
S-conLSH: Alignment-free gapped mapping
of noisy long reads

Angana Chakraborty, Burkhard Morgenstern and Sanghamitra
Bandyopadhyay

Supplementary Material

1

Contents

A Supplementary Note 1: Performance evaluation of S-conLSH in multi-
threaded system 3

B Supplementary Note 2: Performance variation of S-conLSH with dif-
ferent values of L in multi-threaded system 7

C Supplementary Note 3: Difference between traditional spaced-word
based matching algorithm and S-conLSH 8

D Instruction Manual 12

2

A Supplementary Note 1: Performance evaluation
of S-conLSH in multi-threaded system

This section studies the behaviour of S-conLSH in a multi-threaded system.
We have used a total of 146932 noisy long reads simulated from hg38 human
genome using PBSIM [1], as described in the Results section of the main article,
using the command “pbsim --data-type CLR --depth 1 --length-min 1
--length-max 200000 --seed 0 --sample-fastq real.fastq hg38.fa”.
The error profile has been sampled from three real human PacBio RS II P5/C3
reads listed below, concatenated as real.fastq.

• m130929_024849_42213_c100518541*_s1_p0.1.subreads.fastq

• m130929_024849_42213_c100518541*_s1_p0.2.subreads.fastq

• m130929_024849_42213_c100518541*_s1_p0.3.subreads.fastq

Human
simulated
dataset

#Reads #Threads Mapper
Indexing

Time
(Sec)

Mapping
Time
(Sec)

Peak
Memory
Footprint

(GB)

32290

1
Minimap2 10 61 1.6
lordFAST 192 206 1.2
S-conLSH 51 38 3.3

4
Minimap2 10 25 1.8

Chr#1 lordFAST 191 62 1.2
S-conLSH 15 10 3.3

8
Minimap2 10 21 1.9
lordFAST 192 41 1.2
S-conLSH 10 9 3.3

Table: S-1

The tables [S-1]-[S-5] exhibit the performance of S-conLSH along with two
other recently developed aligners Minimap2 [2] and lordFAST [3]. All methods
have been executed in the same settings as mentioned in the Table 1 of the
main article except running them in multiple threads. The experiment has been
conducted on 5 different chromosomes of the human simulated dataset. The
results obtained by single-threaded execution are also listed in the tables for the

sake of comparison. MUMmer4 [4] has been excluded from the present study
due to its slow speed. The low sensitivity of Minimap [5], as observed in the
Table 3 of the main article, prohibits itself from further experimentation in this
section.

Human
simulated
dataset

#Reads #Threads Mapper
Indexing

Time
(Sec)

Mapping
Time
(Sec)

Peak
Memory
Footprint

(GB)

34309

1
Minimap2 10 64 1.6
lordFAST 170 216 1.2
S-conLSH 54 44 3.4

4
Minimap2 10 47 1.8

Chr#2 lordFAST 170 67 1.2
S-conLSH 16 12 3.4

8
Minimap2 10 22 1.9
lordFAST 170 46 1.2
S-conLSH 10 10 3.4

Table: S-2

Human
simulated
dataset

#Reads #Threads Mapper
Indexing

Time
(Sec)

Mapping
Time
(Sec)

Peak
Memory
Footprint

(GB)

28109

1
Minimap2 8 52 1.4
lordFAST 135 167 1.1
S-conLSH 45 30 3.1

4
Minimap2 8 21 1.5

Chr#3 lordFAST 135 44 1.1
S-conLSH 13 9 3.1

8
Minimap2 8 17 1.7
lordFAST 135 28 1.1
S-conLSH 9 8 3.1

Table: S-3

The table S-1 describes the indexing time, mapping time and the peak mem-
ory footprint of the three different methods on 32290 different reads simulated
from the chromosome-1 of the human genome. The best results in each cate-
gory have been marked as bold. Please note that the sensitivity and precision

4

values of alignment quality have not been reported in the present study as they
remain unchanged with the degree of parallelism. Please refer to the Table 3
of the main article for detailed comparison of sensitivity and precision of the
alignments produced by different methods.

Human
simulated
dataset

#Reads #Threads Mapper
Indexing

Time
(Sec)

Mapping
Time
(Sec)

Peak
Memory
Footprint

(GB)

26871

1
Minimap2 8 51 1.4
lordFAST 129 158 1.0
S-conLSH 41 29 3.0

4
Minimap2 8 20 1.5

Chr#4 lordFAST 129 42 1.0
S-conLSH 12 9 3.0

8
Minimap2 8 18 1.7
lordFAST 129 27 1.0
S-conLSH 8 8 3.0

Table: S-4

It can be observed from table S-1 that S-conLSH is always the fastest in
terms of mapping time when experimented with different number of threads.
The S-conLSH indexer, on the other hand, is getting faster with the increase of
parallelism and matches up with the speed of Minimap2 when run in 8 parallel
threads.

Human
simulated
dataset

#Reads #Threads Mapper
Indexing

Time
(Sec)

Mapping
Time
(Sec)

Peak
Memory
Footprint

(GB)

25353

1
Minimap2 7 48 1.4
lordFAST 123 149 0.9
S-conLSH 39 23 2.9

4
Minimap2 7 26 1.4

Chr#5 lordFAST 123 40 0.9
S-conLSH 12 8 2.9

8
Minimap2 7 16 1.6
lordFAST 123 25 0.9
S-conLSH 7 6 2.9

Table: S-5

5

Note that, Minimap2 and lordFAST use multiple threads only at the time of
read-alignment. The indexing time of these two methods, therefore, does not
change with the number of threads. A similar scenario is visible in the results
of 4 other chromosomes of the human simulated dataset (refer tables [S-2] to
[S-5]).
Although slower in terms of mapping and indexing time, lordFAST has the small-
est memory footprint among the three. The memory load of S-conLSH is higher
than the other two methods. This is because S-conLSH index stores more in-
formation to ensure the highest level of sensitivity of the read-mapping without
performing an actual base-by-base alignment. Hence, it can be concluded that
S-conLSH improves its rum-time performance by taking advantage of the par-
allelism while keeping the quality of mapping at its best.
It is interesting to observe that the memory requirement of Minimap2-aligner
(as Minimap2-indexer does not work in multiple threads) increases with the
increase of thread count. The same of the other two methods, S-conLSH and
lordFAST, does not change significantly with higher degree of threading.

6

B Supplementary Note 2: Performance variation of
S-conLSH with different values of L in multi-threaded
system

To study the performance variation of S-conLSH with different values of L in
a multi-threaded system, we have conducted an experiment on 32290 reads of
chromosome1 of human simulated dataset. S-conLSH has been executed in 4
concurrent threads for 5 different values of L. The results are summarised in
Table S-6. The results obtained for the default value, i.e., L = 2 of S-conLSH
have been marked as bold. Note that the other parameter values are fixed at
the default (K = 2, context size (2λ+1) = 7, and z = 5) settings.

Human
simulated
dataset

#Reads #Threads Mapper L
Indexing

Time
(Sec)

Mapping
Time
(Sec)

Peak Memory
Footprint

(GB)

32290 4 S-conLSH

1 15 8 3.31
2 15 10 3.31

Chr#1 5 16 52 3.316
7 15 91 3.319
10 15 143 3.32

Table S-6

It can be observed from Table S-6 that the mapping time increases with L.
This is because, L indicates the number of different hash tables (one for each
of the L different spaced-seeds) used to compute the mapping of noisy long
reads. Therefore the search becomes more rigorous, with the increased values
of L, having considered all spaced-contexts obtained from L different patterns.
This is, however, useful for highly sensitive applications at the expense of a few
more seconds of mapping time. The indexing time, on the other hand, does
not vary with the change in L. A similar conclusion has been made from the
Table 6 of the main article. In spite of the fact that S-conLSH is executed in 4
different threads, the increase in L does not add up significantly to the memory
footprint. Hence, it can be concluded that S-conLSH may be used with higher
values of L, being distributed over multiple concurrent threads, without requir-
ing much memory space.

7

C Supplementary Note 3: Difference between tradi-
tional spaced-word based matching algorithm and
S-conLSH

This section elaborates the difference of S-conLSH over the standard spaced-
word based algorithms[6, 7, 8, 9]. The spaced-seeds or patterns used in this
illustration can be found at Fig.S.1(a). The Fig.S.2 describes the matching using
traditional spaced-word based algorithms with the same strings and patterns
used in Fig.S.3 for S-conLSH. Note that Fig.S.3 is exactly the same as Figure 2 of
the main article which is repeated here for better understanding.

011100111

111111

Pattern1

Pattern2

(a)
Figure S.1: The set of spaced-seeds used for illustration.

In the standard spaced word based methods one or multiple spaced-seeds
or patterns are used to find matching between the sequences. A base-by-base
matching is required in the sequences corresponding to the positions of ‘1’s in
the pattern. The positions of ‘0’s are considered as don’t care locations. If two
sequences have the same bases in the positions of ‘1’s in the pattern, then it
is a hit. The matches or mismatches whatever there are in the position of ‘0’s
are simply ignored. Fig.S.2 shows an example of this using two strings “ATTCG-
GTAA” and “TTCTAAGTA” (same strings which have been used in Figure 2 in the
main article).

It can be seen from the Fig.S.2(b) that strings “ATTCGGTAA” and “TTCTAAGTA”
do not make a hit as they have different bases (marked as red in the figure) at the
positions of ‘1’s in the pattern “01100111". It is similar for the second pattern
“111111” as well (see Fig.S.2(c)). Therefore, both the patterns identify these two

8

011100111

111111

Spaced-conLSH
Pattern

K=2, L=2
Context Size=3

Hashed Value Hashed Value

String1

String1

String2

String2

Hash Table

ATTCGG

TTCTAA

TCTGTA

ATTCGGTAAString1

-TTC - -TAAGTAString2

Gapped Mapping

(a)

ATTCGGTAAString1

Pattern1 Pattern2

ATTCGGTAA
011100111

ATTCGGTAA
111111

TTCTAA ATTCGG
Hashed Value Hashed Value(b)

TTCTAAGTAString2

Pattern1 Pattern2

TTCTAAGTA
011100111

TTCTAAGTA
111111

TCTGTA TTCTAA

(c)

(d)

ATTCGGTAAString1

0 1 1 1 0 0 1 1 1

TTCTAAGTAString2

ATTCGGTAAString1

1 1 1 1 1 1

TTCTAAGTAString2

(b) Pattern1: No hit

(c) Pattern2: No hit

Figure S.2: Standard spaced-word based matching using the patterns described
in Fig. S.1(a).

strings as dissimilar according to the standard spaced-word based methods.

However, a different scenario has been experienced when we used the same

9

011100111

111111

Spaced-conLSH
Pattern

K=2, L=2
Context Size=3

Hashed Value Hashed Value

String1

String1

String2

String2

Hash Table

ATTCGG

TTCTAA

TCTGTA

ATTCGGTAAString1

-TTC - -TAAGTAString2

Gapped Mapping

(a)

ATTCGGTAAString1

Pattern1 Pattern2

ATTCGGTAA
011100111

ATTCGGTAA
111111

TTCTAA ATTCGG
Hashed Value Hashed Value(b)

TTCTAAGTAString2

Pattern1 Pattern2

TTCTAAGTA
011100111

TTCTAAGTA
111111

TCTGTA TTCTAA

(c)

(d)

Figure S.3: A schematic illustration of gapped-mapping using S-conLSH on
“ATTCGGTAA” and “TTCTAAGTA” respectively using the patterns of Fig.S.1(a).

patterns on the strings “ATTCGGTAA” and “TTCTAAGTA” in S-conLSH (please
see Fig.S.3). S-conLSH computes the spaced-contexts (see Definition 4 in the
main article) or hashed values from the strings “ATTCGGTAA” and “TTCTAAGTA”
using both the patterns “01100111" and “111111” (depicted in Fig.S.3(b) and
(c)). Then, the strings are inserted in a hash table corresponding to their hashed
values (Fig.S.3(d)). It can be seen that String1 and String2 are inserted together
in hash index “TTCTAA". This is because they have produced the same hash
value, “TTCTAA", for pattern1 and Pattern2 respectively. As they are hashed

10

together in the same slot of the hash table, S-conLSH identifies them as sim-
ilar. This results in a mapping between String1 and String2 introducing gaps
in the positions of ‘0’s in the corresponding pattern. The gapped mapping is
obtained only because S-conLSH hashes the spaced-contexts obtained from
different patterns together where each pattern has different distribution of ‘0’s
and ‘1’s, generated using Algorithm 1 described in the main article.

Please note that in the figures, the patterns have been shown to be placed
only at the first positions of the strings for the sake of simplicity. In the ac-
tual computation of spaced-context values, each pattern slides over the strings
starting from the first position (as shown in the Fig.S.4) and the hashed values
from all the positions are considered.

011100111

111111

Pattern1

Pattern2

(a)

ATTCGGTAA
1 1 1 1 1 1

ATTCGG

TTCGGT

1 1 1 1 1 1

1 1 1 1 1 1

TCGGTA

1 1 1 1 1 1

CGGTAA

Figure S.4: A schematic illustration of sliding patterns over the length of the
string to compute the hashed values.

11

D Instruction Manual

Spaced context based Locality Sensitive Hashing, S-conLSH-2.0, is a new map-
per (https://github.com/anganachakraborty/S-conLSH-2.0.git) that fa-
cilitates gapped mapping of noisy long reads to the corresponding target lo-
cations of a reference genome, with multiple spaced patterns. It can handle
multiple simultaneous threads to achieve better run-time performance. We
have examined the performance of the proposed method on 5 different real
and simulated datasets. S-conLSH is at least 2 times faster than the recently
developed state-of-the-art aligner lordFAST [3]. It achieves a sensitivity of 99%,
without using any traditional base-to-base alignment, on human simulated se-
quence dataset. By default, S-conLSH provides an alignment-free mapping in
PAF format. If a base level alignment is required, S-conLSH provides an op-
tion (--align 1) to generate alignment in SAM format using ksw library (https:
//github.com/attractivechaos/klib).

Installation

Current version of S-conLSH needs to be run on the Linux operating sys-
tem. The source code is written in C++. The makefile is attached. Use make
command to generate the executables. The binary ’S-conLSH’ performs index-
ing of the reference genome and then aligns the long and noisy PacBio reads to
it.

OpenMP support is required to execute S-conLSH in multiple threads. Run
“sudo apt-get install libomp-dev" in Linux terminal to install it. The default
settings of the method work in a single-threaded version. However, it can be
executed in multiple threads using the option “--thread". Multi-threaded ex-
ecution incurs higher CPU and memory load. A good choice of selecting the
number of threads would be equal to the number of CPU-cores available.

Synopsis
S-conLSH <PathOfSourceFiles> <ReferenceGenome> <ReadFile> [-K con-

catenationFactor] [-L NumberOfHashTables] [--lambda contextFactor] [--zero
spacesInPatterns] [-w windowsHits] [-m candidates] [-x match] [-y mismatch]
[-q gapOpen] [-r gapExtension] [-a alignInSAM] [--thread numberOfThreads] >
<OutputFile>

12

Quick start
The package includes sample reference genome and SMRT reads to demon-

strate a quick start guide.

For alignment free mapping in PAF format
./S-conLSH ../src/ ../sample_data/ecoli_AE005174v2.fas ../sample_data/SRR801638.fasta
> sample.paf

For SMRT alignment in SAM format
./S-conLSH ../src/ ../sample_data/ecoli_AE005174v2.fas ../sample_data/SRR801638.fasta
–align 1 > sample.sam

Parameters

-K, --K <int> Concatenation factor of locality sensitive hashing [Default=2]
-L, --L <int> Number of hash tables in conLSH framework [Default=2]

--lambda <int> The context factor [Default=3]
--zero <int> The number of don’t cares or zeros in the S-conLSH pattern [Default=5]

-w, --window-hits <int> The max allowed number of windows hitting by a k-mer [Default=1000]
-m, --candidates <int> The number of candidates for extension [Default=400]

-x, --match <int> Score of match for the alignments in extension phase [Default=2]
-y, --mismatch <int> Mismatch penalty for the alignments in extension phase [Default=5]
-q, --gap-open <int> Gap open penalty for the alignments in extension phase [Default=2]

-r, --gap-extension <int> Gap extension penalty for the alignments in extension phase [Default=1]
-a, --align <int> Value=1, outputs alignment in SAM format [Default=0, Alignment-free PAF format output]
--thread <int> Number of threads to be forked in multi-threaded system [Default=1]

-h, --help Help

13

References

[1] Ono, Y., Asai, K., Hamada, M.: Pbsim: Pacbio reads simulator–toward accu-
rate genome assembly. Bioinformatics 29(1), 119–121 (2012)

[2] Li, H.: Minimap2: pairwise alignment for nucleotide sequences. Bioinfor-
matics 34(18), 3094–3100 (2018)

[3] Haghshenas, E., Sahinalp, S.C., Hach, F.: lordfast: sensitive and fast align-
ment search tool for long noisy read sequencing data. Bioinformatics 35(1),
20–27 (2018)

[4] Marçais, G., Delcher, A.L., Phillippy, A.M., Coston, R., Salzberg, S.L., Zimin,
A.: Mummer4: A fast and versatile genome alignment system. PLoS Com-
putational Biology 14(1), 1005944 (2018)

[5] Li, H.: Minimap and miniasm: fast mapping and de novo assembly for
noisy long sequences. Bioinformatics 32(14), 2103–2110 (2016)

[6] Ma, B., Tromp, J., Li, M.: Patternhunter: faster and more sensitive homology
search. Bioinformatics 18(3), 440–445 (2002)

[7] Li, M., Ma, B., Kisman, D., Tromp, J.: PatternHunter II: Highly sensitive and
fast homology search. Genome Informatics 14, 164–175 (2003)

[8] Hahn, L., Leimeister, C.-A., Ounit, R., Lonardi, S., Morgenstern, B.: rasb-
hari: optimizing spaced seeds for database searching, read mapping and
alignment-free sequence comparison. PLOS Computational Biology 12,
1005107 (2016)

[9] Leimeister, C.-A., Boden, M., Horwege, S., Lindner, S., Morgenstern, B.:
Fast alignment-free sequence comparison using spaced-word frequencies.
Bioinformatics 30(14), 1991–1999 (2014)

14

