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Abstract

Atomistic, energy-weighted graphs of biomolecular structures allow for versatile and

efficient modelling of their properties whilst keeping physico-chemical detail. Starting

only with a priori knowledge of the spatial arrangement of individual atoms obtained

from structural files available at the Protein Data Bank (PDB), we present a multi-step

pipeline leading to an atomistic energy-weighted graph with individual atoms as nodes

and chemical interactions as edges. Whilst most graph approaches only consider strong

interactions and typically only at the residue level, an advantage of our methodology

lies in the inclusion of weaker interactions, such as hydrogen bonds, electrostatics,

hydrophobic interactions and π-π stacking interactions in DNA. The latter enable the

study of nucleic acids and their complexes with proteins. In addition, we provide

an implementation of the framework in the Python programming language, which is

made available under the GNU General Public License v3.0 at https://github.com/
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yalirakilab/BagPype. The computational efficiency of the programme is shown by

obtaining wall-clock timing data for over 50,000 experimentally obtained structures

spanning most of the PDB. We find that our implementation scales as a slow-growing

second order polynomial, where even the largest structures consisting of more than

60,000 residues can be processed in only a few minutes on a standard desktop computer.

Finally, a case study of the well-studied lac operon repressor protein-DNA complex,

comprising of 10,937 atoms, showcases aspects of the methodology using a dynamics-

based graph clustering technique, which has been previously applied successfully to

elucidate protein rigidity and multi-scale organisation. The graphs obtained by the

approach presented here can be combined with any method that uses graph theoretic

or network scientific information.
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Introduction

Biomolecular structures have often been studied from a graph theoretical perspective, but al-

most exclusively at a coarse-grained (CG) level. For example, residue interaction networks1–7

or elastic network models (ENMs),8,9 have been successful in describing protein properties

such as large-scale, biologically relevant structural dynamics of proteins10 at a low computa-

tional cost. Other graph theoretic perspectives on proteins include Markov State Models11

and Transition Networks,12 where networks of particular conformations, usually taken from

molecular dynamics simulations, are used to study various aspects of long-term behaviour.

Despite the wealth of methods based on CG models, there are yet comparatively few

approaches using atomistically detailed graphs, where nodes correspond exclusively to single

atoms rather than residues. Though nowadays mostly used in their CG variants, elastic

network models were originally proposed at the atomistic level as networks of Hookean

springs.13 More recent developments have shown great promise in areas such as deciphering

protein rigidity,14,15 binding site prediction16 as well as characterisation of bioactivity.17,18

The edges have been defined in different ways based on varying functions of inter-atomic

distances and cut-offs,19,20 while approaches combining CG models with atomistic details

have also been proposed.21–23 The most recent approaches (at both CG or atomistic levels of

detail) usually also combine graph-based methodology with some form of machine learning

algorithms, in order to achieve both detailed but also computationally inexpensive models.16

Many atomistic approaches rely on covalent bonds exclusively18,24 and weak interactions

or bonds are often ignored due to the separation of scales. However, it is the latter kind of

bonds, such as hydrogen bonds, hydrophobic interactions and π-π stacking interactions, that

are pivotal in most processes, such as ligand binding,25 allostery,26 multimer interactions

and protein-protein interactions to name a few.

We have recently proposed a methodology for constructing fully atomistic, energy-weighted

graphs on proteins,27–29 where a node corresponds to an atom and the edges are weighted

by energetic rather than distance-based values of both strong and weak interactions. The
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atomistic nature of the resulting graphs allowed us to not only retain the full multiscale

resolution provided by the original structure,30,31 but also enabled the exploration of amino

acid side-chain interactions that would otherwise be lost through coarse-graining.26 How-

ever, this approach was limited to proteins and relied on the programme Floppy Inclusion

and Rigid Substructure Topography (FIRST)14,15,32 for the detection of edges. Here, we

provide a generalisation of the methodology that is applicable to both protein and protein-

deoxyribonucleic acid (DNA) complexes and is modified and extended in several additional

ways: it introduces a novel approach to detecting hydrophobic edges by using a recently de-

veloped nonlinear geometric graph sparsification technique;33 it introduces π-π stacking inter-

actions and electrostatic backbone interactions for DNA; its implementation called BagPype

(Biochemical atomistic graph construction software in Python for proteins etc) is standalone,

open-source and written in Python, a popular, modern high-level programming language;34

it is computationally efficient so that a graph of a biomolecular structure can be obtained in

a few minutes on a current, standard laptop or desktop.

Beyond obtaining a much more detailed depiction of the biomolecule, there are many

more advantages to including weak bonds at atomistic resolution. In order for proteins to

fulfil many of their purposes, especially those related to genetic activity such as transcription,

packaging, rearrangement, replication and repair,35 they often bind to DNA to form protein-

DNA complexes. Whilst previous work has been limited to parsing proteins or DNA in

isolation, we are now enabling the study of protein-DNA complexes through the inclusion

of DNA-specific types of chemical interactions, in particular π-π stacking interactions and

DNA backbone electrostatic interactions. The interplay between proteins and nucleic acids

is essential to many intracellular processes responsible for maintaining and expressing genetic

information.36,37 Insight into the formation and activity mechanisms as well as the ability

to predict these protein-DNA interactions would provide useful guidance for many areas of

application, particularly drug discovery.38,39

Atomistic graphs that retain physico-chemical detail have been shown to reveal biophysi-
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cal properties at multiple resolutions, allosteric properties and communication. This general

methodology with an open-source Python implementation can be interfaced with any graph

or network approach for further study.

Methodology

Overview

We describe a systematic method for the representation of biomolecules as atomistic, energy-

weighted graphs, together with a general-purpose, standalone implementation BagPype in

Python34 (version 3.6 and newer), a widely-used high-level programming language. The ap-

proach introduced herein is however entirely independent of language-specific features and

can therefore be implemented in any current established general-purpose/scientific program-

ming language. A complete version of the code can be obtained at https://github.com/

yalirakilab/BagPype. Note that since the programme described here runs very efficiently

(as demonstrated later on), we have forgone using any multi-processing functionalities. Since

the entire programme runs single-threaded, this methodology is highly suitable for in silico

high-throughput analysis.

A graph can be mathematically defined by a set of nodes together with a set of edges

consisting of pairs of nodes that are connected. With this methodology, the aim to is con-

struct an atomistic, weighted graph and so the set of nodes is simply the set of all individual

atoms present in the biomolecule. This can be obtained from an experimentally determined

and/or computationally optimised structure of the molecule, alongside the spatial coordi-

nates in three dimensions, the names, residues and other information. The challenge now lies

in computing the set of edges given the information from the structure as well as defining a

weighting function for every edge, the latter of which will yield a weighted graph and allows

for the distinction of the various types of bonds and interactions included. Fundamentally,

the graph construction problem can be split into two sub-tasks: The detection of a bond or
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Table 1: Table summarising type of bonds and potentials used.

Bond/interaction
type

Edge detection Weighting potential

Covalent bonds Chemical Component Dictio-
nary40 + distance constraints41,42

Bond dissociation energies43

Hydrogen bonds Distance & angle constraints14 +
energetic cutoff

Modified Mayo potential
(DREIDING)44,45

Hydrophobic inter-
actions

Set of constraints14 + Relaxed
minimum spanning tree33,46

Hydrophobic potential of
mean force47

Electrostatic inter-
actions

Only for specific ions/ligands as
defined by LINK entries in PDB
file

Coulomb potential with par-
tial charges from OPLS-AA
force field48

π-π stacking inter-
actions

energetic cutoff + equal division
across ring moeities

Potential combining vdW
and electrostatic contribu-
tion49,50

interaction between any given pair of atoms and the weighting of the bond/interaction. This

can be seen in the second and fourth columns of figure 1, respectively.

As mentioned in the introduction, we not only consider covalent bonds, but also include

weaker types of bonds and interactions. Therefore, the edge-weight function will not attain

a single but rather several functional forms depending on the type of bond or interaction

in question. In addition, the edge detection will also depend on the bond type. In table

1, we have provided a comprehensive overview of all bond/interaction types alongside their

respective bond detection and edge weighting methods. For a more comprehensive treatise

of each potential, see the supplementary information.

In contrast, figure 1 presents a visual guide through the entire process starting with atom-

istic three-dimensional (3D) coordinates and finishing with an atomistic, energy-weighted

graph and the corresponding mathematical representation, e.g. its adjacency matrix. Two

example systems are shown, of which the first is caffeine. Its simple structure helps with

understanding the process at the level of individual atoms and bonds. On the other hand,

the lac repressor DNA binding domain shows the process applied to a much bigger molecule,

leading to a large atomistic graph consisting of roughly 1500 atoms.

In the following, we first describe the input file handling, followed by a detailed discussion
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Figure 1: Representative visualisation of the atomistic graph construction process. Two
example systems are given: the small molecule caffeine and the lac repressor DNA binding
domain which is discussed in this work. Starting with three-dimensional coordinates of
individual atoms, the first step is to detect covalent bonds as well as weak interactions.
This is then converted to an unweighted graph where the nodes are all the atoms and the
edges correspond to their interactions. Finally, the edges are weighted using information
from atomistic interaction potentials. The weighted graph encodes the physico-chemical
detail of the biomolecule and can be converted to an adjacency matrix or other useful graph-
theoretical representations for further study. Whilst the simplicity of caffeine’s molecular
structure helps with understanding the process at the atomistic level, the second example
shows the graph construction applied to a much bigger protein-DNA complex, namely the
DNA binding domain of the lac repressor protein. Atoms are coloured according to their
type consistently throughout the figure, while the thickness of the edge scales with the
edge weight. For the lac repressor, edges are coloured according to their interaction types
(covalent bonds in grey, hydrogen bonds in blue and hydrophobic interactions in orange).

of each bond type considered in our graph construction. This is representative of the rough

order of a typical run of the program.

Input file cleanup and parsing

The sole input of a standard run in BagPype in the implementation here is a structural file

usually obtained from the Protein Data Bank51 (PDB). Note that any input file has to be in

the PDB format (version 3.30) which is the international standard for biomolecular structures

(for details, see http://www.wwpdb.org/documentation/file-format). Functionality to
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include further file formats will be part of a future release.

Firstly, a typical execution involves some initial cleaning of the file, such as stripping

the file of ANISOU entries and any unwanted ligands/solvents or combining NMR models.

Furthermore, it is possible to select the alternate location indicator, which is present only

if an atom is provided in more than one location. We have also implemented a dedicated

filtering functionality, with which unwanted entries in the file can be stripped according to

a range of fields, such as residue name or sequence number, element symbol or atom serial

number.

After the cleanup, the biological units are generated from the asymmetric unit described

by the REMARK 350 and BIOMT fields of the PDB file. To this end, we have improved

and incorporated a Python script52 from the (defunct at time of writing) MakeMultimer

server. Then, the programme determines whether hydrogen atoms are already present in

the structure. If this is not the case, the third-party software package Reduce53(available

at http://kinemage.biochem.duke.edu/software/reduce.php is used to add missing hy-

drogen atoms.

Finally, this is followed by a parsing step, which extracts the three-dimensional coordi-

nates of all atoms and other useful information such as residue and chain identifiers, which

is then utilised by the various edge detection methods described in the following.

Note that whilst the default functionality has been set so that most files are parsed

reasonably, this may not always be the case, especially when input files are pre-processed

rather than input unchanged from the PDB. Therefore, any functionality mentioned above

may be switched on or off at the user’s discretion to provide greater flexibility with regards

to the input file’s particular information and layout.

Detection and weighting of bonds and interactions

Whilst each type of bond/interaction is implemented through a specific, independent routine

with a wide variety of components, there is one commonality shared between all. Every
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detection routine operates by looping through all atoms of the structure once. For each atom,

we consider only atoms in the vicinity (closer than 9Å) as potential bonds/interactions. For

this, all pair-wise distances are only computed once and each atoms close neighbours are

stored by the program. This way, we are able to save a tremendous amount of computation

time which we show later on, achieving a near-linearly scaling algorithm as opposed to

quadratic time if one were to consider all possible atom pairs.

Covalent bonds Covalent bonds play a fundamental role in the structural layout of any

biomolecule and their topological importance has been studied extensively. The covalent

bonding structure of compounds and residues can be obtained from various databases. In

our implementation, we make use of the Chemical Component Dictionary,40 which contains

all residues and small molecule components found in the PDB. This database is particularly

suited for the study of proteins as well as the large variety of ligands, other small molecules

and ions, as it retains the naming conventions of the PDB, i.e. each standard residue or

small molecule is distinguishable through a three letter code (e.g. GLY = glycine, CFF =

caffeine). In case of non-standard residues that do not appear in the CCD as may be the

case for unpublished structures, our implementation provides a functionality for manually

adding information on covalent bonds for the specific residue.

In contrast to the intra-residue bonds described above, inter -residue bonds are deter-

mined differently. In general, only peptide bonds (C-N), nucleic bonds (O-P) as well as

disulfide bridges (S-S) are allowed. Note that while most inter -residue bonds will be of

the afore-mentioned types, we have also included a functionality for forcibly including them

via a LINK entry in the PDB file, as a way to circumvent these restrictions. To determine

whether two atoms of different residues are covalently bonded, we utilise atom-specific co-

valent radii derived by Pyykkö and Atsumi,42 where a bond is deemed to be present if the

atomic distance is no more than the sum of the constituent atomic radii plus some tolerance.

To assign strengths of interactions to the covalent bonds, we use the bond dissociation
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energy as reported in the comprehensive work in Ref,43 accounting for bond multiplicities.

In moieties which exhibit electron delocalisation such as aromatic rings (automatically de-

tected54) as well as carboxylic acid and guanidin groups (in standard amino acid residues),

the bond weights are averaged across the moiety to account for delocalisation effects.

Through this approach, differences in bond energy arising from different molecules and

moieties as well as dependence on the position within the molecule are neglected in favour of

generality. Instead, we are able to incorporate into the full atomistic graph of the biomolecule

or complex any non-standard structure (e.g. small molecule ligands) in addition to standard

amino acids and nucleic acids, thus dramatically increasing the general-purpose nature of

our work.

Hydrogen bonds The importance of hydrogen bonds within biomolecules and particularly

their contribution to the stability of proteins and ligand binding is well known.14,25,55–57

In this work, we adopt a method introduced by Jacobs et al. 14 in the software package

FIRST, which detects hydrogen bonds and salt bridges through a set of geometric constraints

as well as an energy function44 stemming from the explicit hydrogen bond component of the

DREIDING force field introduced by Mayo et al.,45 corresponding to equation S2 in the

supplementary material.

In order to ensure that only physically realistic arrangements of atoms are considered,

the following list of constraints is imposed to determine a set of possible hydrogen bonds:

(i) Both donor and acceptor atoms have to be either a nitrogen, an oxygen or a sulfur. (ii)

The distance between donor and acceptor has to be less than 5Å. (iii) The distance between

hydrogen and acceptor has to be less than 4Å. (iv) The angle formed by donor, hydrogen and

acceptor has to be between 100° and 180°. Essentially, these restrictions, consisting mainly

of geometric bounds, provide a preliminary filter that discards any unrealistic constellations

before any further calculations are done.

Whilst FIRST only uses the Mayo potential to detect hydrogen bonds, we additionally
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use it to calculate the bond energy. To this end, every nitrogen, oxygen and sulfur atom of

the structure is assigned a so-called hydrogen bond status which allows for the distinction

between hydrogen bonds and salt bridges as well as providing the necessary parameters for

S2. Finally, candidate hydrogen bonds are then subject to a fixed cut-off parameter (by

default at -0.01kcal/mol).

Electrostatic interactions Though generally neglected, we include some essential types

of electrostatic interactions in this work, as they are crucial to the structure and dynamics

of proteins and DNA: salt bridges, electrostatic interactions between ions/ligands and the

biomolecules and DNA backbone electrostatic interactions. Whilst salt bridges are known to

contribute to the stability of proteins,58 the coordination of charged residues with ions and

ligands is particularly important when studying the binding specificities of small molecules.

Lastly, since this work enables the inclusion of DNA in the atomistic graph, we include

backbone elctrostatic interactions, which are partly responsible for the bending stiffness of

DNA.59

Here, salt bridges are defined as special cases of hydrogen bonds that exist when both

acceptor and donor are charged and thus, we again use methodology inspired by FIRST.14

Therefore, the same set of geometric constraints as described above for hydrogen bonds is

applied, but with an additional restriction: The angles formed by hydrogen, acceptor and any

atoms bonded to acceptor have to be larger than 80°. Finally, the resulting edges are then

weighted through a potential similar to that of hydrogen bonds (see equation S3), which has

a deeper minimum in line with the view that salt bridges are slightly stronger interactions

than hydrogen bonds.

Electrostatic interactions between ions/ligands and the biomolecules are often encoded

within the LINK entries of the PDB file, which can then be used as a straightforward edge

detection step. Weighting is done via a standard Coulomb potential which implicitly models

the atom centres as point charges as described by equation S4. Partial charges for standard
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residues were pre-calculated with the OPLS-AA force field48 and charges for non-standard

residues as well as small-molecule ligands were obtained from the GlycoBioChem PRODRG2

Server.60

Additionally, we introduce another type of electrostatic interactions only applicable to

DNA. Unlike amino acids, nucleotides are highly charged, with most of the net negative

charge residing in the phosphates of the DNA backbone.59 Here, we model this interaction

by creating edges between the phosphates of consecutive nucleotides in DNA chains. To

weight the edges, we apply a potential for DNA backbone interactions which includes the

Manning counterion and Debye screening effect,59,61–63 given by equation S5.

Hydrophobic interactions Hydrophobic interactions play a very important role in pro-

teins as a stabilising force47,64–67 within the structure. Due to their importance and signif-

icance for many processes surrounding biomolecules, it is essential for hydrophobic inter-

actions to be included in the construction of the biomolecular graph. However, the com-

putational modelling of hydrophobic interactions is poorly understood in the literature. In

parts, this is due to the many-body effect,47,65 which is an intrinsic property of hydrophobic

interactions. It is being suggested that hydrophobic interactions result not only from local

interactions but are due to global effects that go beyond isolated pairs of atoms. Commonly,

hydrophobic interactions are defined to be the association of non-polar solutes in aqueous

solution.68,69

In the following, we propose a method of deterministically modelling hydrophobic interac-

tions whilst taking both their global as well as their local aspects into consideration. To this

end, we first select a pool of candidate interactions using a set of constraints. Each possible

hydrophobic interaction is then assigned a weight. Finally, we sparsify this weighted sub-

graph using the Relaxed Minimum Spanning Tree (RMST) method proposed by Beguerisse-

Diaz et al. 33 which has been previously shown to successfully describe both the local and

global information of networks,70 thus allowing us to capture the properties of the multiscale
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hydrophobic effect.

Prior to calculating edge weights for hydrophobic interactions, a preliminary set of can-

didate interactions is determined through a set of constraints.14 As with hydrogen bonds,

this applies a preliminary filter, ensuring that only physically realistic pairs of atoms are

considered to form a hydrophobic interaction: (i) Only carbon and sulfur atoms can be

part of a hydrophobic interaction. (ii) Each atom’s (covalent) neighbours can only be either

carbon, sulfur or hydrogen. This is to ensure that no hydrophilic moieties (which usually

contain oxygen or nitrogen) are in the immediate vicinity. (iii) As we are mainly interested

in interactions between different residues, we do not allow hydrophobic interactions within

amino acids, i.e. both atoms in a hydrophobic interaction have to be in different residues.

(iv) Both atoms must not be in each other’s third neighbourhood, i.e. the shortest path

between them along the network of covalent bonds must be of length > 3.

In order to compute a weight for each possible hydrophobic interaction, we adapt and

apply a potential of mean force for hydrophobic interactions (derived and fitted experimen-

tally by Lin et al. 47) to calculate a corresponding weight for the interaction. In their work,

the authors describe a potential, which is the sum of three Gaussian functions, reproduced in

equation S6. Figure S.F2 shows the potential, including its four constituent summands. Note

that this potential has been successfully used in our previous graph construction approach

to parametrise the hydrophobic edges.26,28,30 Here, we have improved on the determination

of hydrophobic edges as will be explained in more detail below.

We now compute the Relaxed Minimum Spanning Tree33 of the set of all candidate hy-

drophobic interactions weighted by the potential. This algorithm was originally proposed

as a method for sparsifying a fully connected set of similarity measures and considers both

local and global aspects of the data. In the context of hydrophobic interactions, the goal

is to reduce the complexity of the interactional system. In neighbourhoods dominated by

stronger interactions, comparably weak interactions have little contribution and are there-

fore filtered out. On the other hand, such weak interactions are retained in regions of lower
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strength interactions (typically long-range interactions), so as to prevent the loss of valu-

able information on long-range effects. Particularly the last point sets this technique apart

from a simplistic energetic cutoff. As a consequence of the reduction in complexity, further

computations are much more feasible.

The algorithmic structure of RMST is best visualised and explained through pseudo-code,

which is given in algorithm 1 below. A few lines require further highlighting. In line 6, we

construct a minimum spanning tree (MST) making use of Prim’s algorithm.71 As the MST

minimises the sum of the edge weights, we obtain a subset of hydrophobic interactions which

is both fully connected and optimised to contain the strongest (most negative) interactions,

representing the globally influential subset of hydrophobic interactions. Both mlinkij defined

in line 10 and di defined in line 11 can be understood as measures of the local environment

around a given pair of atoms. On top of the MST, the algorithm allows certain edges that

fulfil the criterion set in line 12, i.e. edges that are significantly “strong” compared to their

neighbourhood. This can be understood as “relaxing” the tree. Finally, γ represents a free

parameter, which can be pruned to include more (larger γ) or less (smaller γ) hydrophobic

interactions. In the context of hydrophobic interactions, γ = 0.1 typically, as this achieves a

total energetic contribution of all hydrophobic interactions that is comparable to that of all

hydrogen bonds. This relationship has been observed in the literature.55,72

π-π stacking interactions The existence of π-π stacking interactions, or simply π-π inter-

actions, has been well established49 and they are known to greatly contribute to the stability

and structure of nucleic acids, hence influencing their function.73 π-π interactions are defined

to be the total interaction between two aromatic moieties, resulting from the interactions

between π-electrons.73

The accurate description of this type of interaction is crucial to the graph construction for

either isolated DNA or protein-DNA complexes and was developed by Delmotte et al.29,61 It

uses the well-established potential proposed by Hunter and Sanders 49 for the Van der Waals
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Algorithm 1 Relaxed Minimum Spanning Tree for the selection of hydrophobic interactions

Require: (V,E)← set of nodes and edges in graph of possible hydrophobic interactions
1: function w(i, j)
2: return weight of edge (i, j)← whydrophobic(i, j)
3: end function . Note that w(i, j) < 0 ∀i, j.
4:

5: procedure RMST(V,E, γ)
6: From (V,E), obtain a minimum spanning tree (VMST , EMST )
7: (VRMST , ERMST )← (VMST , EMST )
8: for each i, j such that (i, j) ∈ E and (i, j) /∈ EMST do
9: Obtain path {(i, k), (k, l), ..., (m, j)} in EMST

10: mlinkij ← max{w(i, k), w(k, l), ..., w(m, j)}
11: di ← mink{w(i, k)} and dj ← mink{w(j, k)}
12: if w(i, j) < mlinkij + γ|di + dj| then
13: ERMST ← ERMST ∪ (i, j)
14: end if
15: end for
16: return (VRMST , ERMST )
17: end procedure

contribution and the electrostatic contribution term from Warshel et al. 50 as can be seen in

equation S7. This potential is parameterised using values obtained by the authors of Ref.49

Unlike the other weighting functions in this work, we consider pairs of nucleobases here,

i.e. we calculate the total interaction energy between every pair of atoms each belonging to

one of two nucleobases. This is computed for each possible pair of nucleobases, regardless of

proximity. This ensures that the correct energies are calculated for standard as well as non-

canonical DNA structures such as G-quadruplexes, where interacting nucleobases are not

necessarily consecutive. The resulting energy is then subject to a threshold calculated from

the thermal energy at room temperature (300K) corresponding to approx. −0.596kcal/mol.74

In standard duplex DNA, this makes it highly unlikely that non-consecutive nucleobases are

considered. Finally, the total energy of the interaction is spread across the moieties, rather

than creating one overpowering edge and is distributed equally, for simplicity, onto the six

edges connecting each atom of one nucleobase’s benzene ring to its equivalent on the other

nucleobase.
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Uniquification and output

Once each bond/interaction detection routine has successfully been completed, the edges of

the graph are “uniquified”. If two different types of bonds or interactions between the same

two atoms were detected, the algorithm will merge the duplicate edges and add the energies

up, implicitly assuming additivity between bond types.

Following this, the resulting graph is output in a number of formats. Primarily, BagPype

produces two types of output: (i) two spreadsheets detailing all nodes and edges respectively

(in .csv file format) and (ii) a Graph object based on networkx75 (a popular Python package

for the study of complex networks). Whilst the former is very general-purpose and can

be read by a large variety of software for further analysis, such as computing statistical

features, the latter is particularly well-suited for graph-theoretic analysis, due to the large

range of output options (e.g. in Graph Exchange XML Format or GraphML), implemented

in networkx which facilitate direct interfacing with other network science software.

Results & Discussion

The results presented in this work are two-fold: First, we show the computational feasibility

of the graph construction as implemented in BagPype by obtaining timing data for a large

sample of proteins, nucleic acids (NAs) and protein-NA complex structures across the PDB.

As mentioned above, our implementation is single-threaded and does not make use of any

parallel computing packages. On multi-core processing units, it is therefore possible to run

multiple graph construction instances in parallel, making our method suitable for fast high-

throughput analysis. Second, we show how graph theoretic measures can be directly applied

on the graph construction by drawing exemplatory methods from graph/network theory and

biophysics.
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Figure 2: Scatter plots of measured wall-clock time of the graph construction against number
of atoms for 54,447 PDB structures containing proteins, nucleic acids and protein-nucleic
acid complexes on a standard desktop. A: In addition to the overall scatter plot, a linear
second-order polynomial regression based on the entire dataset is shown as a solid black line
(see main text for details). B: The graph construction time for proteins, nucleic acids and
protein-nucleic acid complexes is shown separately. C: A histogram (binwidth: 1000) shows
the size distribution (in terms of number of atoms) of each dataset used here and reflects
the resolved structures available in the PDB to date.

Computational feasibility

The continuous advances in experimental techniques allow for larger biomolecular complexes

to be resolved at better resolutions in complex environments. This calls for computational

methods that scale well as structures become larger. In the following, we show that our

graph construction algorithm BagPype remains computationally viable even for large protein

structures without compromising on the level of detail. To that end, we provide data-based

evidence that our implementation of the above described method is subject to scaling in low-

order polynomial time. We obtain three separate data sets by mining the PDB (as of March

2020) according to the following specifications: (i) All structures containing proteins only

with a molecular weight less than 500 kDa (approx. 70,000 atoms after adding hydrogens),
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(ii) all structures containing nucleic acids only and (iii) all structures containing both protein

and nucleic acids with a molecular weight less than 500kDa. To reduce redundancy in the

protein-only data set, we applied a 90% threshold for sequence similarity using BLAST76

and, when resolved by X-Ray crystallography, only consider proteins with resolution lower

than 3Å. This resulted in (i) 44,536, (ii) 3,441 and (iii) 6929 structures in the respective

categories, i.e. a total of 54,906 PDB files. Note that in order to facilitate a high-throughput

analysis, all PDB files are stripped of non-standard residues in these datasets.

For each structure in all three data sets, we carry out the entire graph construction

work-flow as described in figure 1 and measure the elapsed wall-clock time (real time). The

executions were run in parallel on a workstation with the following technical specifications:

2×Intel® Xeon® CPU E5-2690 v3 @ 2.60GHz, 256GB RAM. Due to some files containing

non-standard entries or other non-standard text, not all files could be processed, leading to

a final number of 54,447 structures (44,274 of proteins only, 3,371 of NA only and 6,802 of

protein-NA complexes) used for the analysis below.

To obtain the time complexity, we reject a first-order linear model because the implemen-

tation contains nested looping, and instead consider a second-order polynomial ansatz. This

is also theoretically consistent with the general structure of the algorithm, which consists, for

almost all bond types, of one loop over all atoms as well as a second loop over each atom’s

neighbourhood searching for possible bonding partners.

As can be seen from figure 2A, a second order polynomial fit of the form t = β0+β1n+β2n
2

gives a good approximation. Here, t stands for the total execution time in seconds and

n denotes the total number of atoms in the biomolecule. We find that β0 = 1.388021,

β1 = 1.031767×10−3 and β2 = 7.330826×10−9, with coefficient of determinationR2 = 0.9413.

Intuitively, the intercept β0 can be understood as the algorithm’s overhead, i.e. loading

additional modules, reading the file etc., which in this case takes (on average) around 1.39

seconds, while β1 can be interpreted to be the linear scaling in seconds per number of atoms.

β2 represents the quadratic scaling factor arising from more complex parts of the algorithm.
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The numerical values are of lesser importance and indeed will depend on the hardware used,

but rather it is the second-order polynomial behaviour which is of significance. Note that

a third-order polynomial fit as well as higher orders were rejected, as this introduced a

negative coefficient for the cubic term, which is not only inappropriate for our data sets, but

also indicative of overfitting.

Furthermore, since structures of approximately less than 20, 000 atoms still dominate the

PDB currently (see figure 2C), the quadratic term does not play a significant role for almost

all structures of the PDB, amounting to a mere few seconds (e.g. 7.33 × 10−9 × 20, 0002 ≈

3s with the hardware used here). Therefore, for structures of that size and smaller, our

methodology achieves a near-linear scaling in time complexity.

The two distinct behaviours of nucleic acids in Figure 2B, reflect the stacked interactions

implemented for DNA, which are currently absent in RNA but will be included in a future

release of the software.

Furthermore, it is worth noting the difference between structures containing proteins only

vs protein-NA complexes. The latter show running times far more varied than the former,

which is of course due to the nucleic acids adding to the execution time, especially for larger

structures. Because of the added types of interactions for DNA (π-π stacking and backbone

interactions), structures involving DNA take longer to process.

Finally, in addition to the the timing complexity trends we see that for most structures,

the atomistic graph can be obtained from a few seconds to a few minutes which makes the

methodology highly suitable for large scale as well as high-throughput analyses.

Case study: Multiscale features of the lac operon repressor protein-

DNA complex

In this section, we aim to recover the macro-molecular structural buildup from only the

atomistic graph constructed through the software described in this paper. To this end, the

Markov Stability framework,27,77,78 a highly versatile, multi-scale graph clustering method-
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ology, has been successfully applied in the past, to extract various properties of atomistic

protein graphs, ranging from uncovering levels of organisation within proteins30 to finding

highly disruptive mutations.28,31,79 An inherent strength of this methodology compared to

similar graph clustering algorithms is its independence from particular scales. Through a

parameter, called the Markov time, we are able to “zoom” through multiple resolutions, find-

ing clusters (also known as partitions or communities and used synonymously throughout

the text here) ranging from small to large.

Whilst the full extended details of the method can be left to more technical papers, we

necessarily need to introduce two measures with respect to Markov time, by which a “good”

clustering can be identified: (i) The number of communities (NC): At each Markov time t,

we calculate the optimal clustering at the corresponding resolution. Here, we are looking for

“plateaus”, which indicate that a particular x-way partition is persistent across a range of

Markov time. (ii) The variation of information (VI): Since the greedy optimisation algorithm

is run multiple times at each Markov time, the optimal solution may not be the only solution.

Thus, in order to quantify the spread, we calculate the VI, a measure of distance between

two clusterings originating from probability theory and take the average. Here, a “good”

result is signified by a low VI value, meaning that there was good agreement between the

various solutions.

In figure 3, this method can be seen in action on the lac repressor protein. As expected,

Markov Stability is able to uncover the structural buildup at the chemical bond level at low

Markov time. The next place of low VI firmly corresponds to amino acids, which is then

followed by a good clustering into secondary structure elements, such as α-helices. Finally,

at large Markov time, a particularly exquisit 6-way clustering emerges, which is persistent

across a very long range of Markov times, accompanied by a steady decline in VI. The

very last end of Markov times corresponds to a very stable 3-way clustering, splitting the

protein into its two core domains as well as the DNA-binding domains together with their

operator DNA. From a biological point of view, these are all sensible clusterings, taking full
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Figure 3: The lac repressor protein (dimer) with operator DNA seen through the Markov
Stability method,27 a very versatile graph clustering tool. The main parameter, Markov time,
acts as a “zooming lens”, exploring a wide range of community sizes of the protein. At very
small Markov times, chemical bonds form individual communities and at very large Markov
times, large-scale protein domains are uncovered. The results are described by two measures
with respect to Markov time: the number of communities (NC, shown in blue) as well as
variation of information (VI, shown in orange). Meaningful communities are characterised
by persistent plateaus in the NC curve as well as low VI. As can be seen from the figure, a
wide range of biologically relevant substructures are found.
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Table 2: Table comparing border-line residues between those used in the literature and those
found by Markov Stability. †: Not clearly defined.

Border between which domains Markov Stability Literature80

headpiece+hinge / NH2-subdomain 58/59 58/59
NH2-subdomain / CO2-subdomain 161/162 161/162

291/292 289/293†

319/320 320/321

advantage of the multi-scale nature of the method. Finally, we take a closer look at the

6-way partitioning, and in particular the border residues between different clusters. We find

that we are in almost perfect agreement with the commonly used split into domains taken

from the literature surrounding the particular structure used here.80 For a detailed overview,

see table 2.

Conclusions

In this work, we introduced novel methodology for the construction of an energy-weighted,

atomistic graph from experimentally obtained biochemical structures. Besides covalent

bonds, further types of weak interactions are included in the graphs: hydrogen bonds, hy-

drophobic interactions, a range of electrostatic interactions as well as π-π stacking for DNA.

For all types of bonds/interactions, we draw on existing methodologies and adapt them

for this purpose. In particular, we proposed a novel way of including both the local and

the global scales of hydrophobic interactions through the application of RMST, a recently

devised graph sparsification tool. Through the addition of DNA π-π stacking interactions,

we are now able to apply the graph construction not just to proteins, but DNA as well as

protein-DNA complexes.

In addition to the theretical work, we also provide an open-source implementation in

Python. With BagPype, we created a self-contained package for constructing atomistic graphs

from files in the PDB format. Its output is highly versatile, allowing for a wide range of

analysis and applications to build on BagPype.
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We then demonstrated both the computational feasibility as well as showcased our

methodology by applying graph-theoretical analysis tools. To this end, we have computed

execution times for a vast set of biochemical structures obtained from the PDB. We found

that the algorithm scales as a slow-growing second order polynomial. Even large biomolecules

can be processed within minutes on a standard desktop or workmachine. Furthermore, we

applied a recently developed multiscale graph clustering method, Markov Stability,27 to a

well-studied protein, the lac operon repressor. We found that the method was able to fully

recover multiple levels of structural composition, ranging from individual amino acid residues

to sub-domains and domains.

We therefore showed that our methodology is not only fast and efficient but also remains

true to reality. Therefore, we are able to graph-theoretically encode atomistic physico-

chemical properties of biochemical molecules in a fast manner without compromising on

accuracy or level of detail.

With this work, we hope to provide the foundational basis for the application of estab-

lished ideas from graph theory as well as network science to the detailed graphs of biomolec-

ular structures as described here, as well as encouraging the further development of analysis

methodology, that is purpose-built for the investigation of open questions relevant to bio-

chemistry. Since our methodology is implemented in a general-purpose manner, it can be

combined with further approaches and techniques. Graph theory and network science pro-

vide a vast arsenal of useful tools, many of which have been proven to be applicable to various

scopes outside mathematics. Much remains unexplored with regards to atomistic graphs, and

so we anticipate that “atomistic, biochemical graph theory” will be of increasing importance

in the future.
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Functional forms of edge weighting potentials

In its simplest description, a graph G can be denoted as
(
V,E

)
, a collection of two sets

describing the nodes (also known as vertices) and edges contained within the graph.81,82 Two

nodes i, j are connected if and only if (i, j) ∈ E. Furthermore, in a weighted graph, there

exists a function w : E 7→ R, which maps each edge to a real number (the edge-weight).83 In

this section, we give the explicit weighting equations associated with each bond/interaction

type.

Covalent bonds

Table S.T1: Bond dissociation energies in kcal/mol used to weight covalent
bonds in the graph construction. Values (excerpt) taken from Ref.43

Bond Energy (kcal/mol) Bond Energy (kcal/mol)
H C 98.3 C O 85.5
H N 92 C O 190.9
H O 109.6 C P 63
H P 77 C S 65
H S 87 P O 80
C C 82.6 P O 130
C C 144 S O 127.2
C N 72.8 N O 145
C N 147 N O 48

Making use of notation introduced at the outset, we can write:

wcovalent(i, j) :=


98.3, if i is hydrogen and j is carbon and vice versa

92, if i is hydrogen and j is nitrogen and vice versa

. . . see table S.T1

(S1)
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Hydrogen bonds

Figure S.F1: Hydrogen bonds and variables used in the potential. The diagram shows a
donor atom (in blue), a hydrogen bonded covalently to the donor (in white), an acceptor
atom (in red) and a neighbouring atom to the acceptor (in green). The resulting hydrogen
bond is shown as a dotted lightblue line. Each solid line represents a covalent bond. Lastly,
dashed lines represent variables as well as angles used in the hydrogen bond potential.

whydrogen(i, j) := V0

{
5
( d0
dij

)12
− 6
( d0
dij

)10}
F (θ, φ, γ), (S2)

where V0 = 8 kcal/mol, d0 = 2.8Å and dij is the distance between donor and acceptor

(denoted by i, j) as shown in Figure S.F1. The functional form of the angular term F (θ, φ, γ)

depends on the hybridisation of both donor and acceptor as shown in table S.T2. Note that

dij (d in the figure), r, θ and φ are as shown in Figure S.F1.

Table S.T2: The functional form of the angular term in the hydrogen bond
potential depending on the hybridisation of donor and acceptor. θ and φ
are angles as shown in Figure S.F1 and γ is the maximum angle between
the normals of the planes defined by the covalent bonds of the donor and
base atoms (coloured green in Figure S.F1). In cases where there is more
than one atom bonded to the acceptor, the maximum φ is used. Note that
all angles are in radians.

Donor Acceptor Functional form

sp3 sp3 F = e−(π−θ)
6

cos2 θ cos2(φ− 109.5
180

π)

sp3 sp2 F = e−(π−θ)
6

cos2 θ cos2 φ

sp2 sp3 F = e−2(π−θ)
6

cos4 θ

sp2 sp2 F = e−(π−θ)
6

cos2 θ cos2 (max(φ, γ))
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Salt bridges

wsalt(i, j) := VS

{
5
( dS
dij + x

)12
− 6
( dS
dij + x

)10}
, (S3)

where VS = 10 kcal/mol, dS = 3.2Å, dij is as above and x = 0.375Å.

Electrostatic interaction between ions/ligands and the biomolecules

welectrostatic(i, j) :=
332

ε

qiqj
dij

, (S4)

where ε = 4.84 qi and qj represent the point charges of the two atoms (i,j) that are to be

linked. As before, dij denotes the distance between the two atoms.

DNA backbone electrostatic interactions

wbackbone(i, j) :=
332δ2

ε

e−κdij

dij
, (S5)

where the net effective charge δ = 0.24, the Debye screening parameter κ = 0.329
√
c and

c = 0.1mol/l for monovalent salts such as NaCl59 and ε = 4.

Hydrophobic interactions

whydrophobic(i, j) :=
3∑

k=1

hk exp

(
−
(dij − ck

wk

)2)
, (S6)

where i and j denote a candidate pair of atoms and k denotes the index of the three Gaussians

as defined in table S.T3. dij indicates the spatial distance between i and j. The parameters

for the Gaussian functions are taken from Ref.47 (see table S.T3).

π-π interactions

wstacking(b1, b2) :=
∑

i∈b1, j∈b2

[
KiKj

[
C exp

(
− αz

)
− A

z6

]
︸ ︷︷ ︸

Van der Waals contribution

+
∑
kl

[
332

ε

qki q
l
j

dklij

]
︸ ︷︷ ︸

Electrostatic contribution

]
, (S7)
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Table S.T3: Parameters used in the hydrophobic potential. Taken from
Ref.47 The parameters for the Gaussian functions are ck, wk and hk which
denote the centre (position of the peak), width (the standard deviation)
and height (height of the peak) respectively.

Gaussian function parameters

1st Gaussian
k = 1

2nd Gaussian
k = 2

3rd Gaussian
k = 3

ck 3.81679 5.46692 7.11677
wk 1.68589 1.39064 1.57417
hk -0.73080 0.20016 -0.09055

where

z =
dij
dWij

and dWij =
√(

2dWi
)(

2dWj
)

The distance between the two atoms is denoted by dij. Furthermore, k and l are param-

eters, each corresponding to the three point charges associated with each atom: a σ point

charge at the centre of the atom and two π point charges at 0.47Å above and below the

aromatic plane. In the above equation, k stands for the three point charges of atom i, and l

stands for the three point charges of atom j,

dklij is the distance between each pair of point charges. The remaining constants (all taken

from Caillet and Claverie,85 except ε which was determined in Gilson and Honig 84) are as

follows:

α = 12.35, A = 0.214, C = 47× 103, ε = 4

rWX denotes the van der Waals radius of atom X:

rWH = 1.2Å, rWC(aliphatic) = 1.7Å, rWC(aromatic) = 1.77Å,

rWN = 1.6Å, rWO = 1.5Å

The parameters KX depend on the element of the atom X and denote the energy minimum
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Figure S.F2: The hydrophobic potential used in our graph construction
is shown together with its respective summand functions. The overall
potential is shown by a thick black line, the 1st, 2nd and 3rd Gaussian
functions are shown in red, green and blue respectively.

according to the atomic species:85

KH = 1, KC = 1, KN = 1.18, KO = 1.36

Depending on the base (one of adenine, guanine, cytosine or thymine∗) and whether the

point charge is σ or π, qki can take a different value.

∗Note that only standard DNA is currently considered for π-π stacking.
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(41) Pyykkö, P.; Atsumi, M. Molecular Single-Bond Covalent Radii for Elements 1-118.

Chemistry - A European Journal 2009, 15, 186–197.
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