## GPUs on NeSI

Chris Scott Wolfgang Hayek Alex Pletzer Maxime Rio Georgina Rae

New Zealand eScience Infrastructure (NeSI)

contact: chris.scott@nesi.org.nz

11 February 2021

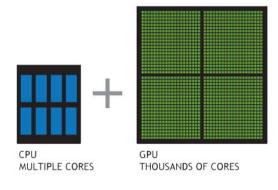


Outline





**2** GPU case studies






## Background

New Zealand eScience Infrastructure Growth and development of future capabilities.

### CPUs and GPUs





- GPUs (Graphics Processing Units) are accelerators that can be used with CPUs to boost the performance of many applications.
- Offload compute intensive portions of the code to GPUs and leave the remainder of the code on the CPU
- Design philosophy
  - CPUs consist of a small number of powerful cores
  - GPUs consist of thousands of lighter weight cores, designed to process parallel workloads efficiently

## CPU vs GPU





## CPU vs GPU







New Zealand eScience Infrastructure

## CPU vs GPU









## GPUs: why now?



- Current GPUs on NeSI
  - ~8 NVIDIA P100s on Mahuika (some more on Maui Ancillary nodes too)
- Adding new GPU capability
  - NVIDIA A100 and AMD MI100
  - Should be a significant improvement (more powerful, more memory, ...)
  - Coming soon . . .
- Good time to think about using GPUs
  - Performance is increasing significantly
  - Getting easier to use



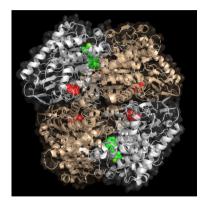
#### How can you utilise GPUs?



- ① Your software already has support for GPUs or has been ported by somebody else
  - May be as simple as requesting a GPU from Slurm (low effort)
  - Good support in high level languages: Python cupy, MATLAB gpu arrays, Julia, ...
- ❷ Calling GPU libraries (cuBLAS, cuFFT, ...) to offload expensive calculations
  - Often low effort (especially if the GPU library has the same API as non-GPU; could just require relinking)
- **③** Adapt your code to offload loops onto the GPU using an API like OpenACC
  - Some more effort required but generally doesn't require big changes to a code base; could just be adding pragma statements to loops
  - Good support from compilers is limited (PGI, maybe Cray and GNU)
- **4** Writing custom GPU kernels using a language such as CUDA
  - More effort and could require significant changes to code base (more maintenance, possibly less portable) but greatest flexibility



#### GPU case studies


New Zealand eScience Infrastructure Growth and development of future capabilities

## Case study – GPU support in the software

Protein Modelling – Dr Wanting Jiao, VUW

- Why GPUs?
  - Very computationally expensive
  - Know that NAMD come with good GPU support builtin
- How did we utilise GPUs?
  - NVIDIA provide a container for NAMD: https://ngc.nvidia.com
  - Very simple to run on the GPUs: https: //support.nesi.org.nz/hc/en-gb/articles/ 360001500156-NVIDIA-GPU-Containers
- Outcome
  - Performance on 1 P100 GPU is roughly the same as 3 full Maui nodes (120 cores)





#### Case study – GPU libraries

Tropical Circulation Model – Dr Gilles Bellon, UoA

- Why GPUs?
  - Wants to move to higher resolution grids
  - Matrix multiplication is a bottleneck
- How did we utilise GPUs?
  - MKL for multithreaded dgemm
  - Added an option to use dgemm from cuBLAS
  - CMake enables easy switching
- Outcome
  - GPU matrix multiplication 36% faster than MKL 16 threads and comparable to MKL 32 threads







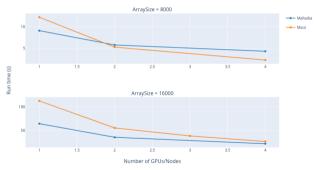
#### New Zealand eScience Infrastructure

#### Case study – OpenACC

High Performance Marketing Insights - Dr Damien Mather, UoO

- The bottleneck in his current approach is the log determinant calculation,  $\mathcal{O}(n^3)$
- Started with an MPI implementation of the Condensation method
- Adding a couple of lines of OpenACC directives gave a 13x speedup over the serial CPU version
- Managed memory makes it really easy to try offloading loops to the GPU (no need to explicitly copy data between host and device)

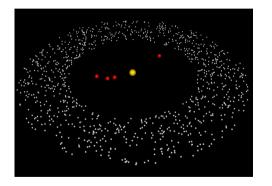





## Case study – OpenACC

High Performance Marketing Insights – Dr Damien Mather, UoO

- NeSI Consultancy to optimise data locality
  - Additional 2.1x speedup
  - Increased code complexity
- P100s perform similarly to full Maui nodes
- Most of the gains came from adding a couple of lines of OpenACC directives!
- Not invasive compiling without OpenACC flags still works

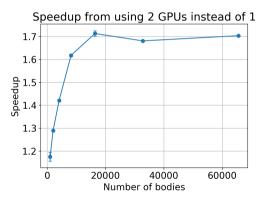

Comparing Maui nodes to Mahuika GPUs





#### Case study – Custom CUDA code Solar System – Dr Philip Sharp, UoA

- Based on the CUDA N-body reference
  - implementation,  ${\cal O}(N^2)$
  - Thousands of bodies maps to thousands of threads on the GPU
  - Each thread computes (part of) the acceleration for a single body
  - This calculation is not feasible on a CPU only






# Case study – Custom CUDA code

Solar System – Dr Philip Sharp, UoA

- NeSI Consultancy to implement a multi-GPU version (within a single node) to squeeze out even more performance
- Use CUDA pinned memory to get truly asynchronous memory copies between a single host thread to multiple devices
- 1.7× speedup for numbers of bodies good boost for an already optimised code







## Summary

New Zealand eScience nfrastructure Growth and development of future capabilities.



- NeSI is getting new GPUs
- · Good time to think about whether you can take advantage of them
  - Performance and ease of use have increased a lot
  - Does not always require much time or effort
- If your code doesn't support GPUs already then OpenACC or GPU libraries (such as cuBLAS) are a good place to start looking
- Always profile first to make sure you aren't wasting your time
- NeSI Consultancy can help:

https://www.nesi.org.nz/services/consultancy



# NZ Research Software Engineers Conference

Help us plan the programme! Email <u>events@nesi.org.nz</u> to get involved.

# Spring 2021

#### Who attends:

- Researchers and academics who code
- Software engineers & system admins working in the research domain
- Generalists who bring together the research and technical domains
- Developers, IT managers, coding enthusiasts, and big data analysts from Crown Research Institutes, universities, and other public sector organisations



# NeSI @ eResearch NZ - Talks & Workshops:

#### Wednesday 10 Feb

13:00 - 17:00 - Maxime Rio - Machine Learning on NeSI 101

13:20 - 13:40 - Jun Huh - Taonga: building a data repository for genomics research in New Zealand

13:20 - 13:40 - Dinindu Senanayake -Paving the way for Bioinformatics excellence in New Zealand

14:20 - 15:00 - Brian Flaherty - Moving data: getting up to speed with Globus and Science DMZ

15:50 - 16:50 - Jana Makar - Challenge Accepted: Responding to community feedback for supporting diversity in HPC & eResearch

#### Thursday 11 Feb

11:00 - 11:20 - Maxime Rio - Data science consultancies at NeSI: A whirlwind tour of case studies

13:30 - 13:50 - Chris Scott - GPUs on NeSI

13:50 - 14:10 - Georgina Rae - Building Partnerships for eResearch

14:10 - 14:30 - Wolfgang Hayek - NeSI Consultancies - Evolving a Scientific Programming Service

14:40 - 15:00 - Albert Savary - Software on NeSI

15:00 - 15:20 - Jeff Zais - Taking Advantage of Technology Innovations in the Next Generation of NeSI HPC Infrastructure

15:20 - 15:40 - Callum Walley - Virtual Desktops for HPC



#### Thursday 11 Feb (cont.)

15:20 - 15:40 - Robin Bensley - Staying connected in an evolving eResearch ecosystem

16:00 - 17:00 - Megan Guidry - Sowing the seeds of capability: Experience what Carpentries instructor training is all about

#### Friday 12 Feb

11:20 - 12:30 - Nick Jones - Future of eResearch

12:20 - 12:30 - José Filipe Gonçalves Higino -Coaching great practices of describing a problem

13:30 - 14:30 - Blair Bethwaite - Embracing cloud-native architectures

13:30 - 14:30 - Alexander Pletzer and Nooriyah Lohani - Who needs research software engineers?

13:30 - 14:30 - Georgina Rae - FAIR for Research Software