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Supplementary Methods
Metagenome sequencing and analysis

Forward and reverse paired-end reads were quality trimmed and filtered using BBDuk (v.
v.38.84; Bushnell 2014), where both ends of the reads were quality trimmed at a Phred score of
Q=10 and reads less than 50 base pairs long (after trimming) were removed. Internal 7.
thermophilus standard sequences were identified in a two-step process. First, potential 7.
thermophilus reads were identified using the program BBSplit (BBTools; Bushnell 2014) and the
genome sequence of 7. thermophilus. BBSplit is generally used to remove contaminant
sequences from datasets, and tends to identify false positives. Then the pool of potential 7.
thermophilus sequences was further classified with the program Kaiju (Menzel et al., 2016)
using the options for greedy mode, allowing five substitutions, and a reference database built
using RefSeq (O’Leary et al., 2016) plus the sequences of the reference 7. thermophilus genome.
Taxonomy names, including the full taxonomy path, were added to the Kaiju output using
Kaiju’s addTaxonNames, omitting unclassified reads (Menzel et al., 2016). Sequences classified
as Thermaceae at the family level for either the forward or reverse reads (or both) were
considered 7. thermophilus reads. The Kaiju script filterbyname then removed 7. thermophilus
sequences from the quality controlled fastq sample files. The remaining reads for each sample
were then assembled using metaSPAdes (v 3.11.0) using default settings (Nurk et al., 2017).
Assemblies were assessed by mapping non-7. thermophilus reads to assembled contigs using
Bowtie 2 (Langmead and Salzberg, 2012). SAMtools was used to view the .sam files and count
the number of raw reads that mapped to the contigs (Li et al., 2009). 7. thermophilus sequences
in each sample were enumerated (forward + reverse) and used to determine multipliers to
calculate genes per liter according to Satinsky et al. (2013) (Supplementary dataset 11, metadata
tab). Briefly, the multipliers for each sample were calculated as Sa/(Sr * volume filtered) in
which Sa is the number of molecules of 7. thermophilus genomes added to the sample, and Sr is
the number of 7. thermophilus genomes recovered. Sr was calculated by dividing the number of
T. thermophilus sequences recovered by the number of genes in the 7. thermophilus genome
(2173).

Contig files for all samples were concatenated into a single file and contigs less than 200
nucleotides in length were removed and the contigs were dereplicated using Dedupe (Gregg and
Eder, 2019). Concatenated contig sequences were submitted to IMG-MER
(https://img.jgi.doe.gov) for annotation with the DOE-JGI Metagenome Annotation Pipeline
(Huntemann et al., 2016). After annotation, .gff files containing Phylodist and Kegg Orthology
(KO) gene numbers were reformatted to include only CDS, or sequences coding for a gene
(coding sequence). This was used along with the assembled contig fasta file to produce a fasta
file of CDS sequences with a PERL script (contig_regions new.pl; see below). Bowtie 2 was
then used to create a database from this fasta file of CDS sequences, and then map the quality
controlled fastq files without 7. thermophilus sequences to the CDS database. Read counts were
divided into separate files based on domain (Bacteria, Archaea, Eukaryote, Virus). A small
number of mapped reads classified as Thermaceae at the family level were then separated out of
the Bacteria reads. For this study, only the Bacteria and Archaea sequences were further
analyzed (see Supplementary Figure S1 for general workflow).

Read counts for each CDS were normalized following Wagner et al. (2012). Briefly, the
number of sequences that mapped to each CDS, the CDS length, and the average length of
mapped sequences were extracted from the CDS .sam file using pileup.sh (BBTools; Bushnell
2014). The abundance of each CDS was corrected for gene length and read length by multiplying



the number of mapped reads (Rg) by the average length of mapped reads, and dividing by the
CDS length, resulting in the corrected read count (Tg). To calculate genes per million (GPM)
relative abundance for each CDS, this corrected read count (Tg) was scaled to one million (GPM
= Tg*(1x10°/ZTg)). To calculate genes per liter absolute abundance, Tg was scaled to the
original sum of mapped reads (Tg-scaled = Tg *(£Rg/~Tg)), and then multiplied by the T.
thermophilus multiplier for that sample (see above). Then for each of these measures of
abundance we summed abundances for CDS assigned to the same KO number and to the same
phylodist string (Supplementary Table S1). Metagenome sequences were deposited in NCBI
Sequence Read Archive (SRA) bioproject accession number PRINA642637 under accessions
SRR12147740-SRR12147774.
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Class level prokaryote taxa with >1% cumulative relative abundance

w_—
Taxa
| Alphaproteobacteria
o B Flavobacteriia
| Gammaproteobacteria
[ Betaproteobacteria
[ Actinobacteria
. Cytophagia
[ cyanobacteria
[ Euryarchaeota
[ Clostridia
: [ Bacteroidia
B Bacilli
Thaumarchaeota
B other
02

0.00

Relative Abundance

(&3]

Vd eunf dg
vd eunp v/
Vd 8unp vy
74 8unp dg
74 sunp yp
74 8unp vy
vd ‘bny 49
vd ‘Bny vr
vd Bny vy
74 ‘bny 49
74 ‘bny v
EERATSY
vd [1dy 49
vd udy v
Vd 1AV W
74 1udy d9
74 |udy v
RENCLATSY

Supplementary Figure S2: Relative abundance of Bacteria and Archaea at the class level based
on taxonomic assignments of KEGG-annotated genes. Taxa with <1% cumulative relative

abundance are grouped as “Other”.
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Supplementary Figure S3: DNA and RNA processing indicator genes. Heatmap of z-scaled
GPM gene abundances for each sample with yellow being higher abundance and blue lower.
Bubble plot of genes/L abundance for each month and size-fraction pairing.
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Heatmap of z-scaled GPM gene abundances for each sample with yellow being higher
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Supplementary Figure S5: Carbon fixation indicator genes from the KEGG pathways Carbon
fixation in prokaryotes (map00720) and Carbon fixation in photosynthetic organisms
(map00710). Heatmap of z-scaled GPM gene abundances for each sample with yellow being
higher abundance and blue lower. Bubble plot of genes/L. abundance for each month and size-
fraction pairing.



Supplementary Tables

Supplementary Table S1. Metadata for each DNA sample including information about internal
control addition of Thermus thermophilus HB-8 genomic DNA prior to extraction, recovery of T.
thermophilus sequences, and calculation of multipliers to calculate genes per liter from
metagenomic data following Satinsky et al. (2013). The following tabs provide the number of
mapped reads (Rg), the length-corrected number of mapped reads scaled to the original number
of reads (Tg-scaled), the genes-per-million relative abundance (GPM), and the genes per liter
absolute abundance (genes-per-liter) for each KEGG Orthology gene number (KO) and
taxomomy string (phylo). These abundance tables only include reads that were classified as
prokaryotes (bacteria and archaea).

Supplementary Table S2. Location and environmental data associated with metagenome
samples.

Supplementary Table S3. The number of indicator genes in KEGG pathways for each sampling
period identified with the function multipatt (multi-level pattern analysis) in the indicspecies
package available through R.

Supplementary Table S4. Information on individual coding sequences (CDS) that were
annotated to mobility and chemotaxis genes belonging to the KEGG reference pathway "Two
Component System" (map02020) including phylogenetic and functional (KEGG) annotations,
and transcripts per million (TPM) of raw DNA sequences that mapped to each CDS.

Supplementary Table S5. Information on individual coding sequences (CDS) that were annotated
to anoxygenic photosynthesis genes belonging to the KEGG reference pathway "Two
Component System" (map02020) including phylogenetic and functional (KEGG) annotations,
and transcripts per million (TPM) of raw DNA sequences that mapped to each CDS.

Supplementary Table S6. Information on individual coding sequences (CDS) that were
annotated to nucleotide processing genes belonging to the KEGG reference pathways "DNA
replication" (map03030), "RNA polymerase" (map03020), and "RNA transport" (map03010)
including phylogenetic and functional (KEGG) annotations, and transcripts per million (TPM) of
raw DNA sequences that mapped to each CDS.

Supplementary Table S7. Information on individual coding sequences (CDS) that were annotated
to nitrification genes belonging to the KEGG reference pathway "Nitrogen metabolism"
(map00910) including phylogenetic and functional (KEGG) annotations, and transcripts per
million (TPM) of raw DNA sequences that mapped to each CDS.

Supplementary Table S8. Information on individual coding sequences (CDS) that were annotated
to assimilatory and dissimilatory nitrate reduction genes belonging to the KEGG reference
pathway "Nitrogen metabolism" (map00910) including phylogenetic and functional (KEGG)
annotations, and transcripts per million (TPM) of raw DNA sequences that mapped to each CDS.



Supplementary Table S9. Information on individual coding sequences (CDS) that were annotated
to denitrification genes belonging to the KEGG reference pathway "Nitrogen metabolism"
(map00910) including phylogenetic and functional (KEGG) annotations, and transcripts per
million (TPM) of raw DNA sequences that mapped to each CDS.

Supplementary Table S10. Information on individual coding sequences (CDS) that were
annotated to photosynthesis genes belonging to the KEGG reference pathway "Photosynthesis"
(map00195) including phylogenetic and functional (KEGG) annotations, and transcripts per
million (TPM) of raw DNA sequences that mapped to each CDS.

Supplementary Table S11. Information on individual coding sequences (CDS) that were
annotated to the dye decolorizing peroxidase gene (K15733) including phylogenetic and
functional (KEGG) annotations, and transcripts per million (TPM) of raw DNA sequences that
mapped to each CDS.

Supplementary Table S12. Information on individual coding sequences (CDS) that were
annotated to genes belonging to the KEGG reference pathway "Methane metabolism"
(map00680) including phylogenetic and functional (KEGG) annotations, and transcripts per
million (TPM) of raw DNA sequences that mapped to each CDS.

PERL scripts

contig_regions_new.pl

This PERL script uses two files that are produced by the IMG annotation pipeline (Huntemann et
al. 2016) to produce a fasta file of CDS sequences extracted from a fasta file of contig sequences.
1. A fasta file of contig sequences

2. A reformatted “.gff” file, which is a file produced by the IMG annotation pipeline containing
information about each CDS sequence identified in a set of contigs. The .gff file from IMG must
be modified before running this perl script so that it contains only the rows representing CDS
(e.g., no tRNA or rRNA rows), and so that the last column contains only the CDS names.

Example command format:
contig_regions_new.pl -n 3300024273.a.CDS.gff -c 3300024273.a.ftna -0 3300024273.CDS.fasta

#!/usr/bin/perl
TR
# CASHX

#

# Copyright 2020

#

# Sarah G. Nalven

# Christopher M. Sullivan

# Byron C. Crump

#

# College of Earth, Ocean, and Atmospheric Sciences
# Center for Genome Research and Biocomputing

# Oregon State University

# Corvallis, OR 97331
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#

# Byron.Crump@oregonstate.edu

#

# This program is not free software; you cannot redistribute it and/or

# modity it at all.

#

# This program is distributed in the hope that it will be useful,

# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
#

HHHH AR

#

# Copyright (c) 2020 Oregon State University

# All Rights Reserved.

#

# Permission to use, copy, modify, and distribute this software and its

# documentation for educational, research and non-profit purposes, without
# fee, and without a written agreement is hereby granted, provided that

# the above copyright notice, this paragraph and the following three

# paragraphs appear in all copies.

# Permission to incorporate this software into commercial products may

# be obtained by contacting Oregon State University Office of Technology Transfer.

#

# This software program and documentation are copyrighted by Oregon State

# University. The software program and documentation are supplied "as is",

# without any accompanying services from Oregon State University. OSU does

# not warrant that the operation of the program will be uninterrupted or

# error-free. The end-user understands that the program was developed for

# research purposes and is advised not to rely exclusively on the program

# for any reason.

#

#IN NO EVENT SHALL OREGON STATE UNIVERSITY BE LIABLE TO ANY PARTY FOR

# DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,

# INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS

# DOCUMENTATION, EVEN IF OREGON STATE UNIVERSITYHAS BEEN ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE. OREGON STATE UNIVERSITY SPECIFICALLY

# DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND
# ANY STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED

# HEREUNDER IS ON AN "AS IS" BASIS, AND OREGON STATE UNIVERSITY HAS NO

# OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
# MODIFICATIONS.

#

TR

HHHHH AR
# contig_regions_new.pl #
HHHHH AR

use strict;

use warnings;

use Carp;

use Getopt::Std;

use Cwd;

use File::Copy;

use vars qw/ $opt_n Sopt_c Sopt_o Sopt_h/;

HEHL I A L G L I B P A R
# Start Variable declarations #
HEHLE R A L G G g I B P A R

11



my ($id, $seq, $namefile, $configfile, Soutfile);
my @seqarray;

my %seqhash;

my $totalseqs = 0;

my $totalfound = 0;

HEH R A L L I P A R
# End Variable declarations #
HEH R A L L I P A R

HHHH AR
# Start Main body of Program #
HHHHH AR

&getopts(‘'vn:c:0:'");
&var_check();

print "\n Beginning Run:\n\n";
print "\tStarting to process configs file...\n";

open (OUT, "> $outfile") || die("Can not open outfile!");
open (DAT, Sconfigfile) || die("Can not open file!");
while (<DAT>) {
my $line =$ _;
if($line =~ m/>/) {
if($totalsegs) {
$seq =~ s/\r//g;
$seq =~ s/\n//g;
my %hash;
$hash{'seq'} = $seq;
$seqhash{$id} = \%hash;

}
$seq=";
$id=§ ;
$id =~ s/\r//g;
$id =~ s/\n//g;
$id =~ s/>//g;
$totalseqs++;
}
else {
$seq.=$_;
}
}
$seq =~ s/\r//g;
$seq =~ s/\n//g;
my %hash;

$hash{'seq'} = $seq;
$seqhash{$id} = \%hash;
$totalseqs++;

print "\tStarting to process names file...\n";

open (DAT2, $namefile) || die("Can not open file!");
while (<DAT2>) {

$ =~s/r//g;

$ =~s/\n//g;

my ($name_id, SFGMP, $CDS, $start, $stop, $chrom, $strand, $score, $anno) = split(/\t/, $ );

12



if(defined($seqhash {$name id})){
my $newhash = $seqhash{$name id};
my $seq = $newhash->{'seq'};
my $subseq = substr($seq, ($start-1), (($stop-$start)+1));
print OUT ">$anno\n$subseq\n";
$totalfound++;

rl_wrapper.pl

This perl script extracts information from a .sam file that is produced by mapping a dataset of
paired-end DNA sequences to a database of assembled CDS sequences using Bowtie2. This
script was used to extract the basepair length of each CDS (cds.length), the number of reads
mapped to each CDS (n.reads), and the average length of reads that mapped to each CDS (r]). It
also multiplies n.reads by rl (ra.g). Note that this script counts forward and reverse reads
separately.

Example command format:
perl /nfs1/Crump_Lab/bin/rl_wrapper.pl -i $(DIRPATH)/$(TAXONID).CDS.sam -0
$(DIRPATH)/$(TAXONID).CDS.rl.tab

Dependencies:
This script uses the shell script pileup.sh, which is part of BBTools (Bushnell 2014)

#!/usr/src/perl -w
TR
CASHX

Copyright 2020

Thomas J. Sharpton
Sarah G. Nalven
Byron C. Crump

Department of Microbiology

College of Earth, Ocean, and Atmospheric Sciences
Center for Genome Research and Biocomputing
Oregon State University

Corvallis, OR 97331

Byron.Crump@oregonstate.edu

H o H H H H H H H H H H H R H

# This program is not free software; you cannot redistribute it and/or

# modity it at all.

#

# This program is distributed in the hope that it will be useful,

# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
#

HHHHH AR

#

# Copyright (c) 2020 Oregon State University

# All Rights Reserved.

#

13



# Permission to use, copy, modify, and distribute this software and its

# documentation for educational, research and non-profit purposes, without
# fee, and without a written agreement is hereby granted, provided that

# the above copyright notice, this paragraph and the following three

# paragraphs appear in all copies.

# Permission to incorporate this software into commercial products may

# be obtained by contacting Oregon State University Office of Technology Transfer.

#

# This software program and documentation are copyrighted by Oregon State

# University. The software program and documentation are supplied "as is",

# without any accompanying services from Oregon State University. OSU does

# not warrant that the operation of the program will be uninterrupted or

# error-free. The end-user understands that the program was developed for

# research purposes and is advised not to rely exclusively on the program

# for any reason.

#

# IN NO EVENT SHALL OREGON STATE UNIVERSITY BE LIABLE TO ANY PARTY FOR

# DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,

# INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS

# DOCUMENTATION, EVEN IF OREGON STATE UNIVERSITYHAS BEEN ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE. OREGON STATE UNIVERSITY SPECIFICALLY

# DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND
# ANY STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED

# HEREUNDER IS ON AN "AS IS" BASIS, AND OREGON STATE UNIVERSITY HAS NO

# OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
# MODIFICATIONS.

#

TR

use strict;
use Getopt::Long;

my( $in_file, $pileup_outfile,
$genelen_outfile, $Soutput );
my $rl_wrapper path ="/nfs1/Crump_Lab/bin/";

GetOptions(
"i=s" =>\$in_file,
"po=s" =>\$pileup outfile,
"glo=s" =>\$genelen_outfile,
"o=s" =>\$output, #the final output file
"p:s" =>\$rl_wrapper path #where to find this and related scripts

);

#check input variables
if( !defined( $in_file ) ){
die "You must specify a .sam file to process " .
"via option -1";

}
if( !defined( Soutput ) ){
die "You must specify an output table location
"via option -0";

n

}
if( !defined( $pileup_outfile ) ){
$pileup_outfile ="./pileup-tmp";

}
if( !defined( $genelen_outfile ) ){
$genelen_outfile = "./genelen-tmp";

}

14



#run the workflow

‘pileup.sh in=${in_file} out=${pileup_outfile}";

_parse_gene_lengths from_pileup( $pileup outfile, $genelen_outfile );

*${rl_wrapper path}calculate rl v2.pl-i ${in_file} -o ${output} -t ${genelen_outfile}";

HHHH
# SUBROUTINES
HHHH

sub _parse_gene lengths from pileup{
my Spileup out = shift;
my Sgenelen_out = shift;
open( IN, $pileup out) ||
die "Can't open $pileup_out for read: $!\n";
open( OUT, ">$genelen_out" ) ||
die "Can't open $genelen_out for write: $!\n";
while(<IN>){
chomp $ ;
my @data = split( "\t", $ );
my $gene = $data[0];
my $len = $data[2];
print OUT "${gene}\t$ {len}\n";

close IN;
close OUT;
return;
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