
Principles of Research Software
Sustainability

Daniel S. Katz
(d.katz@ieee.org, http://danielskatz.org,
@danielskatz)
Chief Scientist, NCSA
Research Associate Professor, CS, ECE, iSchool

Rajiv Ramnath
(ramnath.6@osu.edu)
Professor of Practice, Computer Science and
Engineering

10.6084/m9.figshare.14138036

2

Why do we care about research software?
• Funding
– ~20% of NSF projects over 11 years topically discuss software in their abstracts

($10b)
– 2 of 3 main DOE ECP areas are research software (~$4b)

• Publications
– Software intensive projects are a majority of current publications
– Most-cited papers are methods and software

• Researchers
– >90% of US/UK researchers use research software
– ~65% would not be able to do their research without it
– ~50% develop software as part of their research

Collected from http://www.dia2.org in 2017

Nangia and Katz; 10.1109/eScience.2017.78
“Top 100-cited papers of all time,” Nature, 2014
10.1038/514550a

S. Hettrick; https://www.software.ac.uk/blog/2016-09-12-its-impossible-
conduct-research-without-software-say-7-out-10-uk-researchers
S.J. Hettrick, et al,; 10.5281/zenodo.14809
U. Nangia and D. S. Katz; 10.6084/m9.figshare.5328442.v1

10.6084/m9.figshare.14138036

http://www.dia2.org/
http://doi.org/10.1109/eScience.2017.78
https://doi.org/10.1038/514550a
https://www.software.ac.uk/blog/2016-09-12-its-impossible-conduct-research-without-software-say-7-out-10-uk-researchers
https://doi.org/10.5281/zenodo.14809
https://doi.org/10.6084/m9.figshare.5328442.v1

3

Software in research cycle

Create
Hypothesis

Acquire
Resources (e.g.,

Funding,
Software, Data)

Perform Research
(Build Software &

Data)

Publish
Results (e.g.,
Paper, Book,

Software, Data)

Gain Recognition

Knowledge

Infrastructure
Research

10.6084/m9.figshare.14138036

4

Who starts new infrastructure software projects?

• Tool makers
– To make something useful to others

• Then options:
• Accept contributions?

and if so:
a. Broaden focus?

• Bring together other (related) packages
b. Broaden governance?

• Collaborate with other developers

10.6084/m9.figshare.14138036

5

Who starts new research software projects?

• User/Developer
– To scratch their own itch

• Then options:
1. Keep it private
2. Share it
3. Accept contributions?

and if so:
a. Broaden focus?

• Bring together other (related) packages
b. Broaden governance?

• Collaborate with other developers

10.6084/m9.figshare.14138036

6

Project stages

S. P. Benthal, Software Incubator Workshop: A Synthesis,
http://urssi.us/blog/2019/02/25/software-incubator-workshop-a-synthesis/

10.6084/m9.figshare.14138036

http://urssi.us/blog/2019/02/25/software-incubator-workshop-a-synthesis/

7

Changing stages

• At each point/stage, decide consciously to go forward
• Think about methods, goals, and consequences
• What resources are available to help?
• What (type) of work will be needed?
• Are the right skills available?
• What are the incentives?
• How will success be measured?
• How will the institution(s)

support this?
J. Leng , M. Shoura, T. C. B. McLeish, A. N. Real, et al. “Securing the future of research computing in the
biosciences,” PLoS Comput Biol 15(5): e1006958, 2019. https://doi.org/10.1371/journal.pcbi.1006958

10.6084/m9.figshare.14138036

https://doi.org/10.1371/journal.pcbi.1006958

8

Software collapse
• Software stops working eventually if is not actively maintained
• Structure of computational science software stacks:

1. Project-specific software (developed by researchers): software to do a computation using building
blocks from the lower levels: scripts, workflows, computational notebooks, small special-purpose
libraries & utilities

2. Discipline-specific software (developed by developers & researchers): tools & libraries that
implement disciplinary models & methods

3. Scientific infrastructure (developed by developers): libraries & utilities used for research in many
disciplines

4. Non-scientific infrastructure (developed by developers): operating systems, compilers, and support
code for I/O, user interfaces, etc.

• Software builds & depends on software in all layers below it; any change below may
cause collapse

K. Hinsen, “Dealing With Software Collapse,” 2019.
https://doi.org/10.1109/MCSE.2019.2900945

10.6084/m9.figshare.14138036

9

Research software summary
• Software developed and used for the purpose of research: to generate, process, analyze results

within the scholarly process
• Increasingly essential in the research process
• But

– Software will collapse if not maintained
– Software bugs are found, new features are needed, new platforms arise
– Software development and maintenance is human-intensive
– Much software developed specifically for research, by researchers
– Researchers know their disciplines, but often not software best practices
– Researchers are not rewarded for software development and maintenance in academia
– Developers don’t match the diversity of overall society or of user communities

10.6084/m9.figshare.14138036

10

Software sustainability

• Software sustainability ≡ the capacity of the software to endure
– Will the software will continue to be available in the future, on new platforms,

meeting new needs?

• Software development and maintenance requires human effort

• Human effort ⇆ $
– All human effort works (community open source)

– All $ (salary) works (commercial software, grant funded projects)
– Combined is hard: effort ≠ $; humans are not purely rational

10.6084/m9.figshare.14138036

11

Potential solutions
• Research software sustainability is the process of developing and maintaining

software that continues to meet its purpose over time, which includes that the
software adds new capabilities as needed by its users, responds to bugs and
other problems that are discovered, and is ported to work with new versions of
the underlying layers, including software as well as new hardware

• In order to sustain research software, we can
– Do things that reduce the amount of work needed
– Do things that increase the available resources
– Do things that both reduce the amount of work needed and increase the available resources

10.6084/m9.figshare.14138036

12

Methods to sustain research software (1)

• To reduce the amount of work needed
– Train its developers, which involves finding or developing training material

• Carpentries, discipline-specific materials, language-specific materials

– Use best practices, which involves finding or developing best practices
• Software Carpentry, Incubators (e.g. ESIP, Apache)

10.6084/m9.figshare.14138036

https://carpentries.org/
https://software-carpentry.org/

13

Methods to sustain research software (2)

• To increase the available resources
– Create incentives so that people want to work on the software

• Citations that help in existing career paths
• Adjusted existing career paths that they reward software work
• New career paths

– Increase available funding by first making the role of software in research clear to
research funders, and then by clearly making the case for them to increase funding
for new software, and to provide funding for software maintenance

– Seek institutional resources if the software is considered sufficiently important to
the institution, operationally or reputationally

10.6084/m9.figshare.14138036

14

Methods to sustain research software (3)

• To both reduce work and bring in new resources, encourage collaboration
– Using the work of others rather than reimplementing a function or package reduces

what a software team (or its developers) needs to do themselves, even without
assuming that the collaborators contribute to the software, which also may happen

– Similarly, if others use a team's software and contribute to maintaining it, the team
has less they need to do

– To make this work, software has to be designed from the start to be modular and
reusable, and it must also be clearly documented and explained to potential users,
even those in fields other than the developer’s

– And the team has to put effort into engaging and working with the potential user
and contributor community

10.6084/m9.figshare.14138036

15

Volunteers & incentives (1)
• Why do volunteers or collaborators choose to put effort into our software project?
• How we can engage them?

• In the context of community activities and organizing, Porcelli defines

Engagement = intrinsic motivation + extrinsic motivation + support – friction

• Intrinsic motivation = self-fulfillment, altruism, satisfaction, accomplishment, pleasure
of sharing, curiosity, real contribution to science

• Extrinsic motivation = job, rewards, recognition, influence, knowledge, relationships,
community membership

• Support = ease, relevance, timeliness, value
• Friction = technology, time, access, knowledge

Joseph Porcelli, “How to grow users into active community members and
get your community more engaged”, 2013 Open Source Software Summit

10.6084/m9.figshare.14138036

16

Volunteers & incentives (2)
• Examples of things we can do:
– Use GitHub for development

• Reduce friction by using a known technology
– Provide templates for issues and guidelines for good pull requests

• Reduce friction by providing knowledge of how to work with our project
• Increase support by easing the means of doing so

– Provide a code of conduct and a welcoming and encouraging environment
• Increase extrinsic motivation by helping develop relationships and sense of community

– Add contributors to a list of authors who are cited when the software is used
• Increase both intrinsic motivation and extrinsic motivation through recognizing accomplishments

– Highlight examples of how the software is used
• Increase intrinsic motivation by demonstrating the contribution to science

10.6084/m9.figshare.14138036

17

Volunteers & incentives (3)

• Plan for a progression of
types of engagements

• How a project can
encourage the potential
contributor to move to
from level to another

Abigail Cabunoc Mayes, “Work Open, Lead Open,” Chan-Zuckerberg
Initiative (CZI) Essential Open Source Software (EOSS) Kickoff Meeting, 2020.

10.6084/m9.figshare.14138036

18

Credits
• Thanks to Arfon Smith and Kyle Niemeyer for

co-leadership in FORCE11 Software Citation WG
• And Neil Chue Hong & Martin Fenner for

co-leadership in FORCE11 Software Citation Implementation WG
• And colleagues Gabrielle Allen, C. Titus Brown, Kyle Chard, Ian Foster, Melissa

Haendel, Christie Koehler, Bill Miller
• And to the BSSw project (http://bssw.io) for a fellowship to pursue some parts of

the citation work
• More of Dan’s thinking

– Blog: http://danielskatzblog.wordpress.com
– Tweets: @danielskatz

10.6084/m9.figshare.14138036

http://bssw.io/
http://danielskatzblog.wordpress.com/

