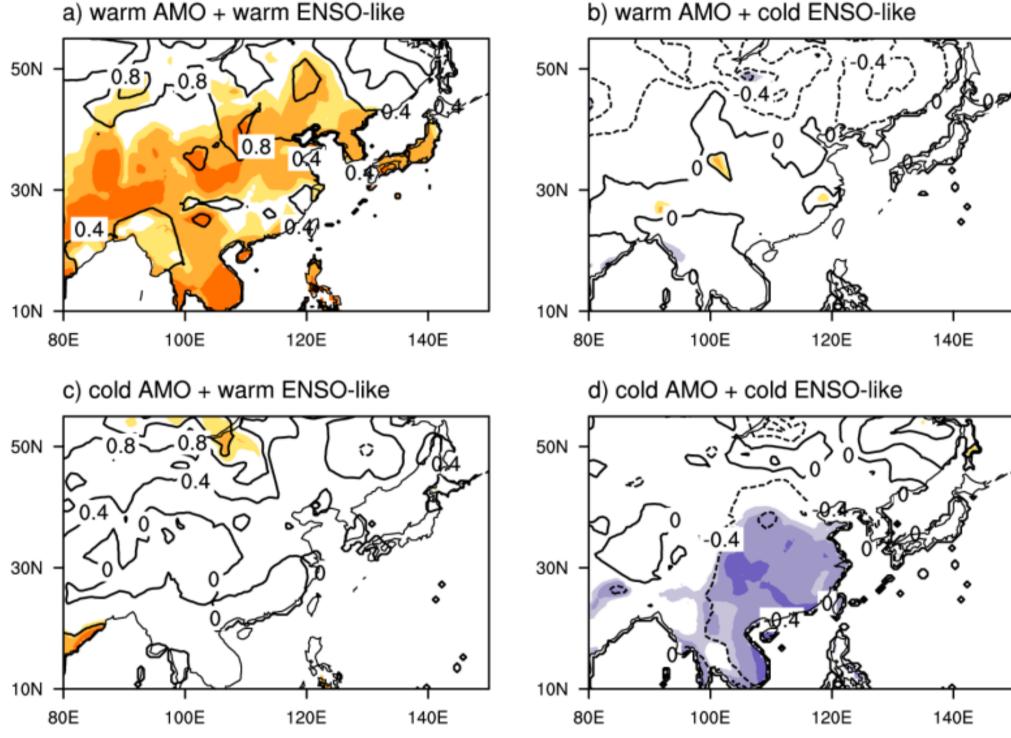
Combined Effect of ENSO-Like and Atlantic Multidecadal Oscillation SSTAs on the Interannual Variability of the East Asian Winter Monsoon Xin Hao^{*1,2}, Shengping He^{3,1}

¹ Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University for Information Science and Technology, Nanjing 210044, China
² Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China ³ Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen 0025, Norway

Introduction

The East Asian winter monsoon (EAWM) is one of the most


Result

1. Modulation of the Pacific-EAWM relationship by

dominant climate systems in East Asia. have examined the dynamic

interactions between the EAWM and the variability in sea surface anomalies (SSTAs) in the Pacific; temperature anomalies characterized by El Niño–Southern Oscillation (ENSO) and the Pacific decadal oscillation (PDO). The covariability of the EAWM with has experienced reciprocating Pacific SSTAs changes. the modulation of the PDO on the ENSO–EAWM relationship provided by previous studies are multifarious. Indeed, there is also a teleconnection between Atlantic and Pacific SSTs. For example, the Atlantic Ocean acts as a pacemaker for the Pacific SST mean state and variability, and Atlantic multidecadal oscillation (AMO) favors a

a) warm AMO + warm ENSO-like b) warm AMO

Fig. 1 (a) Composite maps of differences in the winter SAT (8C) between warm ENSO-like SSTAs and climatology, using the CRU TS3.2 dataset. (b) As in (a), but between cold ENSO-like SSTAs and climatology. (c),(d) As in (a) and (b), respectively, but using the NOAA dataset. Light, medium, and dark shadings indicate the 90%, 95%, and 99% confidence levels, respectively.

Stronger-than-normal EAWM-related anomalies occurred when the ENSO-like SSTAs and AMO were in phase, while the anomalies related to the EAWM tended to exhibit relatively weaker features when the ENSO-like and AMO SSTAs were out of phase;

low-frequency variability of winter climate in East Asia that

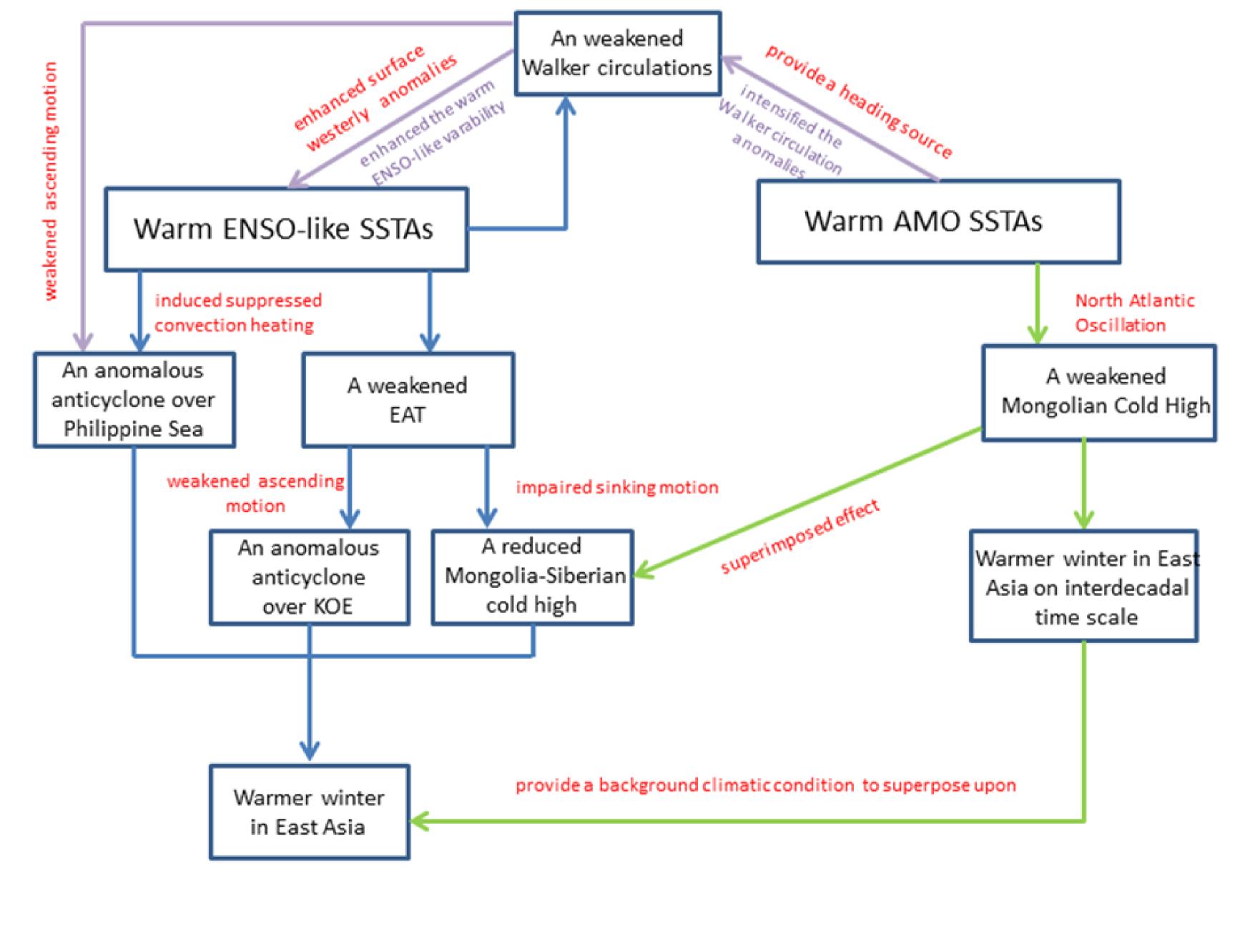
resembles a EAWM-related change in climatic background For this

issue, this study aims identify the combined effect of the ENSO-

like SSTAs and the AMO on the interannual change in the EAWM.

<u>Methodology</u>

Monthly mean observations and reanalysis dataset : Datasets: CRU TS dataset, NOAA-CIRES Reanalysis dataset, NOAA Extended Reconstructed SST dataset, and Kaplan's SST dataset. U.S. CLIVAR Drought Working Group:


Model: GFDL, CCM3, and CAM3.5 (forced by the following SST

Experiments	Boundary conditions	Philippine Sea
PwAn run	El Niño-like SST anomaly + monthly SST climatology (1901-2004)	weakened asce motion An an antie ove
PcAn run	La Niña-like SST anomaly + monthly SST climatology	
PnAw run	warm AMO SST anomaly + monthly SST climatology	
PnAc run	Cold AMO SST anomaly + monthly SST climatology	
PwAw run	El Niño-like SST anomaly + warm AMO SST anomaly + monthly SST climatology	
PwAc run	El Niño-like SST anomaly + cold AMO SST anomaly + monthly SST climatology	
PcAw run	La Niña-like SST anomaly + warm AMO SST anomly + monthly SST climatology	
PcAc run	La Niña-like SST anomaly + cold AMO SST anomly + monthly SST climatology	
PnAn run (control r	un) monthly SST climatology	

- Simulated results are consistent with observations.

2. Physical mechanism

Fig. 2 A schematic diagram for the combined effect of the warm ENSO-like and warm AMO SSTAs on the interannual variability of the EAWM

Conclusion

This study found that the AMO affects the influence of ENSO-like sea surface temperature anomalies (SSTAs, which contain the variability of both El Niño–Southern Oscillation and Pacific decadal oscillation) on the interannual change in EAWM. In the both observations and simulations, the out-of-phase relationship between the variations in ENSO and the EAWM was significantly intensified when the AMO and ENSO-like SSTAs were in phase. In contrast, when the ENSO-like and AMO SSTAs were out of phase, the anomalies related to the EAWM tended to exhibit relatively weaker features.