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1. Formal Relation between Alertness and VPS in TVA: Predictive Influences on 

Attention and the Model of Components of Attentional Bias  

TVA proposes that visual representations are in a biased competition for access to a 

limited visual short-term memory (vSTM) store. During the race for encoding, objects 

receiving higher attentional weighting are processed faster and encoded first until the store is 

filled. When an object is presented alone, its encoding speed v(x, i), i.e., the rate at which the 

categorization “object x belongs to category i” is made, is given by 

𝑣 𝑥, 𝑖 = 𝜂 𝑥, 𝑖 𝛽𝑖, 

Where η x, i  is the strength of sensory evidence that x belongs to category i and 𝛽𝑖 is the 

observer’s bias towards category i. The bias at a given moment is proposed to be determined 

by three multiplicative components (Bundesen et al., 2015):  

𝛽𝑖 = 𝐴𝑝𝑖𝑢𝑖 

where A reflects the level of alertness, probability pi reflects the expectancy of, and utility ui 

the subjective importance of particular objects. The parameter reflecting total visual 

processing speed C of a given observer is defined as the sum of all v values. In multi-element 

displays containing targets of equal relevance to the observer, such as in whole-report 

displays, C can be assumed to be directly proportional to v. Thus, variation in alertness should 

directly translate into proportional changes in parameter C. 

2. Reasons for Exclusion 

2.1 Study 1 

 Alertness-training group: longer sickness (1), technical issues (1); active-control 

group: personal issues (1); passive-control group: personal issues (4). 



2.2 Study 2 

Personal distress (2), neurodegeneration signs in brain scan (1), cerebral hemorrhage 

(1), psychiatric disorder symptoms (1), technical issues (4), drop-out due to personal reasons 

(2). 

 

3. Alertness-Training and Active-Control Tasks 

Tasks ran on PCs with 19-inch monitors (resolution 1280 × 1024 pixels; 60-Hz refresh 

rate). Sessions ended after 45 minutes. 

3.1 Alertness Training 

Headphones isolated participants from noise and presented them with driving and 

braking sounds. In the first session, participants underwent practice with feedback on their 

reactions. After three consecutive correct reactions, the actual training started. For each level, 

the criterion for timely responses was pre-set: 1.8 and 0.3 sec for the lowest and highest 

levels, respectively. The training started at the lowest level, and this was adjusted after five 

timely reactions, by calculating the mean reaction time by 0.55 SDs and introducing this as 

the appropriate difficulty level (potentially skipping intermediate levels). Thereafter, every ten 

successive reactions, the level was adjusted anew based on the percentage of responses that 

met the criterion (if <50%, the level decreased; if 50–80%, it stayed the same; if >80%, it 

increased).  

3.2 Active-Control Task 

Each block consisted of 20+n trials and lasted about one minute; blocks contained 6 

targets and 14+n distractors at 1 out of 8 possible locations. After each block, feedback was 

provided. The training started at 1-back level. If 75–85% of reactions were correct, the level 

was maintained; if it was above, n was increased by 1; if it was below, n was reduced by 1 

(except for n-back level 1). Misses and false alarms were counted as errors. 



 

Table S1. Pearson correlations between modeled and observed whole-report data: Goodness-

of-Fit (GOF) mean ± SD values. 

  GOF pre GOF post t-test pre vs. post 

Study 1      

   Alertness Training .936 ± .030 .875 ± .214 t(24) = 1.40, p = .17 

   Active Control .932 ± .027 .942 ± .022 t(24) = -1.78, p = .09 

   Passive Control .934 ± .082 .946 ± .043 t(24) = -.86, p = .40 

Study 2      

   Alertness Training .971 ± .032 .965 ± .027 t(28) = 1.08, p = .29 

 

 

 

4. Whole- and Partial-Report Assessment 

4.1 Study 1 

In whole-report, the ‘intermediate’ exposure duration was the individual time needed 

to report one letter correctly. This was combined with a shorter (half) and a longer (double the 

intermediate) exposure duration. 

In partial-report, the individual exposure durations were set such that about 80% of 

single targets and at least 60% of dual targets could be reported correctly. Dual stimuli were 

arranged vertically or horizontally. 

The experiments were run on PCs with 17-inch monitors, with black screen 

background (resolution 1024 × 768 pixels; 75-Hz refresh rate; viewing distance 60 cm, 

controlled by chin rest), in a dimly lit room (different from the training room). 

 

 



4.2 Study 2 

Study 2 employed updated TVA paradigms (Gögler et al., 2017) with minor changes: 

a fixation circle and slightly larger (1.3° of visual angle) red or blue letters; in whole-report: 

equidistant letters around the fixation marker and seven (not six) ‘effective’ exposure 

durations, and data analysis with LibTVA script (Dyrholm, 2012). 

 

5. fMRI Data Analysis 

5.1 Acquisition 

MRI data were acquired in the ‘Klinikum rechts der Isar’ of the Technische 

Universität München. Foam padding was used to constrain participants’ head motion during 

scanning; earplugs and headphones were provided to reduce noise. Six-hundred volumes of 

BOLD-fMRI signal were acquired using a multiband EPI sequence (SENSE factor = 2, M-

factor = 2). 

5.2 Preprocessing 

Rs-fMRI volumes were preprocessed (Chao-Gan & Yu-Feng, 2010) for each 

participant. The first five volumes were discarded. Data were normalized to MNI space using 

DARTEL (Ashburner, 2007) with a 2-mm isotropic voxel size and smoothed using a 4-mm 

full-width-at-half-maximum Gaussian kernel. Nuisance covariates regressed out were the six 

head motion parameters and their first temporal derivatives; the signal averaged over white 

matter, lateral ventricles, and whole brain; and ‘bad’ time points (i.e., framewise displacement 

> .5 mm and 1 backward and 2 forward adjacent time points; Power et al., 2012). 

5.3 Network Selection 

We cross-correlated our 20 group spatial maps resulting from ICA (Smith et al., 2004) 

and dual regression (Beckmann et al., 2009) with reported resting-state network templates 

(Yeo et al., 2011), using FSL’s fslcc command, and selected spatial maps correlating highest 



with the networks of interest as resting-state networks for further group analyses. We 

identified one cingulo-opercular network (r = .39 with Yeo_8), our network of interest. To 

control for specificity of results, we identified three control networks relevant for visual 

attention, the visual (r = .61 with Yeo_1) and dorsal-attention (r = .42 with Yeo_6) networks, 

and one relevant for aging, the default-mode (r = .36 with Yeo_17) network. We used an 

additional set of resting-state network templates based on ICA (i.e., Allen et al., 2011) to 

identify the right frontoparietal network (r = .60 with Allen et al.’s IC60). 

5.4 Prediction of VPS from functional connectivity 

Reliable effect size estimates of the cingulo-opercular network’s functional 

connectivity (CON-FC) predictiveness should be obtained from independent samples. 

Nevertheless, to allow informing future research (e.g., for a priori power calculations), we 

computed an effect size (R
2
) of the CON-FC in the identified cluster (i.e., medial superior 

frontal gyrus) for the prediction of VPS changes. Based on a linear regression of VPS change 

on the CON-FC cluster, we found an R
2
 of .45 (F(1,27) = 24.19, p < .0001), indicating a strong 

effect (corresponding Pearson’s r = .69 or Cohen’s f2 = .82). 
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