

Shocking the Crowd: The Effect of Censorship Shocks on Chinese Wikipedia

Daniel M. Romero School of Information University of Michigan

In collaboration with Ark Zhang , Danielle Livneh, Ceren Budak, and Lionel Robert

Collaborative Crowdsourcing

How do people self-organize **and adapt** to produce high quality output in collaborative crowdsourcing platforms such as Wikipedia and GitHub?

Shocks on Collaborative Crowdsourcing

Shocks on Collaborative Crowdsourcing

Timeline of Chinese Wikipedia

[Zhang et al., 2011]

Theoretical Expectations

- Unit of analysis: articles.
- Exogenous variation in fraction of editors blocked per article.
- How do unexpected shocks to affect collaboration dynamics?
 - Decrease in overall activity [Zhang et al., 2011].
 - Threat rigidity [*Staw 1981*]:
 - Centralization in decision making \rightarrow Skewed distribution of workload.
 - More cohesion \rightarrow Less Conflict.

Collaboration Dynamics

Volume of Activity: Number of edits.

Zhang et al., 2011

Workload Centralization: Gini coefficient of the distribution of number of edits per editor.

Ortega et al., 2008

Conflict:

Fraction of reverted edits.

Viegas et al.,2007 Kittur and Kraut, 2010

Identifying Blocked Users

Criterion 1: Not be active during blocks.

Criterion 2: Linguistic Patterns [Zhang at el., 2011]

- Simplified Chinese (mainland) vs. Traditional Chinese (outside mainland)
- Chinese characters for 'Wikipedia':

traditional

Use of Traditional Characters

Identifying Blocked Users

• Criterion 3: Time of activity

Identifying Blocked Users

- Classify user as blocked if:
 - No edits during the three blocks
 - No more than x% of traditional character usage
 - No more than y% of contributions during China's low activity.
- Using editors with IP address as ground truth, optimize x and y for F1 score.
- Precision = 0.74, Recall = 1, F1 = 0.85

Collaboration and Shock Measures

- Shock:
 - Binary: having at least one editor blocked.
 - Continuous: Fraction of edits contributed by blocked editors.
- Collaboration measures (Change: post pre block)
 - Level of activity: relative change in # of edits.
 - Centralization: change in normalized Gini-coefficient of edits.
 - **Conflict**: change in fraction of reverts among edits.

Sample and Analysis

- Study sample
 - 49,945 articles with at least 2 editors prior to block
 - 27,856 has at least one editor blocked
- Two-step analysis:
 - How does exposure to a shock, regardless of intensity, affect articles?
 - How does the intensity of the shock matter?
 - Use linear/nonlinear models

Activity

- 37% decrease in #edits in articles with no editors blocked.
- 40% decrease in #edits in articles with at least one editors blocked.
- Drop in activity monotonically increases with shock intensity.
- For large groups, activity initially drops slowly as shock increases.
- Large groups are more resilient to small shocks, but suffer more for large shocks.

Centralization

- Centralization tends to increase (not significantly) in articles exposed to shocks.
- Articles become increasingly centralized with moderate shocks
- As shocks become very large, the rate of centralization decreases (why?)

- 2.5% *increase* in conflict in articles with no editors blocked.
- 2.2% decrease in conflict in articles with at least one editors blocked.
- The decrease in conflict initially increases with shock intensity.
- As shocks become very large, the change in conflict decreases (why?)

Crowd Compositional Effects

- Why do changes in conflict and centralization decrease as shocks become very large?
- Articles with more blocked editors get more newcomers after the block.
- New editors were not affected by the shock, hence their behavior does not reflect a shock.

Crowd Compositional Effects

- Why do changes in conflict and centralization decrease as shocks become very large?
- Articles with more blocked editors get more newcomers after the block.
- New editors were not affected by the shock, hence their behavior does not reflect a shock.

Mediation Analysis

Does shock impact conflict indirectly through centralization?

	B^2	В
Direct Effect	0.4222***	-0.2471***
	(0.0448)	(0.0295)
Indirect Effect	0.0012	-0.0011
	(0.0035)	(0.0035)
Total Effect	0.4234***	-0.2482***
	(0.0446)	(0.0293)

Summary

- In Wikipedia, groups of editors become less active, more centralized, and have less conflict when they abruptly lose part of their workforce
 – consistent with theory of threat rigidity.
- **Group size matters**: Larger crowds are more resilient to small shocks, but less resilient to larger ones.
- The effect of the shock on conflict and centralization is non-linear. Moderate shocks have a larger impact than mild or severe shocks. This could be explained by compositional effects of the shock (newcomers).
- In order to **understand**, **predict**, **and manage** social and collaboration systems we have to study them, not only during times of normality, but also during times of stress and instability.