
Sandia National Laboratories is a multimission
laboratory managed and operated by National 
Technology & Engineering Solutions of Sandia, 
LLC, a wholly owned subsidiary of Honeywell 
International Inc., for the U.S. Department of 

Energy’s National Nuclear Security 
Administration under contract DE-NA0003525.

Software Engineering as 
Craft

c r a f t s m a n s h i p  i n  s o f t w a r e  m a t t e r s  a s  m u c h  a s  a l g o r i t h m  d e s i g n  o r  
o p t i m i z a t i o n  a n d  h a s  a s  g r e a t  a  r e w a r d

Pa u l  Wo l f e n b a r g e r

1



Backsliding

As part of  an effort to improve our software testing, my group at work recently started watching 
some software engineering videos. What struck me most forcibly about them was not the content 
itself, since I have read and used or rejected almost all of  these methods in my career. The real 
surprise was that somehow I had ceased to utilize them in a full and robust manner. I can think of  
several reasons why this occurred: understaffing, short deadlines, and significant technical debt, for 
starters. Yet these are exactly the techniques that are best suited to help resolve those issues in the 
long term, so how did they get bypassed? 

2



Finding your way back

Simple beats cool, fast, slick, and innovative, basically anything except simpler. Yes, I work in high-
performance computing (HPC) where every clock cycle can and usually does matter; but, yes, 
simpler IS better than faster.

oWe should forget about small efficiencies, say about 97% of  the time: premature optimization is the root of  all evil. 
Yet we should not pass up our opportunities in that critical 3%. -- Donald Knuth.

oOf  course, when it counts, we want the important code to be in that 3% and to run fast. The other 
97% will be read more by humans, used to connect to other software and determine how reusable 
your software really is, and it will carry more information and receive less attention. 

oThis less-critical code needs to be as robust as possible upfront precisely because it will get less 
attention every day. 

oWhen you write any code, take the time to make it small, make it legible, test it well, and make it 
compile cleanly. You will thank yourself  later.

3



Know your History

I never look back darling -- it distracts from the now. -- Edna 'E' Mode in the Incredibles.

No Capes! -- Edna 'E' Mode in the Incredibles.

oEveryone who works in a field learns something that can help everyone else. Do I need to 
understand the methods a Roman engineer would have used to design an ancient aqueduct to create 
a modern dam overflow? 

oI might stop with just what the equations are and how I apply them

oI might want to understand how they were discovered

oIf  I have an interest, I can go figure out how men without those equations designed structures that 
still bring water reliably over large distances. 

oWhatever level of  interest you have, you will learn something helpful to your current effort and 
improve your work.

4



Think About Interfaces

Interfaces are so ubiquitous in software we often don’t even realize we have written them or violated the 
boundaries they are meant to represent. Each source file, each header, every library, data structure, 
function, and class, each decision about what headers will be installed and which will not represents a 
boundary that we set up for one reason or another. What those interfaces are and how they are (and can 
be) used will determine how your code can be understood by others and how they will use it. Allowing 
them to happen by chance is simply not acceptable.

Any fool can write code that a computer can understand. Good programmers write code that humans can understand. --
Martin Fowler, 2008

While Fowler was not actually referring only to interface design, his comment applies well. 

5



Think About Interfaces

In my own case, we are dealing with several large legacy codes that use multiple research libraries and 
several commercial libraries. The dependency graph is the proverbial “Big Ball of  Mud.” That means 
our compile times are slow, extraordinary methods are in place to constrain configure times, and 
linking is not parallelized because the applications are simply too large. The compiler understands all 
of  this, but most of  the developers are lost without reading prior examples. We do see that not all of  
our dependencies contribute to this issue. In fact two require only run-time linking to change 
versions in most cases. The difference is entirely in the volatility of  the API and ABI, which have 
been well designed to constrain the interfaces, whereas most of  our in-house work and partner work 
is more free-form or completely unstructured.

Interfacing with the compiler or interpreter is the easy part; the humans are harder. When you 
convolve both of  those with complex build systems it can seem hopeless. It's not. Simplify every 
interface. 

In short, make sure you can sort it out easily years down the line when you can't even remember 
writing this thing. The machine will have far fewer problems anyway.

6

http://www.laputan.org/mud


Science or Craft

Craftsmanship in a project can be more important than the engineering, architecture, or science 
involved. We use those terms to describe what we do, but they are ill-fitting. Perhaps you prefer 
artisanship or professionalism over craftsmanship, but attention to detail and care about what you are 
doing will make more of  a difference than all the theory in the world.

My educational background is in structural engineering, and I have done many masonry buildings 
here in the Southwest. I realized quickly that the difference between having a good versus an 
excellent mason was equally as important as having a good engineer. Having a good mason often 
made a mediocre design feasible whereas a poor mason could make a good design have a very short 
lifespan.

In the same way that masonry craftsmanship makes a huge difference in a construction project, 
software ``craftsmanship'' makes a critical difference as well. Good computer science and 
engineering knowledge are important, but we need to realize that proper software assembly and 
design are crucial. This is the point that I forget the easiest. I see a lot of  my colleagues forget it as 
well, and I have to think that’s because it’s not built into our reward structures (if  it’s built into yours, 
let me know).

7



Test Everything

In 1999 I was working on a rule-based embedded AI system that did some interesting stuff. Needless 
to say, the interactions between the various pieces was the actual algorithm, not any of  the routines 
you could point at. I found bugs and unintended interactions left and right, and I started keeping a 
set of  inputs that would allow me to be sure that issues I fixed did not come back. I had started a 
regression suite. Later I started to add unit tests and library level tests, and I have gradually joined the 
vast majority of  code monkeys on the planet in testing my code thoroughly. Or somewhat at least --
we all know that most software is lucky to hit 75% or 80% of  line coverage and a lot less of  the use 
cases or scenarios are actually covered. Yet if  that is so, how do we know it works? The answers 
range from bad “the daily use is the best test” to the dangerous “it did what I wanted when I wrote it” to the 
oblivious.

The stint watching SE videos lately has my team trending toward test-driven development (TDD). It 
did not change the team policy of  “new code is 100% covered, and modifications to old code are 
new code.” It has helped us live up to that policy, and that I cannot fault.

8



Test Everything

oSo, why do we test? What do we test?
o We test to make sure the code does what we think it does, 
o We should test everything if  we can. 

oHow do we know the code won’t be asked to do more than we expect? (It will.) 

oWhat is everything? 
o Every modification to the code should add modifications to the tests. 
o Don’t let Joe down the hall use your code for something odd if  he’s not going to add the tests. 
o Tests and code must match, or an error shows up. 

9



Do it all Again

Each of  us will have our own method for keeping these principles working. Some will insist that the 
most modern IDE must be used, some that hand coding the build system is the best defense, others 
that generated documentation will reveal all. In the end it is attention to the work that really matters, 
and each of  us finds a way to that on our own.

10


