
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Comparative Study of Feature Reduction

Techniques in Software Change Prediction

Ruchika Malhotra
Department of Software

Engineering

Delhi Technological
University

Bawana Road, Delhi, India
ruchikamalhotra@dtu.ac.in

Ritvik Kapoor

Department of Software
Engineering

Delhi Technological
University

Bawana Road, Delhi, India
ritvikush953@gmail.com

Deepti Aggarwal

Department of Software
Engineering

Delhi Technological
University

Bawana Road, Delhi, India
deeptiagg16@gmail.com

Priya Garg

Department of Software
Engineering

Delhi Technological
University

Bawana Road, Delhi, India
gargpriya1304@gmail.com

Abstract— Software change prediction (SCP) is the process of

identifying change-prone software classes using various

structural and quality metrics by developing predictive

techniques. The previous studies done in this field strongly

confer the correlation between the quality of metrics and the

performance of such SCP models. Past SCP studies have also

applied different feature reduction (FR) techniques to address

issues of high dimensionality, feature irrelevance, and feature

repetition. Due to the vast variety of metric suites and FR

techniques applied in SCP, there is a need to analyze and

compare them. It will help in identifying the most crucial

features and the most effective FR techniques. So, in this

research, we conduct experiments to compare and contrast 60

Object-Oriented plus 26 Graph-based metrics and 11 state-of-

the-art FR techniques previously employed for SCP over a

range of 6 Java projects and 3 diverse classifiers. The AUC-

ROC measures and statistical tests over experimental SCP

models indicate that FR techniques are effective in SCP. Also,

there exist significant differences in the performance of the

different FR techniques. Furthermore, from this extensive

experimentation, we were able to identify a set of the most

effective FR techniques and the most crucial metrics which can

be used to build effective SCP models.

Keywords—Software change prediction, Feature reduction,

Object-Oriented metrics, Graph-based metrics, Machine Learning

I. INTRODUCTION

Iterative software development, functionality updates, and
extensive software maintenance support are becoming a
standard in today's dynamic software industry.
Accommodating customer’s demands, code refactoring,
changes in technology, and fault correction are some of the
reasons which contribute to code changes leading to newer
versions and releases of the software [1]. These change-related
activities can be costly and time-consuming for large and
long-running software projects. Hence, industries are
nowadays employing Software Change Prediction (SCP) to
identify the classes that are most prone to changes in the
subsequent releases of the software [2, 3, 4]. Identification of
such change-prone classes aids in careful planning, easy
maintenance, and proper management of the software
projects. It helps the project managers to focus their limited
resources on such change-prone classes in advance. It
ultimately leads to the development of high-quality software
that is maintained and updated in the scheduled time [2].

Recently, various Machine Learning (ML) techniques have
been used to predict the change-proneness of the classes [2-5].
These techniques use a variety of independent features for
prediction like OO metrics [5], class dependency graph-based

metrics [6], class evolution-based metrics [7], developer-
related factors [8], etc. Many studies often combine different
metric suites to obtain higher performance in SCP [9].
However, this increases the dimensionality of the dataset and
inadvertently introduces many irrelevant and redundant
features [10]. Working with such high-dimensional datasets
brings several challenges like high-computation costs and
overfitting of models [11].

Many feature reduction (FR) techniques have been developed
to counter these issues. These techniques reduce the
dimensionality of data by eliminating the features which are
not correlated or useful in finding the outcome variable. Past
SCP studies have applied filter-based ranking, wrapper-based
subset selection, neural-network based, metaheuristic and
extraction-based methods to find effective feature
representations [2, 4, 12-16].

Since many diverse metrics have been used and a large variety
of FR techniques are available to select the best among these
metrics, it is crucial to analyse and compare them. This
observation motivates us to conduct an extensive comparative
study of 11 FR techniques in SCP. We use relevant Object-
Oriented (OO) metrics and Graph-based metrics as
independent features since they are the 2 most popularly used
metric suites in SCP [2-4, 13, 17]. The experiments are
conducted on 6 new datasets that we have collected through
proprietary tools. AUC-ROC is used along with statistical
tests for evaluation. The objective of our study is three-fold.
Firstly, this study will help in the identification of the most
important metrics in SCP. Secondly, this study will help in the
identification of the most effective FR techniques for SCP.
Finally, we can observe how the utility of these metrics and
FR techniques varies with changes in the classification
techniques.

Broadly, our study answers the following research questions
(RQs) -

1. What is the significance of using FR techniques in
SCP?

2. Which FR technique is most effective in SCP? Does
the type of classifier influence the choice of FR
technique?

3. Which features are most important in SCP?

The major contributions of this study are -

1. The study evaluates the performance of 11 FR
techniques for SCP. These 11 techniques belong to

diverse categories of FR techniques like filter-based,
wrapper-based, extraction-based, neural-network based,
and metaheuristic techniques. To the best of the author's
knowledge, this is the first extensive study that compares
FR techniques in SCP.

2. The study is conducted on 6 new Java datasets that we
have collected using open-source and proprietary tools.
These datasets have OO metrics and graph-based metrics
as independent features. The datasets are diverse in terms
of domain, size, source of origin, and class-ratio. Further,
the use of 3 classification techniques - Support Vector
Machine (SVM), Naive Bayes (NB), and Decision Tree
(DTree) with all combinations of 11 FR techniques and
6 datasets increases the generalizability of our results.

3. To establish the basic performance of the classifiers we
use AUC-ROC as the performance measure since it is
the recommended choice for the imbalanced SCP
datasets. To increase the significance of our findings, the
Friedman test along with the post-hoc double Scott-
Knott test is used for further validation of performance
of the FR techniques.

The rest of the paper is organized into 6 sections. Section II
describes the past SCP studies and the various FR used by
them. Section III provides details about the 11 FR techniques
that are compared in this study. Section IV elaborates the
experimental framework which includes the data collection
procedure, independent features - OO metrics and graph-
based metrics, classification techniques, performance
indicators, statistical tests, and the overall experimental setup.
Section V presents the experimental findings and answers the
RQs mentioned above. Section VI presents the threats to
validity. Section VII concludes the study and future work.

II. LITERATURE REVIEW

For doing software-related predictive modelling we first
study the software project, process, and product, and then
extract the metrics that describe them. Malhotra and Bansal
[17] reviewed SCP studies and found that product-based
metrics such as CK [10], Lorenz and Kidd [18], MOOD [19],
QMOOD [20], etc. have been predominantly used in this field
for model training. Malhotra et al. [2] surveyed 38 SCP
studies and found that most of them used OO metrics for
software change prediction. Catolino et al. [8] proposed a
study with the use of developer-related metrics to enhance the
prediction performance in SCP by 22% as compared to
single-version models. Kagdi and Melatic [7] proposed a
study that focuses on the need to combine single-version and
evolutionary dependencies based on multiple versions. The
study concluded that the combination improves the overall
performance of SCP. Yang et al. [21] proposed a different
approach for training SCP models by using metrics based on
the graphical structure of the software. Bhattacharya et al. [6]
reflected the utility of graph-based metrics for software
predictive modelling fields like bug severity, maintenance,
and defect prediction. Giger et al [22] advocated using a
combination of OO and graph-based metrics.

To cover all the aspects of modern software, a large set of
features are considered for model training. This increase in
the feature set size causes problems related to high data

dimensionality like unsatisfactory results of predictive
classifiers [23, 24, 25]. These studies suggest the use of FR
techniques to eliminate repetitive and irrelevant features.

Blum and Langley [26], Tang et al. [27], Chandrashekar, and
Sahin [28] have given invaluable insights surveying and
explaining the work in ML on FR techniques. FR techniques
can be broadly classified into different groups based on the
approach and framework followed by them. Some of them
are -filter-based methods, wrapper-based methods, feature
extraction-based methods, evolutionary methods, and neural
network-based methods. Malhotra et al. [2] conducted a
review of primary studies on SCP and found 58% of them
were using FR techniques. Chi-Square test [8], CFS [9],
wrapper method [14], PSO [15], Genetic Algorithm [16],
PCA [23] are some of the techniques that have been
previously used in SCP for the specified purpose.

Since a large variety of metrics and FR techniques have been
applied in SCP, there is a need to compare them to identify
the most effective ones. Many such comparative studies are
already present for software related fields like software risk
analysis, software cost estimation, key class identification,
and software defect prediction. On the contrary, no
comparative study providing definitive guidance on FR
techniques is present for SCP.

On the lines of works by Shivaji et al. [24] and Xu et al. [25]
on the comparison of FR techniques in SDP, we propose a
similar study in SCP where we investigate the effects of 11
FR techniques using NB, SVM, and DTree classifiers over 6
Java projects - ant, hibernate, wro4j, tomcat, javaclient, and
neuroph.

III. FEATURE REDUCTION TECHNIQUES

High-dimensionality datasets often create various issues like
high computational cost, reduction of the impact of important
features in the model, and low prediction performance due to
overfitting [11]. FR techniques counter these problems by
selecting, removing, or transforming the original features to
reduce the dimensionality of the dataset [24, 25]. This study
compares 11 FR techniques belonging to different categories.
These techniques are listed in Table I. These techniques are
explained in the subsections below.

TABLE I. FR TECHNIQUES

Category FR Technique Abbreviation

Filter-based

Chi-Square CS

Gini Index Gini

ReliefF RF

Fisher Score FS

Wrapper-based Forward Learning Wrap

Extraction-based Principal Component Analysis PCA

Linear Discriminant Analysis LDA

Metaheuristic

Particle Swarm Optimization PSO

Artificial Bee Colonization ABC

Firefly Algorithm FF

Neural-Network
based

Auto-Encoders AE

A. Filter-Based Techniques

Filter-based techniques reduce the number of features by
providing a rank to the original features according to some
statistical or probability-based measure. The features with
ranks higher than the threshold are chosen while the others are
eliminated in the reduced dataset. This threshold value is an
external variable. In this study, we have used four different
feature ranking mechanisms –

1) Chi-Square: CS [12] tests the dependency of features with
the dependent variable and selects those with the highest
dependence. Higher the CS value for a feature, the more
effective it is in the prediction of the dependent variable.

2) Gini Index: Gini [29] is a splitting criterion that is used in
DTrees. Gini calculates the entropy of the dependent variable
with each feature. Gini is inversely related to the effectiveness
of the feature.

3) ReliefF: RF [25] is a supervised multivariate feature
selection (FS) technique that assigns a feature score to each
feature. A feature is assigned a higher score if its value
remains similar across samples of the same class and changes
across samples of different classes. Features having higher
scores are chosen for model training.

4) Fisher Score: FS [25] is a statistical method for calculating
the rank of each feature. A Higher Fisher score implies a
higher priority of a feature. FS is calculated as follows:

FS =
��(µ�� µ�)	� �
(µ
� µ�)	

σ�	 (1)

where µ is the mean of the values in the dataset, � is the
standard deviation of the dataset, N signifies negative samples
and p signifies positive samples for the original dataset.

B. Wrapper-Based Techniques

Wrapper-based techniques [14] use classification
techniques to select the best feature subset by training for
different combinations of features. Wrapper-based
techniques use forward learning, backward elimination, or a
combination of both for searching for the best combination of
features. Wrapper-based techniques follow a greedy-search
approach where the classification accuracy is the evaluation
measure for every feature combination. In this study 3
classification techniques have been used for wrapper-based
FS - NB, DTree, and SVM.

C. Extraction-Based Techniques

Extraction-based techniques project the high-dimensional
original dataset into a lower-dimensional subspace. This
projection is formed by extracting significant structures and
relationships from the original features. These transformed
features can be used for training the model. Two such
techniques have been used in this study for comparison -

 1) Principal Component Analysis: PCA [23] represents the
dataset in the form of orthogonal vectors called principal
components. These principal components are formed by
linear combinations of the original features. For a dataset with
n number of features, n principal components are created. A

set of k principal components having the highest variance are
selected as the new features. Here, k is the reduced dimension
size.

2) Linear Discriminant Analysis: LDA [30] is a
supervised technique that creates new features considering
the dependent variable. The objective of LDA is to project the
original dataset to a subspace where the distance between
similar class samples is minimized while the distance
between samples of different classes is maximized.

D. Metaheuristic Techniques

Metaheuristic techniques are based on the real-life
evolution strategies adopted by various living organisms.
Their use for feature reduction has recently increased due to
their ability to find a globally optimum combination of
features in less time. For all the described techniques, AUC-
ROC was taken as the fitness function. In this study, 3
metaheuristic techniques have been used for comparison -

1) Particle Swarm Optimization: PSO [15] is a
metaheuristic computation technique that has been widely
applied in feature selection due to its computational
efficiency, fast convergence and its ability to find global
optimum solutions. PSO consists of a group of particles
moving in the solution space of the problem. Every particle's
position represents a possible feature subset. A fitness
function evaluates the suitability of a solution for the given
problem. The particles move to better positions in every
iteration based on their personal experience and the overall
experience of the population. The process terminates on
achieving the desired fitness function value or after a fixed
number of iterations.

2) Artificial Bee Colonization: ABC [31] is a swarm-
based metaheuristic technique that models the food-search
behavior of bee colonies. In ABC, potential solutions to the
optimization problem are represented by position of food
sources. In feature selection problem, these positions
represent a possible feature subset. The fitness function (the
nectar amount at a food source position) represents the AUC-
ROC value achieved considering the feature subset of that
solution. The employed, onlooker, and scout bees perform
various iterations to reach the best food source position. The
process terminates on achieving the desired fitness function
value or after a fixed number of iterations.

3) Firefly Algorithm: FF [32] is a metaheuristic technique
based on the flashing behavior of the fireflies. The position
of fireflies represents potential solutions to the optimization
problem. The intensity of the firefly is the value of the fitness
function on that position. On each iteration, fireflies move to
better position depending on the bioluminescent attraction
between them. The process terminates on achieving the
desired fitness function value or after a fixed number of
iterations.

E. Neural Network-Based Techniques

AE [30] is an artificial neural network that encodes the
original feature set into a compressed and efficient feature set.
AE is an unsupervised learner with a bottleneck architecture

with input features as the original feature set and output
features as the encoded feature set. AE aims to reduce noise,
eliminate uncorrelated features, and construct the new feature
set as close to the original feature set as possible.

IV. EXPERIMENTAL SETUP

The experimental framework used in the study is
depicted in Fig. 1. All the individual components are
explained in further subsections.

Fig. 1. Experimental Framework

A. Variables

1) Independent variables: In this study, two categories of

independent variables are used - OO metrics and graph-based

metrics. Graph-based metrics are further divided into core

metrics and centrality measure metrics. OO metrics [10,18-

20] describe the class structure like lines of code, number of

methods, number of attributes, cyclomatic complexity, etc.

They also represent the relationship between the classes like

coupling, cohesion, etc. This study uses 60 handpicked OO

metrics1 collected using the UNDERSTAND tool

(http://www.scitools.com/). The graph-based metrics are

derived from a dependency graph where each class represents

a node and the inter-class relationships like inheritance,

containership, etc. form the edges [33]. Core graph metrics

calculate features like in-degree, out-degree, weighted

connections, etc. of a class, and centrality measures like

PageRank, K-Coreness, Betweenness, etc. indicate the

importance of a class in the software. This study uses 26

graph-based metrics taken from a publicly available dataset

[33]. A total of 86 independent variables have been used in

this study for classification. These 86 variables are listed in

Table II.

2) Dependent Variables: Change-proneness of a class is

the binary dependent variable in this study. There are various

types of changes in a class like addition or removal of

methods and attributes, modifications in the class declaration,

etc. In this study, we model SCP as a binary-classification

problem hence all these changes are labeled in the same

category i.e. change (1). If no modification has been done in

a class between the two subsequent releases, then the sample

is labeled as no change (0).

TABLE II. METRICS COMPRISING DATASETS

Category Metrics included in the study

OO
metrics

Average Cyclomatic Complexity (F1), Average Modified
Cyclomatic Complexity (F2), Average Strict Cyclomatic
Complexity (F3), Average Essential Cyclomatic
Complexity (F4), Average Number of Lines (F5), Average
Number of Blank Lines (F6), Average Number of Lines of
Code (F7), Average Number of Lines with Comments (F8),
A Base Classes (F9), Coupling Between Objects (F10),
Count of Modified Coupling Between Classes (F11),
Number of Children(F12), Classes (F13), Class Methods
(F14), Class Variables (F15), Executable Unit (F16),
Number of Files (F17), Function (F18), Instance Methods
(F19), Instance Variables (F20), Local Methods F(21),
CountDeclMethodAll (F22), Local Default Visibility
Methods F(23), Private Methods (F24), Protected Methods
(F25), Public Methods (F26), Inputs (F27), Physical Lines
(F28), Blank Lines of Code (F29), Lines of Code (F30),
Declarative Lines of Code (F31), Executable Lines of
Code (F32), Lines with Comments (F33), Outputs (F34),
Paths (F35), Paths Log(x) (F36), Semicolons (F37),
Statements (F38), Declarative Statements (F39),
Executable Statements (F40), Cyclomatic Complexity
(F41), Modified Cyclomatic Complexity (F42), Strict
Cyclomatic Complexity (F43), Essential Complexity (F44),
Knots (F45), Max Cyclomatic Complexity (F46), Max
Modified Cyclomatic Complexity (F47), Max Strict
Cyclomatic Complexity (F48), Max Essential Complexity
(F49), Max Knots (F50), Depth of Inheritance Tree (F51),
Nesting (F52), Minimum Knots (F53), Lack of Cohesion in
Methods (F54), Modified Lack of Cohesion in Methods
(F55), Comment to Code Ratio (F56), Sum Cyclomatic
Complexity (F57), Sum Modified Cyclomatic Complexity
(F58), Sum Strict Cyclomatic Complexity (F59), Sum
Essential Complexity (F60)

Graph-
based
metrics

Weighted Incoming Dependencies (F61), Weighted
Outgoing Dependencies (F62), Total Weighted
Dependencies (F63), PageRank on Directed Graph (F64),
PageRank on Unweighted Graph (F65), PageRank on
Undirected, Weighted Graph (F66), PageRank on
Weighted Graph With Back Recommendations (F67),
PageRank on Weighted Graph (F68), Authority Value on
Directed Unweighted Graph (F69), Authority Value on
Directed, Weighted Graph (F70), Hub Value on Directed
Unweighted Graph (F71), Hub Value on Directed
Unweighted Graph (f72), Betweenness Value on
Undirected Unweighted Graph (F73), Betweenness Value
on Undirected Weighted Graph (F74), Core Number on

Undirected, Unweighted Graph (F75), Core Number on
Weighted Graph (F76), Top Classes That Are Incoming
Dependencies (F77), Top Classes That Are Outgoing
Dependencies (F78), Total Top Class That Are
Dependencies (F79), Total Weight of Incoming
Dependencies From Top Classes (F80), Total Weight of
Outgoing Dependencies From Top Classes (F81), Total
Weight of All Dependencies From Top Classes (F82),
Betweenness Value on Weighted Graph With Back
Recommendation (F83), Incoming Dependencies (F84),
Outgoing Dependencies F(85), Total Dependencies (F86).

B. Dataset

This section describes the procedure of dataset collection and
the properties of the collected datasets. 6 open-source Java
projects are chosen for collecting the datasets [34]. For each
project, the source code of two subsequent releases is
collected from GitHub (https://github.com) or Sourceforge
(https://sourceforge.net). From the source code of both
releases, 60 OO metrics1 for JAVA classes are collected using
the UNDERSTAND tool (http://www.scitools.com/). Now
the two releases of the project are compared to identify the
classes in which there have been some changed or modified
classes. Firstly, the classes from both releases are compiled
together in the dataset. The classes which are not common to
both the releases were classified as changed. For the
remaining common classes, the number of lines increased,
decreased, and modified from first to the second release are
found. For every class, if no lines were added, deleted, or
modified it is labeled as no change (0) else change-prone (1).
Following the above steps, we get our data with OO metrics
and the dependent variable. Now the 26 graph-based metrics
available as publicly accessible datasets [33] are combined
with the OO metric data collected in previous steps though
inner join over the columns containing class names in both
datasets This completes our data collection procedure.
Finally, we have 6 datasets with 86 independent variables and
1 dependent variable described in Section IV-A. These
datasets and their statistics are shown in Table III.

TABLE III. STATISTICS OF DATASETS

Dataset Release

1

Release

2

Number

of classes

% of

changed

classes

Description

Ant 1.6.0 1.6.1 319 10.3 Java-based build tool of
Apache

Tomcat 9.0.3 9.0.4 354 1.97 Open-source
implementation of Java

Servlet by Apache

Wro4j 1.6.2 1.6.3 169 24.7 Java project that
combines web tools

Hibernate 5.2.11 5.2.12 2022 6.77 Object Relational
Mapping (ORM) tool

Javaclient 2.2.0.0 2.2.0.1 211 4.24 Appium project on Java

Neuroph 2.1.1 2.2 112 26.5 Java class library and
GUI tool

C. Classifiers

In this study, 3 classification techniques have been used for
the prediction of change-prone classes. These classifiers have
been widely used in the previous comparative studies [24,
25]. Also, these techniques have proven to have good
prediction performance and are stable for imbalanced data

[35]. These techniques are very diverse from each other in
terms of learning strategies and have fast computation
efficiency [36]. These classifiers are explained below-

1) Naive Bayes - NB [36] is a statistical probability-based
ML technique that predicts the probability of occurrence of a
sample in different classes using prior and posterior
probabilities and then labels the sample with the class having
maximum probability.

2) Support Vector Machine - SVM [36] is a popular
supervised ML technique often used in classification and
regression problems. SVM develops a hyperplane to divide
the sample space such that the distance of the hyperplane with
the closest sample is the largest.

3) Decision Tree - DTree [36] constructs a tree where
each node represents a condition on a feature and each path
from the root to leaf node leads to an output label. While
moving from root to leaf various decisions take place
according to the features of the samples and the conditions on
those features. This is a widely used technique in various
problem domains.

D. Performance Measures

In this study, we use AUC-ROC for evaluating the
performance of the different techniques. AUC-ROC has been
widely used in past studies on SCP [3, 5, 13, 14]. AUC-ROC
measures the capability of a model to distinguish between
change-prone and no-change classes. It is a summary of the
ROC curve which is a plot between True Positive Rate
(proportion of change-prone classes that were identified
correctly as change-prone) and False Positive Rate
(proportion of no-change classes that were identified as
change-prone). AUC-ROC values range between 0 to 1
where 1 means that the model is identifying every sample
correctly and 0 means that the model is performing poorly
and reciprocating the actual class labels. AUC-ROC is a
highly effective performance measure especially when the
dataset is imbalanced, which is often the cases with datasets
in SCP.

E. Statistical Tests

This study uses the non-parametric Friedman test [37]
followed by the post-hoc double Scott-Knott test [38] for a
consolidated performance comparison of different FR
techniques across datasets. The tests are conducted at the
significance level (α) of 0.05. To conduct these tests the
following steps are followed -

1) Formulation of the null hypothesis (H0) - H0 states that
all the FR techniques are similar in performance in SCP. In
other words, the use of one FR technique over another does
not affect the classification performance.

2) Computing Average Friedman Ranking (AFR) -

Consider we have f FR techniques and d datasets. For every
FR technique, the average rank over d datasets is conducted
based on performance measures described in Section IV-D.
The formula for calculating AFR of i-th FR technique is –

���� = �
� � ���

�

���
 (2)

where Rij is the rank of the i-th technique for the j-th dataset.

3) Computing Friedman test statistic (FTS) - Using the
AFR of the FR techniques computed in Step (2), FTS is
computed as –

��� = ���
�(���) �� �����

�
��� − �(���)	

 ! (3)

4) Accept or Reject H0 - If the FTS computed in equation
(3) is greater than the chi-square distribution value for
significance level (α) and f-1 degree of freedom, the null
hypothesis H0 is rejected else H0 is accepted. if H0 is rejected,
we conduct the post-hoc test according to step (5)

5) Scott-Knott test - It creates distinct clusters of FR
techniques using hierarchical clustering. Clusters are created
based on a performance metric of FR techniques for a given
dataset. Ranks are assigned to techniques based on their
cluster.

6) Double Scott-Knott test - It is used for comparison of
the techniques across datasets. For each technique, we obtain
6 Ranks using the Scott-Knott test each corresponding to a
unique dataset. Now, using dataset wise ranks as an input, we
conducted a second Scott-Knott test to obtain overall ranks
for an FR technique.

F. Experimental Procedure

The experiments are performed using the datasets described
in Table III. Since the datasets are highly-imbalanced, we
have used Synthetic-Minority Oversampling (SMOTE) [39]
to counter this issue. We used a SMOTE ratio of 0.6 [40].

Next, we have applied the FR techniques given in Table I
using the parameters described here. Let p be the number of
original features. The filter-based and wrapper-based
methods are implemented using the Skfeature library of
python. The number of reduced features is a variable in the
FR techniques that depends on various factors like dataset
distribution, the mathematical formula used by filter
methods, etc. Hence, for each technique, we used the brute
force technique for variable selection to optimize the
percentage of feature reduction. We conducted experiments
with fraction values in the range of 0.1 to 0.9 with a difference
of 0.1 [41]. From these experiments we found out that 0.5*p
is the optimal number of features to be taken for filter-based
and wrapper techniques. For wrapper-based techniques, we
have used a forward learning search strategy.

PCA and LDA are implemented using the Sci-kit learn
python library. The number of components in PCA is chosen
as 40 as we want 95% variance to be retained in the new
features [42].

The parameters for PSO, ABC, FF, and AE are selected by
running the algorithms multiple times on different parameter
combinations. The metaheuristic techniques and AE are

implemented from scratch in python. PSO is implemented
with an initial population size of 30, maximum number of
iterations to be 50, c1 and c2 with values 1.496 respectively,
and the velocity range to be [-2,2]. ABC is implemented with
an initial population size of 30, abandonment limit 100,
upper/lower limit as [-1,1], and maximum iterations as 50. FF
is implemented using population size 20, α=0.8, β=1, Ɣ=0.7,
and maximum iterations as 40.

For AE we use Adadelta optimizer, categorical cross-entropy
loss function, and relu activation function. The number of
epochs is 50 with a batch size of 100.

The classification techniques used in this study are mentioned
in Section IV-C. They are implemented with default
parameter settings of Sci-kit learn library, and a 10-fold
cross-validation strategy is used for training and evaluation
of performance. The performance is measured using the
indicators described in Section IV-D. Finally, statistical tests
are conducted which are explained in Section IV-E. This
entire framework is depicted in Fig. 1.

V. EXPERIMENTAL RESULTS

A. RQ1 - What is the significance of using feature reduction

techniques in SCP?

The objective of this RQ is to find the need to apply FR
techniques in SCP. Here 11 sets of experiments are conducted
considering each of the 11 FR techniques. In addition, a set
of experiments is conducted without using FR techniques.
Each set of experiments consist of 18 different combinations
formed by the 6 datasets and 3 classifiers.

The AUC-ROC results obtained from these experiments are
shown as box-plots in Fig. 2, 3, 4. The three box-plots are
differentiated based on the three different classifiers (DTree,
NB, and SVM) used in the experiments. Each of these box-
plots shows the variation of AUC-ROC over different
datasets for the 11 FR techniques and the one labelled ‘No
FR’ corresponding to the case where the no FR technique is
applied. In the box-plot for the SVM classifier, it is observed
that all the FR techniques except the filter-based CS have a
higher median AUC-ROC value than the case where no FR
technique is used. A similar scenario is observed for the
DTree classifier where the scenario of not using any FR gives
the second-worst median AUC-ROC after AE. The results of
the NB classifier are also against the scenario where we do
not use any FR technique as here it gives the third-worst
median. To summarize, across all the three classifiers the
median AUC-ROC score of the best FR technique is higher
than the median of no-FR case. Hence, by analysis of the
AUC-ROC performance results, we can say that the
application of FR techniques is necessary since there are a lot
of redundant and unnecessary features that are not effective
in SCP.

Fig. 2. Box plot of AUC-values over datasets using SVM classifier

Fig. 3. Box plot of AUC-values over datasets using NB classifier

Fig. 4. Box plot of AUC-values over datasets using DTree Classifier

To further validate the inferences drawn from AUC-ROC
results, we perform statistical validation. We first applied the
Freidman tests where we got the Friedman Statistic Value as
12.295, 22.483, and 25.982 for DTree, NB, and SVM
respectively. These values suggest that the initial hypothesis
H0 is rejected for all the three classifiers. This concludes that
all 11 FR compared in the study have significant differences
in prediction performance. Since we also compared a case
where no FR technique was applied, it can be concluded from
the rejection of H0 that there is a difference in performance
between the scenario where FR techniques are used and
where FR techniques are not used. The results of double
Scott-Knott tests further justify these observations. The
results of the double Scott-Knott test are displayed in figures
5, 6, and 7 using graphs. Here each graph is created based on
a classifier used. For each graph, the x-axis hoists the status
of the FR technique and the y-axis hoists average rank values.
The height of each bar demarcates the average rank of each
technique over six datasets. The colour of each bar indicates
the distinct cluster to which the corresponding FR technique
is assigned. For DTree, the scenario of not using any FR
technique is ranked the lowest with an average rank of 8.5.

For NB and SVM, the scenario of not using any FR technique
is not the worst since there are a few FR techniques like PSO,
CS, and FF that perform worse. Table IV summarizes the
results of the double Scott-Knott. For each classifier, the
cluster division is shown along with the techniques in that
cluster and other cluster statistics like mean, median, and
standard deviation. It is observed from Table IV that the
scenario of not using any FR technique always falls in the
cluster of the worst techniques which have the lowest
rankings. Since the results of double Scott-Knott tests are
independent of the original AUC-ROC values of a technique
on the different projects, we can say that the scenario of not
using any FR technique is overall undesirable.

Fig. 5. Double Scott-knot test and Friedman ranking over datasets for

SVM classifier

Fig. 6. Double Scott-knot test and Friedman ranking over datasets for NB

classifier

Fig. 7. Double Scott-knot test and Friedman ranking over datasets for

DTree Classifier

Conclusion - The experimental results indicate the presence
of irrelevant and redundant features that affect the prediction
performance of the classifiers. The AUC-ROC values and
the statistical tests strongly suggest the necessity of using
FR techniques in SCP to select effective features for training
predictive models.

TABLE IV. SUMMARY OF DOUBLE SCOTT-KNOTT TEST

DTree

Performance
Measure Techniques

Average
Rank

Median
Rank

Std.
Deviation

1

AUC-ROC

FF, ABC, Gini, Wrap 4.8333 4.9165 0.7818

2 PCA, LDA, AE 7.0556 6.6670 0.9767

3 CS,PSO, RF, FS, No FR 7.5333 7.1667 0.9159

NB

1

AUC-ROC

AE, LDA, Wrap 3.1667 2.8333 1.2018

2 ABC, Gini, RF, FS 6.8749 6.7500 1.1168

3
No FR,CS, PSO, PCA,

FF 8.2000 7.8333 0.5821

SVM

1

AUC-ROC

Wrap, AE, LDA 3.1666 2.8330 1.2019

2 ABC, Gini, RF, FS 6.8758 6.7500 1.1157

3
PSO, FF, CS, PCA, No

FR 8.1998 7.8330 0.5820

B. RQ2- Which feature reduction technique is most

effective in SCP? Does the type of classifier influence

the choice of feature reduction technique?

In this RQ, we compare the performance of selected FR
techniques in SCP. Also, we study the effect of different

classifiers on the performance of the FR techniques.

For SVM, it is observed from Fig. 2 that the least AUC value
achieved by Wrap is better than most of the other FR
techniques except LDA. The wrapper technique shows good
performance as AUC-ROC values over all the datasets lies
within the narrow range of 0.89 to 0.93. This shows the
superiority of Wrap over other FR techniques. ABC has a
lower range of values for these datasets and has the lowest
maximum as compared to other techniques. PSO and FF have
shown a comparable performance with the highest median for
PSO. This observation showed an efficiency of PSO over
ABC and FF. All the four filter-based techniques have
achieved almost equivalent AUC-ROC range with FS being
the most efficient and CS being the least. AE has also
performed well due to its mechanism of minimizing errors
between input and output features. LDA has shown
significantly better results than PCA. This observation
indicates that the supervised nature of LDA makes it more

efficient than the unsupervised technique PCA.

For NB, it is observed from Fig. 3 that the same trend between
LDA and PCA has been followed which shows that this might
be true that LDA performs better than PCA independent of
the classification technique used in SCP. LDA has performed
the best among all the FR techniques in terms of the median
of AUC values. For the metaheuristic techniques, it is seen
that for PSO and ABC, the median AUC-ROC lies above 0.7
which shows a great predictive efficiency. FF in turn has a
comparatively worse median showing the superior
performance of PSO and ABC in this case. Filter-based
techniques especially CS, Gini, RF have shown equivalent
median values. FS has shown the best performance among all
the filter-based techniques. Wrap has extremes at very low
and high AUC-ROC which shows a change in performance

efficiency with datasets.

For DTree, it is observed from Fig. 4 that the minimum AUC
value lies above 0.65 which shows that DTree is an effective
classification technique. 3 out of 4 filter-based techniques i.e.
CS, RF, and FS have achieved almost similar median AUC-
ROC but the range of all of these techniques differ. This
shows that some filter-based FR techniques are more efficient
in selecting better features than the others. AE and FF have
comparatively shown less range of values than others. LDA
has given the best highest AUC-value as compared to any
other techniques. In this case, the performance of all the FR
techniques have been comparable unlike NB and SVM. This
shows that classifiers widely affect the performance of FR

techniques.

The results in Fig. 5, 6 and 7 conclude that some feature
techniques are more effective and some are least effective
irrespective of the classification technique used. For all three
classifiers in Fig. 5, 6, and 7, PSO and No FR have been
among the highest ranks, i.e. lowest prediction performance.
For NB and SVM, LDA has been among the top performers
with rank 2.83, which shows the capability of LDA in
efficient feature reduction in SCP. But for DTree, LDA has
achieved a rank of 6.33 which lies in the cluster with the
second-highest average ranking showing a difference in its

performance according to the classifier.

Table IV has shown the clustering of different FR techniques
according to the double Scott-Knott test. One important
observation is that at least two metaheuristic techniques
always lie in the same cluster i.e. FF and ABC or PSO and
FF. This shows that metaheuristic techniques tend to perform
very similar to each other with less or no significant
differences. However, these techniques have always been in
the last or second last cluster showing the lower efficiency of
metaheuristic techniques in SCP. Wrap technique always lies
in the topmost cluster and has achieved the best rank in all the
three classifiers. Wrap uses the classification efficiency of the
classifier as the evaluation measure to extract the most
efficient feature subset. This mechanism helps it in
synergizing with corresponding classifiers. The filter-based
techniques are divided into various clusters which show that

each technique differs from the other in terms of FS.

Conclusion: There are some FR techniques that perform
better than other FR techniques. LDA and Wrap have
performed very efficiently while PSO and CS have performed
worse overall. Filter-based techniques have shown similar
results with each other. Metaheuristic techniques have shown
good AUC-values but have achieved comparatively lower
ranks. It is observed that some techniques have shown
consistent results irrespective of the classifier used while the
average ranking of various techniques like AE, ABC, FF, etc.
differ according to the classifier which shows that classifiers
affect the choice of FR techniques.

C. RQ3- Which features are most important in SCP?

In this competitive study, we have conducted a total of 204
different experiments to answer questions studying FR
techniques in varied aspects. While doing these experiments
we generated 48 unique feature rankings of 86 original
features. These 48 unique feature rankings were obtained

using the 8 FR techniques (CS, Gini, RF, FS, Wrap, PSO,
ABC, FF) over 6 unique datasets. AE, LDA, and PCA were
not considered because they return new features extracted
from the given feature set. Also, the ranks given to features
by different FS techniques do not change with a change in
classifiers so we have ignored that dimension while
answering RQ3.

Now, on the basis of these 48 feature ranks for each feature,
we have conducted a Scott -Knott test to form three priority
clusters of features. Table V describes the clusters by
showing the priority of each cluster and the feature codes of
each feature in a cluster. The feature name to feature code
mapping is stated in Table II. From studying Scott-Knott test
results we have amassed interesting inferences regarding the
importance of features.

TABLE V. RANKING OF METRICS USING SCOTT-KNOTT TEST

Cluster

No.

Metric

Importance

Metrics included in the cluster

1 High F10, F12, F13, F14, F15, F18, F23, F24, F25,
F26, F31, F46, F47, F48, F51, F52, F54, F55,
F69, F71, F72, F75, F76, F77, F78, F79, F83,
F84, F85, F86

2 Medium F1, F2, F3, F4, F5, F9, F19, F20, F21, F27,
F30, F33, F37, F38, F39, F40, F49, F50, F53,
F56, F67, F68, F70

3 Low F6, F7, F8, F11, F16, F17, F22, F28, F29, F32,
F34, F35, F36, F41, F42, F43, F44, F45, F57,
F58, F59, F60, F61, F62, F63, F64, F65, F66,
F73, F74, F80, F81, F82

Cluster 1 has the highest priority features and it consists of 30
features, 30% of the OO metrics and 46.15% of the graph-
based metrics belong to this cluster indicating the higher
importance of graph-based metrics. The Maximum
complexity value-based metrics (F46, F47, F48), cohesion
and coupling based metrics (F10, F54), class access type
based metrics (F24, F25, F26), basic dependency-based
metrics (F84, F85, F86), hub-value related metrics (71, 72)
and core-value related metrics(75, 76) are some of the broad
categories which predominantly constitute cluster 1.

Cluster 2 has medium priority and it consists of 23 features,
33.33% of the OO metrics and 11.54% of the graph-based
metrics belong to this cluster. It is hard to identify proper
groups of metrics belonging to this cluster as it lies between
the cluster with the highest importance and lowest
importance. However, Averages of different complexities in
OO metrics (F1, F2, F3, F4), some metrics related to Lines of
Code (F5, F30, F33, F56), metrics related to statements (F37,
F38, F39, F40), and some of the page-rank based metrics
(F67, F68) are identifiable metrics groups in this cluster.

Cluster 3 has the lowest priority and consists of 33 features
38.33% of the OO metrics and 42.31% of the graph-based
metrics belong to this cluster. The metrics belonging to this
cluster are seldom picked by FS techniques for training
classifiers. Sum of different complexities in OO metrics (F1,
F2, F3, F4, F7), instance variable-based metrics (F15, F16,

F17, F19), some of the metrics based on a weighted graph
representation of the software (F61, F62, F63, F64), and some
of the top class-related metrics (F80, F81, F82) are a part of
this cluster.

Conclusion: From Table V we can identify the features and
feature groups that have more importance in SCP. 38 of the
60 OO metrics and 15 of the 26 graph-based metrics belong
to the first two clusters and are frequently shortlisted by FS
techniques. However, the other metrics making up cluster 3
are not necessarily irrelevant; it might also mean that the
information they are conveying is also provided by other
metrics.

VI. THREATS TO VALIDITY

A. Internal Validity - Internal validity deals with the bias
in the various choices we make in our study that can affect
the validity of the cause-and-effect relationships drawn from
it. In this study, we used OO metrics and graph-based metrics
as independent variables for predicting change-proneness of
classes. These metrics are very popular and effective in past
SCP studies. The 11 FR techniques compared in this study
are taken from the various categories to make the study more
generalized and extensive. The choice of NB, DTree and
SVM was based on their popularity, effectiveness and
diversity of prediction algorithms utilized by them. However,
this can be a source of bias and hence more classifiers from

categories like neural-networks, ensembles should be used.

B. Construct Validity - Threats to construct validity are
concerned with bias in the experimental design used in the
study. To eliminate this bias, we have described the complete
experimental setup in Section IV. We used SMOTE which is
a widely recommended technique to deal with class
imbalance. We have mentioned the implementation details of
every FR technique used in this comparative study. The
parameter settings used for each of these FR techniques are
carefully chosen through extensive experiments and
suggestions from previous studies. However, a more careful
experiment specifically for choosing those hyper-parameters
where no guidelines are mentioned. We used AUC-ROC as a
performance measure due to its wide usage in similar studies
especially for imbalanced datasets. Nonetheless, other
performance measures like F-Measure can also be employed

here.

C. Conclusion Validity - Conclusion Validity deals with
the reliability of the experimental observations and results
drawn from the study. We have used the popular Freidman
test followed by the double Scott-Knott test at a significance
level of 0.05 to evaluate the performance of the FR
techniques. The use of 6 diverse datasets and 3 classification
techniques makes this study extensive and ensures that all the
conclusions drawn in the study are significant and not just

trivial effects.

D. External Validity - External Validity deals with the
generalization of our experimental findings. In this study, we
generated 6 new datasets derived from open-source Java
projects. We collected this dataset from two sources, one is
the popular proprietary tool UNDERSTAND and other is an
open-source research dataset. Although the datasets are

diverse in terms of the domain, code structure, size etc., we
cannot claim that our findings work with datasets with a
different set of metrics or if they are project-level or module-
level.

VII. CONCLUSION AND FUTURE WORK

In this study, we compared the performance of 11 FR
techniques in SCP using OO and graph-based metrics.
Extensive experiments were conducted on 6 newly generated
Java datasets and across 3 classifiers. Using AUC-ROC
performance measure along with the statistical tests for
evaluation and comparison, the major conclusions drawn
from the experimental findings are –

1) FR techniques are effective in SCP. They help in the
extraction of features that are useful in predicting change-
prone classes. The use of such features increases the
predictive performance of classifiers.

2) There are significant differences in the performance of

the 11 FR techniques compared in the study. While LDA, AE,
and Wrapper-based FR techniques achieve better
performance across different datasets and classifiers., FR
techniques like PSO, PCA, and some filter-based techniques
have shown unsatisfactory results.

3) The type of classifier used in SCP also affects the choice
of FR techniques. The performance rankings of FR
techniques like ABC and FF vary considerably with a
variation in the classifier they are used with.

4) Some features have a higher probability of being chosen
by FR techniques over others for model training in SCP. In
the OO metric suite, coupling, cohesion, cyclomatic
complexity, and lines of code are highly preferred. In graph-
based metrics, inter-class dependencies and centrality
measures like K-Coreness are highly effective.

In the future, we will extend this study by including more
categories of FR techniques like hybrid and clustering-based
techniques. The inclusion of more metrics like change-
history of class and developer-related factors is another
possible extension.

VIII. REFERENCES

[1] K.K. Aggarwal and Y. Singh, “Software engineering”, New Age
International (P) Limited, 2008.

[2] R. Malhotra and M. Khanna, “Software Change Prediction: A
Systematic Review and Future Guidelines", In e-Informatica Software
Engineering Journal, vol. 13, no. 1, pp. 227–259, 2019. doi: 10.5277/e-
Inf190107.

[3] R. Malhotra and M. Khanna, “Mining the impact of object oriented
metrics for change prediction using Machine Learning and Search-
based techniques”, International Conference on Advances in
Computing, Communications and Informatics (ICACCI), 2015.
doi:10.1109/icacci.2015.7275614

[4] R. Malhotra and M. Khanna, “An exploratory study for software
change prediction in object-oriented systems using hybridized
techniques”, Automated Software Engineering, vol. 24, issue 3, pp.
673–717, 2016. doi:10.1007/s10515-016-0203-0

[5] R. Malhotra, R. and A.J. Bansal, “Software change prediction: a
literature review”, International Journal of Computer Applications in
Technology, vol. 54, no. 4, pp. 240-256, 2016.
doi:10.1504/ijcat.2016.080487

[6] P. Bhattacharya, M. Iliofotou, I. Neamtiu and M. Faloutsos, "Graph-
based analysis and prediction for software evolution," 2012 34th
International Conference on Software Engineering (ICSE), pp. 419-
429, 2012. doi: 10.1109/ICSE.2012.6227173.

[7] H. Kagdi, and J.I. Maletic, “ Combining Single-Version and
Evolutionary Dependencies for Software-Change Prediction”, Fourth
International Workshop on Mining Software Repositories, 2007.
doi:10.1109/msr.2007.2

[8] G. Catolino, F. Palomba, A. De Lucia, F. Ferrucci, and A. Zaidman,
“Enhancing change prediction models using developer-related
factors”, Journal of Systems and Software, 143, pp. 14–28, 2018.
doi:10.1016/j.jss.2018.05.003

[9] M. Jureczko, “Significance of Different Software Metrics in Defect
Prediction”, Software engineering : an international Journal (SeiJ),
Vol. 1, no. 1, 2011.

[10] S. Chidamber and C. Kemerer, “A metric suite for object oriented
design,” IEEE Transactions on Software Engineering, vol. 20, no. 6,
pp. 476-493, 1994.

[11] Z. Xu, J. Liu, Z. Yang, G. An and X. Jia, “The Impact of Feature
Selection on Defect Prediction Performance: An Empirical
Comparison”, IEEE 27th International Symposium on Software
Reliability Engineering (ISSRE), 2016. doi:10.1109/issre.2016.13

[12] L. Kumar, S. Lal, A. Goyal, and N. Murthy, “Change-proneness of
object-oriented software using combination of feature selection
techniques and ensemble learning techniques,” in Proceedings of the
12th Innovations on Software Engineering Conference. ACM, pp. 1-
11, 2019. doi: 10.1145/3299771.3299778

[13] R. Malhotra and M. Khanna, “Investigation of relationship between
object-oriented metrics and change proneness,” International Journal
of Machine Learning and Cybernetics, vol. 4, no. 4, pp. 273–286, 2013.
doi: 10.1007/s13042-012-0095-7

[14] G. Catolino and F. Ferrucci, “An extensive evaluation of ensemble
techniques for software change prediction,” Journal of Software:
Evolution and Process, vol. 31, issue 9, 2019. doi: 10.1002/smr.2156

[15] R. Malhotra and M. Khanna, “Software change prediction using voting
particle swarm optimization based ensemble classifier”, in Proceedings
of the Genetic and Evolutionary Computation Conference Companion,
ACM, pp. 311-312, 2017. doi: 10.1145/3067695.3076007

[16] L. Kumar, R.K. Behera, S. Rath, and A. Sureka, “Transfer learning for
cross-project change-proneness prediction in object-oriented software
systems: A feasibility analysis,” ACM SIGSOFT Software
Engineering Notes, vol. 42, no. 3, pp. 1–11, 2017. doi:
10.1145/3127360.3127368

[17] R. Malhotra and A. Bansal, "Predicting change using software metrics:
A review", 4th International Conference on Reliability, Infocom
Technologies and Optimization (ICRITO) (Trends and Future
Directions), pp. 1-6, 2015. doi: 10.1109/ICRITO.2015.7359253.

[18] M. Lorenz and J. Kidd, “Object-oriented software metrics: A practical
guide,” Prentice-Hall, Inc., 1994.

[19] F. B. Abreu and R. Carapuça, "Object-oriented software engineering:
Measuring and controlling the development process," in proceedings
of the 4th International Conference on Software Quality, 1994.

[20] J. Bansiya and C. G. Davis, "A hierarchical model for object-oriented
design quality as-sessment," IEEE Transactions on Software
Engineering, vol. 28, pp. 4-17, 2002.

[21] Y. Yang, J. Ai and F. Wang, "Defect Prediction Based on the
Characteristics of Multilayer Structure of Software Network," IEEE
International Conference on Software Quality, Reliability and Security
Companion (QRS-C), pp. 27-34, 2018. doi: 10.1109/QRS-
C.2018.00019

[22] E. Giger, M. Pinzger and H.C. Gall, (2012), “Can we predict types of
code changes? An empirical analysis”, 9th IEEE Working Conference
on Mining Software Repositories (MSR), 2012.
doi:10.1109/msr.2012.6224284

[23] T. Quah and M. Thwin, “Application of neural networks for software
quality prediction using object-oriented metrics”, International
Conference on Software Maintenance (ICSM), 2003.
doi:10.1109/icsm.2003.1235412

[24] S. Shivaji, S, E.J. Whitehead, R. Akella and S. Kim, “Reducing
Features to Improve Code Change-Based Bug Prediction”, IEEE
Transactions on Software Engineering, vol. 39, no. 4, pp. 552–569,
2012.

[25] Z. Xu, J. Liu, Z. Yang, G. An and X. Jia, “The Impact of Feature
Selection on Defect Prediction Performance: An Empirical

Comparison”, IEEE 27th International Symposium on Software
Reliability Engineering (ISSRE), 2016. doi:10.1109/issre.2016.13

[26] A. L. Blum and P. Langley, “Selection of relevant features and
examples in machine learning”, Artificial Intelligence, vol. 97, issues
1–2, pp. 245-271, 1997. doi: 10.1016/S0004-3702(97)00063-5

[27] J. Tang, S. Alelyani and H. Liu, "Feature Selection for Classification:
A Review" in Data Classification: Algorithms and Applications, CRC
Press, 2014.

[28] G. Chandrashekar and F. Sahin, “A survey on feature selection
methods”, Computers & Electrical Engineering, vol. 40, issue 1,pp. 16-
28, 2014. doi : 10.1016/j.compeleceng.2013.11.024.

[29] W. Duch, “Filter Methods”, In: Guyon I., Nikravesh M., Gunn S.,
Zadeh L.A. (eds) Feature Extraction. Studies in Fuzziness and Soft
Computing, vol. 207, 2006. doi: 10.1007/978-3-540-35488-8_4

[30] R. Malhotra and K. Khan, “A Study on Software Defect Prediction
using Feature Extraction Techniques”, 8th International Conference on
Reliability, Infocom Technologies and Optimization (Trends and
Future Directions) (ICRITO), 2020.
doi:10.1109/icrito48877.2020.9197999

[31] M. Schiezaro and H. Pedrini, “Data feature selection based on Artificial
Bee Colony algorithm”, J Image Video Proc, vol. 47, 2013. doi:
10.1186/1687-5281-2013-47

[32] M. Anbu and G.S. Anandha Mala, “Feature selection using firefly
algorithm in software defect prediction”, Cluster Computing, pp.
10925–10934, 2017. doi:10.1007/s10586-017-1235-3

[33] I. Sora and C. Chirila, “Finding key classes in object-oriented software
systems by techniques based on static analysis”, Information and
Software Technology, vol. 116, 2019. doi:
10.1016/j.infsof.2019.106176

[34] [dataset] https://figshare.com/s/df5529168b9641bdd96e

[35] A. Balogun, S. Basri, S. J. Abdulkadir, V.Adeyemo, “Software Defect
Prediction: Analysis of Class Imbalance and Performance Stability”,

Journal of Engineering Science and Technology 14(6), pp 3294-3308,
2019.

[36] E. Alpaydin, Introduction to Machine Learning, Cambridge, MA,
USA: MIT press, 2014.

[37] M. Friedman, “A comparison of alternative tests of significance for the
problem of m rankings”, The Annals of Mathematical Statistics, vol.
11, pp. 86–92, 1940. doi: 10.1214/aoms/117773194

[38] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the impact of
classification techniques on the performance of defect prediction
models”, In Proceedings of the 37th International Conference on
Software Engineering (ICSE), pp. 789-800, 2015. doi:
10.1109/ICSE.2015.91

[39] N. V. Chawla , K. W. Bowyer , L. O. Hall and W. P. Kegelmeyer,
“SMOTE: Synthetic Minority Over-sampling Technique”, Journal of
Artificial Intelligence Research, vol.16, pp. 321-357, 2002. doi:
10.1613/jair.953

[40] M. Lv, Y. Ren, and Y.Chen, “Research on imbalanced data based on
SMOTE-AdaBoost algorithm”, 3rd International Conference on
Electronic Information Technology and Computer Engineering
(EITCE), 2019. doi: 10.1109/EITCE47263.2019.9094859

[41] M. Cherrington, F. Thabtah, J. Lu, and Q. Xu, “Feature Selection: Filter
Methods Performance Challenges”, 2019 International Conference on
Computer and Information Sciences (ICCIS),
2019. doi:10.1109/iccisci.2019.8716478

[42] S. Valle, W. Li, and S.J. Qin, “Selection of the Number of Principal
Components: The Variance of the Reconstruction Error Criterion with
a Comparison to Other Methods”, Industrial & Engineering Chemistry
Research, 38(11), pp 4389–4401, 1999. doi:10.1021/ie990110i

