive guidance on FR 
techniques is present for SCP. 

On the lines of works by Shivaji et al. [24] and Xu et al. [25] 
on the comparison of FR techniques in SDP, we propose a 
similar study in SCP where we investigate the effects of 11 
FR techniques using NB, SVM, and DTree classifiers over 6 
Java projects - ant, hibernate, wro4j, tomcat, javaclient, and 
neuroph. 

III. FEATURE REDUCTION TECHNIQUES 

High-dimensionality datasets often create various issues like 
high computational cost, reduction of the impact of important 
features in the model, and low prediction performance due to 
overfitting [11]. FR techniques counter these problems by 
selecting, removing, or transforming the original features to 
reduce the dimensionality of the dataset [24, 25]. This study 
compares 11 FR techniques belonging to different categories. 
These techniques are listed in Table I. These techniques are 
explained in the subsections below. 

TABLE I.  FR TECHNIQUES  

Category FR Technique Abbreviation 

Filter-based 

Chi-Square CS 

Gini Index Gini 

ReliefF RF 

Fisher Score FS 

Wrapper-based Forward Learning Wrap 

Extraction-based Principal Component Analysis PCA 

Linear Discriminant Analysis LDA 

Metaheuristic 

Particle Swarm Optimization PSO 

Artificial Bee Colonization ABC 

Firefly Algorithm FF 

Neural-Network 
based 

Auto-Encoders AE 

 



 

A. Filter-Based Techniques 

Filter-based techniques reduce the number of features by 
providing a rank to the original features according to some 
statistical or probability-based measure. The features with 
ranks higher than the threshold are chosen while the others are 
eliminated in the reduced dataset. This threshold value is an 
external variable. In this study, we have used four different 
feature ranking mechanisms – 
 
1) Chi-Square: CS [12] tests the dependency of features with 
the dependent variable and selects those with the highest 
dependence. Higher the CS value for a feature, the more 
effective it is in the prediction of the dependent variable. 

2) Gini Index: Gini [29] is a splitting criterion that is used in 
DTrees. Gini calculates the entropy of the dependent variable 
with each feature. Gini is inversely related to the effectiveness 
of the feature.  

3)  ReliefF: RF [25] is a supervised multivariate feature 
selection (FS) technique that assigns a feature score to each 
feature. A feature is assigned a higher score if its value 
remains similar across samples of the same class and changes 
across samples of different classes. Features having higher 
scores are chosen for model training. 

4) Fisher Score: FS [25] is a statistical method for calculating 
the rank of each feature. A Higher Fisher score implies a 
higher priority of a feature. FS is calculated as follows: 

FS = 
��(µ�� µ�)	� �
(µ
� µ�)	

σ�	    (1) 

where µ  is the mean of the values in the dataset, �  is the 
standard deviation of the dataset, N signifies negative samples 
and p signifies positive samples for the original dataset. 

B. Wrapper-Based Techniques 

Wrapper-based techniques [14] use classification 
techniques to select the best feature subset by training for 
different combinations of features. Wrapper-based 
techniques use forward learning, backward elimination, or a 
combination of both for searching for the best combination of 
features. Wrapper-based techniques follow a greedy-search 
approach where the classification accuracy is the evaluation 
measure for every feature combination. In this study 3 
classification techniques have been used for wrapper-based 
FS - NB, DTree, and SVM.  

C. Extraction-Based Techniques 

Extraction-based techniques project the high-dimensional 
original dataset into a lower-dimensional subspace. This 
projection is formed by extracting significant structures and 
relationships from the original features. These transformed 
features can be used for training the model. Two such 
techniques have been used in this study for comparison - 

    1)  Principal Component Analysis: PCA [23] represents the 
dataset in the form of orthogonal vectors called principal 
components. These principal components are formed by 
linear combinations of the original features. For a dataset with 
n number of features, n principal components are created. A 

set of k principal components having the highest variance are 
selected as the new features. Here, k is the reduced dimension 
size. 

2) Linear Discriminant Analysis: LDA [30] is a 
supervised technique that creates new features considering 
the dependent variable. The objective of LDA is to project the 
original dataset to a subspace where the distance between 
similar class samples is minimized while the distance 
between samples of different classes is maximized.  

D. Metaheuristic Techniques 

Metaheuristic techniques are based on the real-life 
evolution strategies adopted by various living organisms. 
Their use for feature reduction has recently increased due to 
their ability to find a globally optimum combination of 
features in less time. For all the described techniques, AUC-
ROC was taken as the fitness function. In this study, 3 
metaheuristic techniques have been used for comparison -  

1) Particle Swarm Optimization: PSO [15] is a 
metaheuristic computation technique that has been widely 
applied in feature selection due to its computational 
efficiency, fast convergence and its ability to find global 
optimum solutions. PSO consists of a group of particles 
moving in the solution space of the problem. Every particle's 
position represents a possible feature subset. A fitness 
function evaluates the suitability of a solution for the given 
problem. The particles move to better positions in every 
iteration based on their personal experience and the overall 
experience of the population. The process terminates on 
achieving the desired fitness function value or after a fixed 
number of iterations.  

2) Artificial Bee Colonization: ABC [31] is a swarm-
based metaheuristic technique that models the food-search 
behavior of bee colonies. In ABC, potential solutions to the 
optimization problem are represented by position of food 
sources. In feature selection problem, these positions 
represent a possible feature subset. The fitness function (the 
nectar amount at a food source position) represents the AUC-
ROC value achieved considering the feature subset of that 
solution. The employed, onlooker, and scout bees perform 
various iterations to reach the best food source position. The 
process terminates on achieving the desired fitness function 
value or after a fixed number of iterations.   

3) Firefly Algorithm: FF [32] is a metaheuristic technique 
based on the flashing behavior of the fireflies. The position 
of fireflies represents potential solutions to the optimization 
problem. The intensity of the firefly is the value of the fitness 
function on that position. On each iteration, fireflies move to 
better position depending on the bioluminescent attraction 
between them. The process terminates on achieving the 
desired fitness function value or after a fixed number of 
iterations.  

E. Neural Network-Based Techniques 

AE [30] is an artificial neural network that encodes the 
original feature set into a compressed and efficient feature set. 
AE is an unsupervised learner with a bottleneck architecture 



 

with input features as the original feature set and output 
features as the encoded feature set. AE aims to reduce noise, 
eliminate uncorrelated features, and construct the new feature 
set as close to the original feature set as possible. 

IV. EXPERIMENTAL SETUP 

The experimental framework used in the study is 
depicted in Fig. 1. All the individual components are 
explained in further subsections. 

 

 

Fig. 1.  Experimental Framework 

 

A. Variables 

1) Independent variables: In this study, two categories of 

independent variables are used - OO metrics and graph-based 

metrics. Graph-based metrics are further divided into core 

metrics and centrality measure metrics. OO metrics [10,18-

20] describe the class structure like lines of code, number of 

methods, number of attributes, cyclomatic complexity, etc. 

They also represent the relationship between the classes like 

coupling, cohesion, etc. This study uses 60 handpicked OO 

metrics1 collected using the UNDERSTAND tool 

(http://www.scitools.com/). The graph-based metrics are 

derived from a dependency graph where each class represents 

a node and the inter-class relationships like inheritance, 

containership, etc. form the edges [33]. Core graph metrics 

calculate features like in-degree, out-degree, weighted 

connections, etc. of a class, and centrality measures like 

PageRank, K-Coreness, Betweenness, etc. indicate the 

importance of a class in the software. This study uses 26 

graph-based metrics taken from a publicly available dataset 

[33]. A total of 86 independent variables have been used in 

this study for classification. These 86 variables are listed in 

Table II. 
 

2) Dependent Variables: Change-proneness of a class is 

the binary dependent variable in this study. There are various 

types of changes in a class like addition or removal of 

methods and attributes, modifications in the class declaration, 

etc. In this study, we model SCP as a binary-classification 

problem hence all these changes are labeled in the same 

category i.e. change (1). If no modification has been done in 

a class between the two subsequent releases, then the sample 

is labeled as no change (0).     

TABLE II.  METRICS COMPRISING DATASETS  

Category  Metrics included in the study 

OO 
metrics 

Average Cyclomatic Complexity (F1), Average Modified 
Cyclomatic Complexity (F2), Average Strict Cyclomatic 
Complexity (F3), Average Essential Cyclomatic 
Complexity (F4), Average Number of Lines (F5), Average 
Number of Blank Lines (F6), Average Number of Lines of 
Code (F7), Average Number of Lines with Comments (F8), 
A Base Classes (F9), Coupling Between Objects (F10), 
Count of Modified Coupling Between Classes (F11), 
Number of Children(F12), Classes (F13), Class Methods 
(F14), Class Variables (F15), Executable Unit (F16), 
Number of Files (F17), Function (F18), Instance Methods 
(F19), Instance Variables (F20), Local Methods F(21), 
CountDeclMethodAll (F22), Local Default Visibility 
Methods F(23), Private Methods (F24), Protected Methods 
(F25), Public Methods (F26), Inputs (F27), Physical Lines 
(F28), Blank Lines of Code (F29), Lines of Code (F30), 
Declarative Lines of Code  (F31), Executable Lines of 
Code (F32), Lines with Comments (F33), Outputs (F34), 
Paths (F35), Paths Log(x) (F36), Semicolons (F37), 
Statements (F38), Declarative Statements (F39), 
Executable Statements (F40), Cyclomatic Complexity 
(F41), Modified Cyclomatic Complexity (F42), Strict 
Cyclomatic Complexity (F43), Essential Complexity (F44), 
Knots (F45), Max Cyclomatic Complexity (F46), Max 
Modified Cyclomatic Complexity (F47), Max Strict 
Cyclomatic Complexity (F48), Max Essential Complexity 
(F49), Max Knots (F50), Depth of Inheritance Tree (F51), 
Nesting (F52), Minimum Knots (F53), Lack of Cohesion in 
Methods (F54), Modified Lack of Cohesion in Methods 
(F55), Comment to Code Ratio (F56), Sum Cyclomatic 
Complexity (F57), Sum Modified Cyclomatic Complexity 
(F58), Sum Strict Cyclomatic Complexity (F59), Sum 
Essential Complexity (F60) 

Graph-
based 
metrics 

Weighted Incoming Dependencies (F61), Weighted 
Outgoing Dependencies (F62), Total Weighted 
Dependencies (F63), PageRank on Directed Graph (F64), 
PageRank on Unweighted Graph (F65), PageRank on 
Undirected, Weighted Graph (F66), PageRank on 
Weighted Graph With Back Recommendations (F67), 
PageRank on Weighted Graph (F68), Authority Value on 
Directed Unweighted Graph (F69), Authority Value on 
Directed, Weighted Graph (F70), Hub Value on Directed 
Unweighted Graph (F71),  Hub Value on Directed 
Unweighted Graph (f72), Betweenness Value on 
Undirected Unweighted Graph (F73), Betweenness Value 
on Undirected Weighted Graph (F74), Core Number on 



 

Undirected, Unweighted Graph (F75), Core Number on 
Weighted Graph (F76), Top Classes That Are Incoming 
Dependencies (F77), Top Classes That Are Outgoing 
Dependencies (F78), Total Top Class That Are 
Dependencies (F79), Total Weight of Incoming 
Dependencies From Top Classes (F80), Total Weight of 
Outgoing Dependencies From Top Classes (F81), Total 
Weight of All Dependencies From Top Classes (F82), 
Betweenness Value on Weighted Graph With Back 
Recommendation (F83), Incoming Dependencies (F84), 
Outgoing Dependencies F(85), Total Dependencies (F86). 

B. Dataset 

This section describes the procedure of dataset collection and 
the properties of the collected datasets. 6 open-source Java 
projects are chosen for collecting the datasets [34]. For each 
project, the source code of two subsequent releases is 
collected from GitHub (https://github.com) or Sourceforge 
(https://sourceforge.net). From the source code of both 
releases, 60 OO metrics1 for JAVA classes are collected using 
the UNDERSTAND tool (http://www.scitools.com/). Now 
the two releases of the project are compared to identify the 
classes in which there have been some changed or modified 
classes. Firstly, the classes from both releases are compiled 
together in the dataset. The classes which are not common to 
both the releases were classified as changed. For the 
remaining common classes, the number of lines increased, 
decreased, and modified from first to the second release are 
found. For every class, if no lines were added, deleted, or 
modified it is labeled as no change (0) else change-prone (1). 
Following the above steps, we get our data with OO metrics 
and the dependent variable. Now the 26 graph-based metrics 
available as publicly accessible datasets [33] are combined 
with the OO metric data collected in previous steps though 
inner join over the columns containing class names in both 
datasets This completes our data collection procedure. 
Finally, we have 6 datasets with 86 independent variables and 
1 dependent variable described in Section IV-A. These 
datasets and their statistics are shown in Table III. 

TABLE III.  STATISTICS OF DATASETS 

Dataset Release 

1 

Release 

2 

Number 

of classes 

% of 

changed 

classes 

Description 

Ant 1.6.0 1.6.1 319 10.3 Java-based build tool of 
Apache   

Tomcat 9.0.3 9.0.4 354 1.97 Open-source 
implementation of Java 

Servlet by Apache  

Wro4j 1.6.2 1.6.3 169 24.7 Java project that 
combines web tools 

Hibernate 5.2.11 5.2.12 2022 6.77 Object Relational 
Mapping (ORM) tool 

Javaclient 2.2.0.0 2.2.0.1 211 4.24 Appium project on Java 

Neuroph 2.1.1 2.2 112 26.5 Java class library and 
GUI tool 

 

C. Classifiers 

In this study, 3 classification techniques have been used for 
the prediction of change-prone classes. These classifiers have 
been widely used in the previous comparative studies [24, 
25]. Also, these techniques have proven to have good 
prediction performance and are stable for imbalanced data 

[35]. These techniques are very diverse from each other in 
terms of learning strategies and have fast computation 
efficiency [36]. These classifiers are explained below- 

1) Naive Bayes - NB [36] is a statistical probability-based 
ML technique that predicts the probability of occurrence of a 
sample in different classes using prior and posterior 
probabilities and then labels the sample with the class having 
maximum probability. 

2) Support Vector Machine - SVM [36] is a popular 
supervised ML technique often used in classification and 
regression problems. SVM develops a hyperplane to divide 
the sample space such that the distance of the hyperplane with 
the closest sample is the largest.    

3) Decision Tree - DTree [36] constructs a tree where 
each node represents a condition on a feature and each path 
from the root to leaf node leads to an output label. While 
moving from root to leaf various decisions take place 
according to the features of the samples and the conditions on 
those features. This is a widely used technique in various 
problem domains. 

D. Performance Measures 

In this study, we use AUC-ROC for evaluating the 
performance of the different techniques. AUC-ROC has been 
widely used in past studies on SCP [3, 5, 13, 14]. AUC-ROC 
measures the capability of a model to distinguish between 
change-prone and no-change classes. It is a summary of the 
ROC curve which is a plot between True Positive Rate 
(proportion of change-prone classes that were identified 
correctly as change-prone) and False Positive Rate 
(proportion of no-change classes that were identified as 
change-prone). AUC-ROC values range between 0 to 1 
where 1 means that the model is identifying every sample 
correctly and 0 means that the model is performing poorly 
and reciprocating the actual class labels. AUC-ROC is a 
highly effective performance measure especially when the 
dataset is imbalanced, which is often the cases with datasets 
in SCP. 

E. Statistical Tests 

This study uses the non-parametric Friedman test [37] 
followed by the post-hoc double Scott-Knott test [38] for a 
consolidated performance comparison of different FR 
techniques across datasets. The tests are conducted at the 
significance level (α) of 0.05. To conduct these tests the 
following steps are followed - 

1) Formulation of the null hypothesis (H0) - H0 states that 
all the FR techniques are similar in performance in SCP. In 
other words, the use of one FR technique over another does 
not affect the classification performance.  

2) Computing Average Friedman Ranking (AFR) - 

Consider we have f FR techniques and d datasets. For every 
FR technique, the average rank over d datasets is conducted 
based on performance measures described in Section IV-D. 
The formula for calculating AFR of i-th FR technique is – 



 

���� = �
� � ���

�

���
    (2) 

where Rij is the rank of the i-th technique for the j-th dataset. 
  

3) Computing Friedman test statistic (FTS) - Using the 
AFR of the FR techniques computed in Step (2), FTS is 
computed as – 

��� = ���
�(���) �� �����

�
��� − �(���)	

 !   (3) 

4) Accept or Reject H0 - If the FTS computed in equation 
(3) is greater than the chi-square distribution value for 
significance level (α) and f-1 degree of freedom, the null 
hypothesis H0 is rejected else H0 is accepted. if H0 is rejected, 
we conduct the post-hoc test according to step (5) 

5) Scott-Knott test - It creates distinct clusters of FR 
techniques using hierarchical clustering. Clusters are created 
based on a performance metric of FR techniques for a given 
dataset. Ranks are assigned to techniques based on their 
cluster. 

6) Double Scott-Knott test - It is used for comparison of 
the techniques across datasets. For each technique, we obtain 
6 Ranks using the Scott-Knott test each corresponding to a 
unique dataset. Now, using dataset wise ranks as an input, we 
conducted a second Scott-Knott test to obtain overall ranks 
for an FR technique.  

F. Experimental Procedure 

The experiments are performed using the datasets described 
in Table III. Since the datasets are highly-imbalanced, we 
have used Synthetic-Minority Oversampling (SMOTE) [39] 
to counter this issue. We used a SMOTE ratio of 0.6 [40]. 

Next, we have applied the FR techniques given in Table I 
using the parameters described here. Let p be the number of 
original features. The filter-based and wrapper-based 
methods are implemented using the Skfeature library of 
python. The number of reduced features is a variable in the 
FR techniques that depends on various factors like dataset 
distribution, the mathematical formula used by filter 
methods, etc. Hence, for each technique, we used the brute 
force technique for variable selection to optimize the 
percentage of feature reduction. We conducted experiments 
with fraction values in the range of 0.1 to 0.9 with a difference 
of 0.1 [41]. From these experiments we found out that 0.5*p 
is the optimal number of features to be taken for filter-based 
and wrapper techniques. For wrapper-based techniques, we 
have used a forward learning search strategy.  

PCA and LDA are implemented using the Sci-kit learn 
python library. The number of components in PCA is chosen 
as 40 as we want 95% variance to be retained in the new 
features [42].  

The parameters for PSO, ABC, FF, and AE are selected by 
running the algorithms multiple times on different parameter 
combinations. The metaheuristic techniques and AE are 

implemented from scratch in python. PSO is implemented 
with an initial population size of 30, maximum number of 
iterations to be 50, c1 and c2 with values 1.496 respectively, 
and the velocity range to be [-2,2]. ABC is implemented with 
an initial population size of 30, abandonment limit 100, 
upper/lower limit as [-1,1], and maximum iterations as 50. FF 
is implemented using population size 20, α=0.8, β=1, Ɣ=0.7, 
and maximum iterations as 40.  

For AE we use Adadelta optimizer, categorical cross-entropy 
loss function, and relu activation function. The number of 
epochs is 50 with a batch size of 100. 

The classification techniques used in this study are mentioned 
in Section IV-C. They are implemented with default 
parameter settings of Sci-kit learn library, and a 10-fold 
cross-validation strategy is used for training and evaluation 
of performance. The performance is measured using the 
indicators described in Section IV-D. Finally, statistical tests 
are conducted which are explained in Section IV-E. This 
entire framework is depicted in Fig. 1. 

V. EXPERIMENTAL RESULTS 

A. RQ1 - What is the significance of using feature reduction 

techniques in SCP? 

The objective of this RQ is to find the need to apply FR 
techniques in SCP. Here 11 sets of experiments are conducted 
considering each of the 11 FR techniques. In addition, a set 
of experiments is conducted without using FR techniques. 
Each set of experiments consist of 18 different combinations 
formed by the 6 datasets and 3 classifiers. 

 
The AUC-ROC results obtained from these experiments are 
shown as box-plots in Fig. 2, 3, 4. The three box-plots are 
differentiated based on the three different classifiers (DTree, 
NB, and SVM) used in the experiments. Each of these box-
plots shows the variation of AUC-ROC over different 
datasets for the 11 FR techniques and the one labelled ‘No 
FR’ corresponding to the case where the no FR technique is 
applied. In the box-plot for the SVM classifier, it is observed 
that all the FR techniques except the filter-based CS have a 
higher median AUC-ROC value than the case where no FR 
technique is used. A similar scenario is observed for the 
DTree classifier where the scenario of not using any FR gives 
the second-worst median AUC-ROC after AE. The results of 
the NB classifier are also against the scenario where we do 
not use any FR technique as here it gives the third-worst 
median. To summarize, across all the three classifiers the 
median AUC-ROC score of the best FR technique is higher 
than the median of no-FR case. Hence, by analysis of the 
AUC-ROC performance results, we can say that the 
application of FR techniques is necessary since there are a lot 
of redundant and unnecessary features that are not effective 
in SCP. 



 

 
Fig. 2.  Box plot of AUC-values over datasets using SVM classifier  

 

 
Fig. 3.  Box plot of AUC-values over datasets using NB classifier  

 

 
Fig. 4.  Box plot of AUC-values over datasets using DTree Classifier 

 
To further validate the inferences drawn from AUC-ROC 
results, we perform statistical validation. We first applied the 
Freidman tests where we got the Friedman Statistic Value as 
12.295, 22.483, and 25.982 for DTree, NB, and SVM 
respectively. These values suggest that the initial hypothesis 
H0 is rejected for all the three classifiers. This concludes that 
all 11 FR compared in the study have significant differences 
in prediction performance. Since we also compared a case 
where no FR technique was applied, it can be concluded from 
the rejection of H0 that there is a difference in performance 
between the scenario where FR techniques are used and 
where FR techniques are not used. The results of double 
Scott-Knott tests further justify these observations. The 
results of the double Scott-Knott test are displayed in figures 
5, 6, and 7 using graphs. Here each graph is created based on 
a classifier used. For each graph, the x-axis hoists the status 
of the FR technique and the y-axis hoists average rank values. 
The height of each bar demarcates the average rank of each 
technique over six datasets. The colour of each bar indicates 
the distinct cluster to which the corresponding FR technique 
is assigned. For DTree, the scenario of not using any FR 
technique is ranked the lowest with an average rank of 8.5. 

For NB and SVM, the scenario of not using any FR technique 
is not the worst since there are a few FR techniques like PSO, 
CS, and FF that perform worse. Table IV summarizes the 
results of the double Scott-Knott. For each classifier, the 
cluster division is shown along with the techniques in that 
cluster and other cluster statistics like mean, median, and 
standard deviation. It is observed from Table IV that the 
scenario of not using any FR technique always falls in the 
cluster of the worst techniques which have the lowest 
rankings. Since the results of double Scott-Knott tests are 
independent of the original AUC-ROC values of a technique 
on the different projects, we can say that the scenario of not 
using any FR technique is overall undesirable. 

 
Fig. 5.  Double Scott-knot test and Friedman ranking over datasets for 

SVM classifier  

 
Fig. 6.  Double Scott-knot test and Friedman ranking over datasets for NB 

classifier  

 
Fig. 7.  Double Scott-knot test and Friedman ranking over datasets for 

DTree Classifier  

Conclusion - The experimental results indicate the presence 
of irrelevant and redundant features that affect the prediction 
performance of the classifiers. The AUC-ROC values and 
the statistical tests strongly suggest the necessity of using 
FR techniques in SCP to select effective features for training 
predictive models. 

 



 

TABLE IV.  SUMMARY OF DOUBLE SCOTT-KNOTT TEST  

DTree 

 
Performance 
Measure Techniques 

Average 
Rank 

Median 
Rank 

Std. 
Deviation 

1 

AUC-ROC 

FF, ABC, Gini, Wrap 4.8333 4.9165 0.7818 

2 PCA, LDA, AE 7.0556 6.6670 0.9767 

3 CS,PSO, RF, FS, No FR 7.5333 7.1667 0.9159 

NB 

1 

AUC-ROC 

AE, LDA, Wrap 3.1667 2.8333 1.2018 

2 ABC, Gini, RF, FS 6.8749 6.7500 1.1168 

3 
No FR,CS, PSO, PCA, 

FF 8.2000 7.8333 0.5821 

SVM 

1 

AUC-ROC 

Wrap, AE, LDA 3.1666 2.8330 1.2019 

2 ABC, Gini, RF, FS 6.8758 6.7500 1.1157 

3 
PSO, FF, CS, PCA, No 

FR 8.1998 7.8330 0.5820 

 

 

B. RQ2- Which feature reduction technique is most 

effective in SCP? Does the type of classifier influence 

the choice of feature reduction technique?  

In this RQ, we compare the performance of selected FR 
techniques in SCP. Also, we study the effect of different 

classifiers on the performance of the FR techniques.  

For SVM, it is observed from Fig. 2 that the least AUC value 
achieved by Wrap is better than most of the other FR 
techniques except LDA. The wrapper technique shows good 
performance as AUC-ROC values over all the datasets lies 
within the narrow range of 0.89 to 0.93. This shows the 
superiority of Wrap over other FR techniques. ABC has a 
lower range of values for these datasets and has the lowest 
maximum as compared to other techniques. PSO and FF have 
shown a comparable performance with the highest median for 
PSO. This observation showed an efficiency of PSO over 
ABC and FF. All the four filter-based techniques have 
achieved almost equivalent AUC-ROC range with FS being 
the most efficient and CS being the least. AE has also 
performed well due to its mechanism of minimizing errors 
between input and output features. LDA has shown 
significantly better results than PCA. This observation 
indicates that the supervised nature of LDA makes it more 

efficient than the unsupervised technique PCA.  

For NB, it is observed from Fig. 3 that the same trend between 
LDA and PCA has been followed which shows that this might 
be true that LDA performs better than PCA independent of 
the classification technique used in SCP. LDA has performed 
the best among all the FR techniques in terms of the median 
of AUC values. For the metaheuristic techniques, it is seen 
that for PSO and ABC, the median AUC-ROC lies above 0.7 
which shows a great predictive efficiency. FF in turn has a 
comparatively worse median showing the superior 
performance of PSO and ABC in this case. Filter-based 
techniques especially CS, Gini, RF have shown equivalent 
median values. FS has shown the best performance among all 
the filter-based techniques. Wrap has extremes at very low 
and high AUC-ROC which shows a change in performance 

efficiency with datasets.  

For DTree, it is observed from Fig. 4 that the minimum AUC 
value lies above 0.65 which shows that DTree is an effective 
classification technique. 3 out of 4 filter-based techniques i.e. 
CS, RF, and FS have achieved almost similar median AUC-
ROC but the range of all of these techniques differ. This 
shows that some filter-based FR techniques are more efficient 
in selecting better features than the others. AE and FF have 
comparatively shown less range of values than others. LDA 
has given the best highest AUC-value as compared to any 
other techniques. In this case, the performance of all the FR 
techniques have been comparable unlike NB and SVM. This 
shows that classifiers widely affect the performance of FR 

techniques. 

The results in Fig. 5, 6 and 7 conclude that some feature 
techniques are more effective and some are least effective 
irrespective of the classification technique used. For all three 
classifiers in Fig. 5, 6, and 7, PSO and No FR have been 
among the highest ranks, i.e. lowest prediction performance. 
For NB and SVM, LDA has been among the top performers 
with rank 2.83, which shows the capability of LDA in 
efficient feature reduction in SCP. But for DTree, LDA has 
achieved a rank of 6.33 which lies in the cluster with the 
second-highest average ranking showing a difference in its 

performance according to the classifier.  

Table IV has shown the clustering of different FR techniques 
according to the double Scott-Knott test.  One important 
observation is that at least two metaheuristic techniques 
always lie in the same cluster i.e. FF and ABC or PSO and 
FF. This shows that metaheuristic techniques tend to perform 
very similar to each other with less or no significant 
differences. However, these techniques have always been in 
the last or second last cluster showing the lower efficiency of 
metaheuristic techniques in SCP. Wrap technique always lies 
in the topmost cluster and has achieved the best rank in all the 
three classifiers. Wrap uses the classification efficiency of the 
classifier as the evaluation measure to extract the most 
efficient feature subset. This mechanism helps it in 
synergizing with corresponding classifiers. The filter-based 
techniques are divided into various clusters which show that 

each technique differs from the other in terms of FS.  

Conclusion: There are some FR techniques that perform 
better than other FR techniques. LDA and Wrap have 
performed very efficiently while PSO and CS have performed 
worse overall. Filter-based techniques have shown similar 
results with each other. Metaheuristic techniques have shown 
good AUC-values but have achieved comparatively lower 
ranks. It is observed that some techniques have shown 
consistent results irrespective of the classifier used while the 
average ranking of various techniques like AE, ABC, FF, etc. 
differ according to the classifier which shows that classifiers 
affect the choice of FR techniques. 
 

C. RQ3- Which features are most important in SCP? 

In this competitive study, we have conducted a total of 204 
different experiments to answer questions studying FR 
techniques in varied aspects. While doing these experiments 
we generated 48 unique feature rankings of 86 original 
features. These 48 unique feature rankings were obtained 



 

using the 8 FR techniques (CS, Gini, RF, FS, Wrap, PSO, 
ABC, FF) over 6 unique datasets. AE, LDA, and PCA were 
not considered because they return new features extracted 
from the given feature set. Also, the ranks given to features 
by different FS techniques do not change with a change in 
classifiers so we have ignored that dimension while 
answering RQ3.   

Now, on the basis of these 48 feature ranks for each feature, 
we have conducted a Scott -Knott test to form three priority 
clusters of features. Table V describes the clusters by 
showing the priority of each cluster and the feature codes of 
each feature in a cluster. The feature name to feature code 
mapping is stated in Table II. From studying Scott-Knott test 
results we have amassed interesting inferences regarding the 
importance of features. 

TABLE V.  RANKING OF METRICS USING SCOTT-KNOTT TEST 

Cluster 

No. 

Metric 

Importance 

Metrics included in the cluster 

1 High F10, F12, F13, F14, F15, F18, F23, F24, F25, 
F26, F31, F46, F47, F48, F51, F52, F54, F55, 
F69, F71, F72, F75, F76, F77, F78, F79, F83, 
F84, F85, F86 

2 Medium F1, F2, F3, F4, F5, F9, F19, F20, F21, F27, 
F30, F33, F37, F38, F39, F40, F49, F50, F53, 
F56, F67, F68, F70 

3 Low F6, F7, F8, F11, F16, F17, F22, F28, F29, F32, 
F34, F35, F36, F41, F42, F43, F44, F45, F57, 
F58, F59, F60, F61, F62, F63, F64, F65, F66, 
F73, F74, F80, F81, F82 

Cluster 1 has the highest priority features and it consists of 30 
features, 30% of the OO metrics and 46.15% of the graph-
based metrics belong to this cluster indicating the higher 
importance of graph-based metrics. The Maximum 
complexity value-based metrics (F46, F47, F48), cohesion 
and coupling based metrics (F10, F54), class access type 
based metrics (F24, F25, F26), basic dependency-based 
metrics (F84, F85, F86), hub-value related metrics (71, 72) 
and core-value related metrics(75, 76) are some of the broad 
categories which predominantly constitute cluster 1.    

Cluster 2 has medium priority and it consists of 23 features, 
33.33% of the OO metrics and 11.54% of the graph-based 
metrics belong to this cluster. It is hard to identify proper 
groups of metrics belonging to this cluster as it lies between 
the cluster with the highest importance and lowest 
importance. However, Averages of different complexities in 
OO metrics (F1, F2, F3, F4), some metrics related to Lines of 
Code (F5, F30, F33, F56), metrics related to statements (F37, 
F38, F39, F40), and some of the page-rank based metrics 
(F67, F68) are identifiable metrics groups in this cluster.   

Cluster 3 has the lowest priority and consists of 33 features 
38.33% of the OO metrics and 42.31% of the graph-based 
metrics belong to this cluster. The metrics belonging to this 
cluster are seldom picked by FS techniques for training 
classifiers. Sum of different complexities in OO metrics (F1, 
F2, F3, F4, F7), instance variable-based metrics (F15, F16, 

F17, F19), some of the metrics based on a weighted graph 
representation of the software (F61, F62, F63, F64), and some 
of the top class-related metrics (F80, F81, F82) are a part of 
this cluster. 

Conclusion: From Table V we can identify the features and 
feature groups that have more importance in SCP. 38 of the 
60 OO metrics and 15 of the 26 graph-based metrics belong 
to the first two clusters and are frequently shortlisted by FS 
techniques. However, the other metrics making up cluster 3 
are not necessarily irrelevant; it might also mean that the 
information they are conveying is also provided by other 
metrics.    

VI. THREATS TO VALIDITY 

A. Internal Validity - Internal validity deals with the bias 
in the various choices we make in our study that can affect 
the validity of the cause-and-effect relationships drawn from 
it. In this study, we used OO metrics and graph-based metrics 
as independent variables for predicting change-proneness of 
classes. These metrics are very popular and effective in past 
SCP studies. The 11 FR techniques compared in this study 
are taken from the various categories to make the study more 
generalized and extensive. The choice of NB, DTree and 
SVM was based on their popularity, effectiveness and 
diversity of prediction algorithms utilized by them. However, 
this can be a source of bias and hence more classifiers from 

categories like neural-networks, ensembles should be used.  

B. Construct Validity - Threats to construct validity are 
concerned with bias in the experimental design used in the 
study. To eliminate this bias, we have described the complete 
experimental setup in Section IV. We used SMOTE which is 
a widely recommended technique to deal with class 
imbalance. We have mentioned the implementation details of 
every FR technique used in this comparative study. The 
parameter settings used for each of these FR techniques are 
carefully chosen through extensive experiments and 
suggestions from previous studies. However, a more careful 
experiment specifically for choosing those hyper-parameters 
where no guidelines are mentioned. We used AUC-ROC as a 
performance measure due to its wide usage in similar studies 
especially for imbalanced datasets. Nonetheless, other 
performance measures like F-Measure can also be employed 

here.  

C. Conclusion Validity - Conclusion Validity deals with 
the reliability of the experimental observations and results 
drawn from the study. We have used the popular Freidman 
test followed by the double Scott-Knott test at a significance 
level of 0.05 to evaluate the performance of the FR 
techniques. The use of 6 diverse datasets and 3 classification 
techniques makes this study extensive and ensures that all the 
conclusions drawn in the study are significant and not just 

trivial effects.  

D. External Validity - External Validity deals with the 
generalization of our experimental findings. In this study, we 
generated 6 new datasets derived from open-source Java 
projects. We collected this dataset from two sources, one is 
the popular proprietary tool UNDERSTAND and other is an 
open-source research dataset. Although the datasets are 



 

diverse in terms of the domain, code structure, size etc., we 
cannot claim that our findings work with datasets with a 
different set of metrics or if they are project-level or module-
level. 

VII. CONCLUSION AND FUTURE WORK 

In this study, we compared the performance of 11 FR 
techniques in SCP using OO and graph-based metrics. 
Extensive experiments were conducted on 6 newly generated 
Java datasets and across 3 classifiers. Using AUC-ROC 
performance measure along with the statistical tests for 
evaluation and comparison, the major conclusions drawn 
from the experimental findings are – 
 

1) FR techniques are effective in SCP. They help in the 
extraction of features that are useful in predicting change-
prone classes. The use of such features increases the 
predictive performance of classifiers. 

 
2) There are significant differences in the performance of 

the 11 FR techniques compared in the study. While LDA, AE, 
and Wrapper-based FR techniques achieve better 
performance across different datasets and classifiers., FR 
techniques like PSO, PCA, and some filter-based techniques 
have shown unsatisfactory results.  
 

3) The type of classifier used in SCP also affects the choice 
of FR techniques. The performance rankings of FR 
techniques like ABC and FF vary considerably with a 
variation in the classifier they are used with. 
 

4) Some features have a higher probability of being chosen 
by FR techniques over others for model training in SCP. In 
the OO metric suite, coupling, cohesion, cyclomatic 
complexity, and lines of code are highly preferred. In graph-
based metrics, inter-class dependencies and centrality 
measures like K-Coreness are highly effective.      
 
In the future, we will extend this study by including more 
categories of FR techniques like hybrid and clustering-based 
techniques. The inclusion of more metrics like change-
history of class and developer-related factors is another 
possible extension. 
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