Construction of Lanthanum Vanadate/Functionalized-Boron Nitride Nanocomposite: The Electrochemical Sensor for Monitoring of Furazolidone

Thangavelu Kokulnathan^{a, b}, Ghzzai Almutairi^c, Shen-Ming Chen^{a*}, Tse-Wei Chen^{a,d,e}, Faheem

Ahmed^f, Nishat Arshi^g, Bandar AlOtaibi^c

^aElectroanalysis and Bioelectrochemistry` Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan.

^bDepartment of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.

^cNational Center for Energy Storage Technologies, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia.

^dResearch and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan.

^eDepartment of Materials, Imperial College London, London, SW7 2AZ, United Kingdom.

^fDepartment of Physics, College of Science, King Faisal University, P.O Box 400, Hofuf, Al-Ahsa 31982, Saudi Arabia.

^{*g*}Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, P.O Box 400, Hofuf, Al-Ahsa 31982, Saudi Arabia

Corresponding author

*E-mail: <u>smchen78@ms15.hinet.net</u> Tel: +886 2270 17147, Fax: +886 2270 25238.

- Number of Pages 6
- Number of Figures 5
- Number of Table 1

Entry	Table of Contents	Page. No
	Materials, Reagents and Measurements.	S 3
	Instruments	S3
	Functionalization of F-BN	S3
	Synthesis of LaV/F-BN nanocomposite	S3
Fig. S1	TEM image of h-BN	S4
Fig. S2	HAADF-STEM of LaV/F-BN nanocomposite	S4
Fig. S3	BET	S 5
Fig. S4	CV signals of bare and modified electrodes in the 0.05M PB (pH 7.0)	S 5
	without FZD.	
Fig. S5	(A) Selectivity test of LaV/F-BN/RDGCE with the successive addition	S6
	of 100 μM FZD (a) and higher concentration of interfering species (b–	
	s) in 0.05 M PB (pH 7.0). (B) The operational stability of the LaV/F- $% A_{\rm e}$	
	BN/RDGCE.	
Table S1	FZD detection in human blood serum and urine samples.	S6

Materials, Reagents and Measurements.

Lanthanum (III) nitrate hexahydrate (La(NO_3)_3.6H₂O), ammonium metavanadate (NH_4VO_3), BN, hydroquinone (HQ), ethanol and all other chemicals (including interfering species) were purchased from Sigma-Aldrich and used without further purification. All the solutions in the experiments were prepared with ultrapure double ionized (DI) water.

Instruments

Field emission scanning electron microscope (FESEM, ZEISS Sigma 300 microscope) and high-resolution transmission electron microscopy (HRTEM, Shimadzu JEM-1200 EX, 200 kV) were used to study the morphology of the as-prepared samples. The composition and crystal structures of the nanomaterials were analyzed by X-ray diffraction (XRD) on an XPERT-PRO diffractometer (PANalytical B.V., The Netherlands) with Cu-K α radiation ($\lambda = 1.5406$ Å) in the 2 θ scan range from 10° to 90°. The chemical and surface electronic state of the nanomaterial was scrutinized by X-ray photoelectron spectroscopy (XPS; Thermo scientific multi-lab 2000). Electrochemical impedance spectroscopy (EIS) measurements were examined by using ZAHNER scientific instruments (THALES software package). Chemical composition of nanocomposite was performed on a Fourier transform infrared analysis (JASCO 6600, FT-IR) spectrophotometer. All the electrochemical measurements were performed on a CHI 750A Electrochemical workstation (CH Instruments (*USA*)) with a conventional three-electrode system composed of a platinum wire (Pt) as the auxiliary electrode, an Ag/AgCl saturated KCl as reference electrode and a bare or modified glassy carbon working electrode/rotating disk GCE (GCE/ RDGCE), respectively. All the electrochemical experiments were carried out in a nitrogen atmosphere at room temperature.

Functionalization of F-BN

The F-BN was synthesized by a simple sonochemical approach in this work [61]. The h-BN (5 g) and HQ (0.1 M) were added to 50 mL of DI water by sonochemical method. The precursor was constantly sonicated at room temperature for 1 h. Finally, a white product was collected by centrifugation and washed with DI water. Afterwards, the final sample (F-BN) was dried in an oven at 60 °C for 12 h.

Synthesis of LaV/F-BN nanocomposite

Briefly, 0.5 M of NH₄VO₃ was dissolved in 50 mL of DI water and was stirred for 30 min at a certain temperature. Subsequently, 0.5 M of La (NO₃)₃.6H₂O was added to the above solution. After stirring for a few minutes, the above mixture was transferred to a 100 mL Teflon lined autoclave and kept at 180 °C for 12 h. After the reaction, the obtained product (LaV) was rinsed several times with DI water/ethanol and collected by centrifugation. Finally, the LaV was dried and calcined at 400 °C for 2 h. F-BN (60%) and LaV (40%) were dispersed in DI water at 50 °C and sonicated for 30 mins to form homogeneous ink. Then, LaV/F-BN nanocomposite was washed for few times and dried at 60°C overnight.

Fig. S1 TEM image of h-BN.

Fig. S2 HAADF-STEM of LaV/F-BN nanocomposite.

To understand the surface nature in terms of specific surface area BET analysis was carried out. The N₂ - adsorption and desorption isotherms of the samples are given in **Fig. S3**. The isotherms obtained for all three samples could be assigned to type III isotherm, suggests the mesoporous nature of the samples. The measured specific BET surface area of F-BN, LaV and LaV/F-BN is 48.78, 21.98 and 30.56 m² g⁻¹ respectively. The high specific surface area of F-BN is due to the interspace between the irregular arrangement of F-BNs, which is in agreement with the TEM images. In comparison with LaV, the larger surface area observed for the LaV/F-BN composite indicates the intra-space between the LaV and F-BN sheets.

Fig. S3 BET N₂ adsorption-desorption curves of LaV, F-BN and LaV/F-BN nanocomposite.

Fig. S4 CV signals of bare and modified electrodes in the 0.05M PB (pH 7.0) without FZD.

Fig. S5 (A) Selectivity test of LaV/F-BN/RDGCE with the successive addition of 100 μ M FZD (a) and higher concentration of interfering species (b–s) in 0.05 M PB (pH 7.0). (B) The operational stability of the LaV/F-BN/RDGCE.

Samples	FZD Added	FZD Found	Recovery
	(µM)	(µM)	(%)
	_	_	_
Human blood comm	1.00	0.95	95.00
Human blood serum	2.00	1.97	98.50
	3.00	2.90	96.70
	_	—	_
Human urine	1.00	0.97	97.00
	2.00	1.95	97.50
	3.00	2.95	98.30

 Table S1 FZD detection in human blood serum and urine samples.