Supporting Information (SI)

Rhodium(III)-Catalyzed Aerobic Oxidative C-H Olefination of Unsaturated Acrylamides with Unactivated Olefins

Ravichandran Logeswaran and Masilamani Jeganmohan*

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India

Email: mjeganmohan@iitm.ac.in

Table of Contents

S2- S4	Experimental Section
S5 - S6	Optimization Studies
S8-S18	Spectral Data of all Compounds
S19-S76	Copies of $\mathrm{H}^{1}, \mathrm{C}^{13}$ and DEPT135

Experimental Section

General Information: All reactions were carried out under the air atmosphere in flame-dried glassware. Syringes which were used to transfer anhydrous solvents or reagents were purged with nitrogen prior to use (three times). Dry solvents were used for the reaction. Column chromatographical purifications were performed using SiO_{2} (120-200 mesh ASTM) from Avra Pvt. Ltd., India. Abbreviations for signal coupling are as follows: s, singlet; d, doublet; t , triplet; q, quartet; m, multiplet. $\left[\mathrm{Rh}\left(\mathrm{Cp}^{*}\right) \mathrm{Cl}_{2}\right]_{2},{ }^{1}$ was prepared according to literature procedures. Commercially available. Alkenes $\mathbf{2 a} \mathbf{2} \mathbf{2 e}$, metal salts and other chemicals were purchased from0 Sigma-Aldrich and Spectrochem. Pvt. Ltd., India. and used without further purification. Starting materials $\mathbf{1 a - 1} \mathbf{p}^{2}, 2$-(But-3-en-1-yl)isoindoline-1,3-dione(2f) ${ }^{3}$, 2-(but-3-en-1-yl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (2g) ${ }^{3}$, ethyl pent-4-enoate $(\mathbf{2 h})^{4}$, 4-(but-3-en-1-yloxy)-2H-chromen-2-one ($\mathbf{2 i})^{5}$, dec-9-en-1-yl acetate($\left.\mathbf{2} \mathbf{j}\right)^{6}$ and pent-4-en-1-yl benzoate $(\mathbf{2 k})^{6}$ were prepared by known literature procedures.

1. General Procedure for C-H Olefination of Acrylamide with Unactivated Olefins

$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(5.0 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2} \mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mol} \%)$ and $\mathrm{AgSbF}_{6}(20 \mathrm{~mol} \%)$ were taken in a 15 mL Schlenk tube $\left(\mathrm{AgSbF}_{6}\right.$ was taken inside the glove box). 1,4-Dioxane (1.0 mL) was added to the reaction mixture via syringe. Then, acrylamide $\mathbf{1}$ ($50 \mathrm{mg}, 1$ equiv), alkene $\mathbf{2}$ (3 equiv), were added to the solution in sequence and followed by the addition of 1,4-Dioxane $(2.0 \mathrm{~mL})$. After that, the tube was sealed using screw cap under air and the reaction mixture was allowed to stir at $100^{\circ} \mathrm{C}$ for 24 h in oil bath. After cooling to the ambient temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through Celite and the filtrate was concentrated. The crude residue was purified through a silica gel column using hexanes and ethyl acetate as eluent to give pure product 3. In case of functionalized olefins $\mathbf{2 f - 2 j}$ (2.0 equiv) was used. The ratio of regioisomer was calculated by ${ }^{1} \mathrm{H}$ NMR analysis.

Procedure for the synthesis of 3aa in $1 \mathbf{m m o l}$ Scale.

$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(5.0 \mathrm{~mol} \%, 30.9 \mathrm{mg}), \mathrm{Cu}(\mathrm{OAc})_{2} \mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mol} \%, 100 \mathrm{mg})$ and $\mathrm{AgSbF}_{6}(20 \mathrm{~mol}$ $\%, 69 \mathrm{mg})$ were taken in a 15 mL Schlenk tube $\left(\mathrm{AgSbF}_{6}\right.$ was taken inside the glove box). 1,4Dioxane (1.0 mL) was added to the reaction mixture via syringe. Then, acrylamide $\mathbf{1 a}$ (1 $\mathrm{mmol}, 139 \mathrm{mg}$), alkene 2a ($3 \mathrm{mmol}, 331 \mathrm{mg}$), were added to the solution in sequence and followed by the addition of 1,4-Dioxane (3.0 mL). After that, the tube was sealed using screw cap under air and the reaction mixture was allowed to stir at $100^{\circ} \mathrm{C}$ for 24 h in oil bath. After cooling to the ambient temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through Celite and the filtrate was concentrated. The crude residue was purified through a silica gel column using hexanes and ethyl acetate as eluent to give pure product 3aa in 71% (175 mg).

Substrate synthesis

General reaction procedure for acrylamides $\mathbf{1 a}-\mathbf{1 i}, \mathbf{1 m}-\mathbf{1 p}^{\mathbf{2}}$

To a solution of the carboxylic acid $\mathbf{1}$ ($20 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise $(\mathrm{COCl})_{2}$ ($20 \mathrm{mmol}, 1.0$ equiv.) followed by a catalytic amount of DMF (0.1 mL). The reaction was allowed to stir at rt for 3 h . The solvent was then removed under reduce pressure to afford the corresponding crude acid chloride $\mathbf{2}$, which was used directly for the next step without futher purification.

The acid chloride was added dropwise to a solution of amine ($20 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}$ ($24 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}$). The mixture was stirred overnight at room temperature. Then the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed successively with water, satured aqueous NaHCO_{3}, and brine. The organic layer was dried over NaSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography, eluting with EtOAc/hexane, to afford corresponding acrylamides 3.

General reaction procedure for acrylamides $1 k-11^{2 d}$

To a solution of the carboxylic acid $\mathbf{1}(20.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in dry \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise $(\mathrm{COCl})_{2}(20 \mathrm{mmol}, 1 \mathrm{eq}$.) followed by a catalytic amount of DMF (2 drops). The reaction was allowed to stir at rt for 3 h . The solvent was then removed under reduce pressure to afford the corresponding crude acid chloride $\mathbf{2}$, which was used directly for the next step without futher purification.

To a solution of N -methoxy methylamine hydrochloride salt ($22 \mathrm{mmol}, 1.1$ equiv) was added dropwise $\mathrm{Et}_{3} \mathrm{~N}$ ($42 \mathrm{mmol}, 2.1$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~mL}\right.$) at $0^{\circ} \mathrm{C}$. Acid chloride 2 was then added dropwise to the solution. The mixture was stirred overnight at room temperature. Then the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed successively with water, satured aqueous NaHCO_{3}, and brine. The organic layer was dried over NaSO_{4} and concentrated under reduced pressure. The residue was purified by silica gel column chromatography, eluting with EtOAc/hexane, to afford corresponding acrylamides 3 .

Table S1. Optimization Studies ${ }^{a}$

Entry	Catalyst	Additive	Oxidant	Solvent	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { Yield } \\ \text { 3aa }(\%)^{b} \\ \hline \end{gathered}$
1	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	AgOAc	1,4-dioxane	100	51
2	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	$\mathrm{Ag}_{2} \mathrm{O}$	1,4-dioxane	100	32
3	[$\left.\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	1,4-dioxane	100	16
4	[$\left.\mathrm{Cp*} \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	100	72
5	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2}$	1,4-dioxane	100	67
6	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	100	72^{c}
7	[$\left.\mathrm{Cp*} \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} 1,2- \\ \text { dichloroethane } \end{gathered}$	100	$45^{\text {c }}$
8	$\left[\mathrm{Cp*} \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	DMF	100	$27^{\text {c }}$
9	$\left[\mathrm{Cp*} \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \mathrm{H}_{2} \mathrm{O}$	$1,2-$ dichlorobenzene	100	53^{c}
10	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} 2,2,2- \\ \text { Trifluoroethanol } \\ \hline \end{gathered}$	100	trace ${ }^{\text {c }}$
11	[$\left.\mathrm{Cp*} \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \mathrm{H}_{2} \mathrm{O}$	Acetonitrile	100	trace ${ }^{\text {c }}$
12	$\left[\mathrm{Cp*} \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	Methanol	100	49^{c}
13	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$1,2-$ Dimethoxyethane	100	47^{c}
14	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	100	$53^{c, d}$
15	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgBF_{4}	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	100	48^{c}
16	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgOTf	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	100	$25^{\text {c }}$
17	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	NaSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	100	trace ${ }^{\text {c }}$
18	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	rt	NR^{c}
19	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	100	$68^{c, e}$
20	$\begin{aligned} & {\left[\mathrm{RuCl}_{2}(p-\right.} \\ & \text { cymene })]_{2} \\ & \hline \end{aligned}$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	100	$\mathrm{NR}^{\text {c }}$
21	$\mathrm{Cp*}$ (o(CO) I_{2}	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	100	NR^{c}
22	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	100	NR^{c}
23	-	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	100	NR^{c}
24	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	-	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	100	NR^{c}
25	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	-	1,4-dioxane	100	NR^{c}
26	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	100	$48^{c, \mathrm{e}}$
27	[$\left.\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	100	NR^{f}
28	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	100	NR^{g}
29	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	100	45^{h}

30	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	100	41^{i}
31	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	60	30
32	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	100	65^{j}
33	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2} \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	100	69^{k}

${ }^{a}$ All reactions were carried out under the following conditions: $\mathbf{1 a}(50 \mathrm{mg}$), $\mathbf{2 a}$ (3.0 equiv), Catalyst (5 $\mathrm{mol} \%$), Additive ($20 \mathrm{~mol} \%$), Oxidant (1.0 equiv) in Solvent (3 mL) at $\mathrm{T}^{\circ} \mathrm{C}$ for 24 h under air.
${ }^{b}$ Isolated yields. ${ }^{c} 50 \mathrm{~mol} \%$ of $\mathrm{Cu}(\mathrm{OAc})_{2} \mathrm{H}_{2} \mathrm{O}$ was used under air. ${ }^{d}$ Under $\mathrm{N}_{2}{ }^{e} 2.5 \mathrm{~mol} \%$ of $\left[\mathrm{Cp}^{*} * \mathrm{RhCl}_{2}\right]_{2}$ was used. ${ }^{f} 1,10$-phenanthroline ($20 \mathrm{~mol} \%$) was used. ${ }^{8} 2,2$-bipyridyl ($20 \mathrm{~mol} \%$) was used. ${ }^{h} \mathrm{PPh}_{3}(20$ $\mathrm{mol} \%$) was used. ${ }^{i} \mathrm{~N}$-Boc-L-phenylalanine ($20 \mathrm{~mol} \%$). ${ }^{j} 20 \mathrm{~mol} \% \mathrm{of} \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ was used. ${ }^{j}{ }_{2}$ equiv. of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ was used.

Reference:

1) White, C.; Yates, A.; Maitlis, P. M. Inorg. Synth. 1992, 29, 228.
2) (a) Zhang, J.; Loh, T.-P. Chem. Commun. 2012, 48, 11232. (b) L. Ackermann, A.V. Lygin, N. Hofmann, Org. Lett. 2011, 13, 3278-3281. (c) Jiang, B.; Zhao, M.; Li, S.-S.; Xu, Y.- H.; Loh, T.-P. Angew. Chem., Int. Ed. 2018, 57, 555- 559 (d) Lan, Y.; Fan, P.; Liu, X.-W.; Meng, F.-F.; Ahmad, T.; Xu, Y.-H.; Loh, T.-P. Chem. Commun. 2017, 53, 12353.
3) Lu, M.-Z.; Chen, X.-R.; Xu, H.; Dai, H.-X.; Yu, J.-Q Chem. Sci. 2018, 9, 1311-1316.
4) Harris, J. R.; Waetzig, S. R.; Woerpel, K. A. Org. Lett. 2009, 11, 3290-3293.
5) Kong, W.; An, H.; Song, Q. Chem. Commun. 2017, 53, 8968
6) Wang, X.; Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang, J, J. Am. Chem. Soc. 2011, 133, 16410-16413.

Spectral Data of Compounds

(2Z)-5-Cyclohexyl-2-methyl-1-(pyrrolidin-1-yl)penta-2,4-dien-1-one (3aa).

Prepared according to General Procedure 1. Colourless liquid; Eluent (30\% ethyl acetate in hexane). Isolated as an inseparable mixture of E / Z in the ratio of $6: 1$ and the yield is 72% (64 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.22(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (t, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.47-2.38(\mathrm{~m}, 1 \mathrm{H})$, $1.98(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.06(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,139.5,134.3,123.2,122.4,47.1,45.0,36.7,33.2,25.9,25.8,24.5$, 20.2. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}$ 248.2009; Found 248.2008.
(2Z)-5-Cyclohexyl-2-methyl-1-morpholinopenta-2,4-dien-1-one (3ba).

Prepared according to General Procedure 1. Colourless liquid; Eluent (30\% ethyl acetate in hexane). Isolated as an inseparable mixture of E / Z in the ratio of $4: 1$ and the yield is 67% (57 $\mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.22(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ $(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=7.1,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.34-3.31(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.37(\mathrm{~m}, 1 \mathrm{H})$, $1.98(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.06(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,139.6,134.3,123.2,122.3,47.1,45.1,36.7,33.2,32.8,25.9,25.8$, 24.6, 24.5, 20.3. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{2}$ 264.1958; Found 264.1954.
(2Z)-5-Cyclohexyl-N,N-diisopropyl-2-methylpenta-2,4-dienamide (3ca).

Prepared according to General Procedure 1. Colourless liquid; Eluent (30\% ethyl acetate in hexane). Isolated as an inseparable mixture of E / Z in the ratio of 3:1 and the yield is 70% (57 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.13(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.57$ $5.23(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.35(\mathrm{~m}, 1 \mathrm{H}), 1.92$ $(\mathrm{s}, 3 \mathrm{H}), 1.70-1.59(\mathrm{~m}, 6 \mathrm{H}), 1.35-1.22(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 12 \mathrm{H}), 1.09(\mathrm{~d}, J=6.7$
$\mathrm{Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,138.4,135.0,122.6,122.2,50.6,45.5,40.7$, 36.6, 33.2, 32.7, 26.1, 26.0, 25.8, 20.7, 20.6, 20.6, 20.4. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{H})^{+}$ Calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NO}$ 278.2478: Found 278.2471.

(2Z)-N,N,5-Tricyclohexyl-2-methylpenta-2,4-dienamide (3da).

Prepared according to General Procedure 1. Colourless liquid; Eluent (30\% ethyl acetate in hexane). Isolated as an inseparable mixture of E / Z in the ratio of $20: 1$ and the yield is 59% $(42 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.12(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.22(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{t}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{t}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H})$, $1.92(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.40(\mathrm{~m}, 20 \mathrm{H}), 1.36-1.02(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 171.5, 138.3, 135.2, 122.7, 122.0, 59.6, 55.7, 36.6, 29.9, 26.6, 26.0, 25.8, 25.3, 25.3, 20.9. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{NO} 358.3104$; Found 358.3104.
(2Z)-5-Cyclohexyl-2-methyl- N, N-diphenylpenta-2,4-dienamide (3ea).

Prepared according to General Procedure 1. Colourless liquid; Eluent (30\% ethyl acetate in hexane). Isolated as an inseparable mixture of E / Z in the ratio of $18: 1$ and the yield is 38% $(28 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.20(\mathrm{~m}, J=6.3 \mathrm{~Hz}, 5 \mathrm{H})$, $6.21(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.27(\mathrm{~m}$, $1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.09(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,142.5,140.1,133.3,128.9,126.4,122.7,36.5,33.1,32.7,25.9$, 25.7, 20.9. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO} 346.2165$; Found 346.2164.
(2Z)-5-Cyclohexyl-2-methyl-1-(piperidin-1-yl)penta-2,4-dien-1-one (3fa).

Prepared according to General Procedure 1. Colourless liquid; Eluent (30\% ethyl acetate in hexane). Isolated as an inseparable mixture of E / Z in the ratio of $4: 1$ and the yield is 61% (52 $\mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.21(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.25$ $(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.37-3.31(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.34(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~s}$,
$3 \mathrm{H}), 1.72-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.01(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 170.1,139.1,133.1,123.3,122.3,47.3,41.9,41.9,40.8,36.6,33.1,32.7,26.7$, 26.7, 26.0, 25.9, 25.7, 25.7, 25.6, 24.5, 20.8, 20.5. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{Na})^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NONa} 284.1985$; Found 284.1990.
(2Z)-5-Cyclohexyl-N,N-diethyl-2-methylpenta-2,4-dienamide (3ga).

Prepared according to General Procedure 1. Colourless liquid; Eluent (30\% ethyl acetate in hexane). Isolated as an inseparable mixture of E / Z in the ratio of 3:1 and the yield is 58% (52 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.20(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.25$ $(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.31-3.26(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~s}$, $3 \mathrm{H}), 1.72-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.02(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2$, 139.1, 133.5, 123.1, 122.3, 42.3, 40.7, 38.2, 36.6, 33.1, 32.6, 26.0, 25.9, 25.7, 21.0, 20.6, 14.3, 12.8. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NO} 250.2165$; Found 250.2168.

(2Z)-5-Cyclohexyl-N,N,2-trimethylpenta-2,4-dienamide (3ha).

Prepared according to General Procedure 1. Colourless liquid; Eluent (30\% ethyl acetate in hexane). Isolated as an inseparable mixture of E / Z in the ratio of $2: 1$ and the yield is 51% (50 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.27-6.21(\mathrm{~m}, 1 \mathrm{H}), 5.92(\mathrm{~m}, 1 \mathrm{H}), 5.86-5.79(\mathrm{~m}, 1 \mathrm{H})$, $5.70(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H})$, $2.95(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.04(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,142.1,139.5,133.0,131.0,128.8,123.7$, 123.6, 122.2, 41.0, 37.6, 37.5, 36.6, 34.2, 34.1, 33.1, 32.8, 26.0, 25.9, 25.9, 25.8, 20.6, 20.3. HRMS (ESI-TOF) m / z : $(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}$ 222.1852: Found 222.1853.
(2Z)-N-Benzyl-5-cyclohexyl-2-methylpenta-2,4-dienamide (3ia).

Prepared according to General Procedure 1. Colorless liquid; Eluent (30\% ethyl acetate in hexane). Isolated as an inseparable mixture of E / Z in the ratio of $4: 1$ and the yield is 37% (30mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.43(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.28$
$(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.52(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.39$ $(\mathrm{m}, 2 \mathrm{H}), 2.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.04(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta .169 .9,141.3,134.0,132.1,128.8,127.9,127.6,127.4,122.1$, $43.6,36.5,33.1,32.5,29.7,25.9,25.8,21.2$. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO} 284.2009$; Found 284.2007
(2Z)-5-Cyclohexyl-2-methylpenta-2,4-dienamide (3ja).

Prepared according to General Procedure 1. Colourless liquid; Eluent (30\% ethyl acetate in hexane). Isolated as an inseparable mixture of E / Z in the ratio of 2:1 and the yield is 44% (50 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.73(\mathrm{dd}, J=15.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{br}, 1 \mathrm{H}), 6.49(\mathrm{t}, J$ $=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{dd}, J=15.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{br}, 1 \mathrm{H}), 2.17(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ $-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.25(\mathrm{~m}, 4 \mathrm{H}), 1.20-1.06(\mathrm{~m}$, 2H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.1,172.5,172.3,145.9,142.2,140.9,136.8,136.3$, 132.7, 130.3, 129.1, 127.3, 124.2, 122.2, 121.6, 41.0, 38.5, 36.5, 33.0, 32.6, 26.0, 25.8, 25.7, 24.6, 22.3, 21.1, 20.8. HRMS (ESI-TOF) m/z: (M+H) ${ }^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}$ 194.1539; Found 194.1533.
(2Z)-5-Cyclohexyl- N-methoxy-N,2-dimethylpenta-2,4-dienamide (3ka).

Prepared according to General Procedure 1. Colorless liquid; Eluent (30\% ethyl acetate in hexane). Isolated as an inseparable mixture of E / Z in the ratio of 2:1 and the yield is 65% (60 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.29(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.30$ $(\mathrm{t}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 5.3 \mathrm{H}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.48-2.38(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~s}$, $3 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.01(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9$, 139.3, 129.9, 124.3, 122.4, 40.8, 36.6, 33.1, 32.7, 26.0, 25.9, 25.8, 25.8, 25.7, 20.2, 20.0. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{2} 238.1802$; Found 238.1807.
(2Z,4E)-5-Cyclohexyl- N-methoxy-N,3-dimethylpenta-2,4-dienamide (31a).

Prepared according to General Procedure 1. Colorless liquid; Eluent (15\% ethyl acetate in hexane). Isolated yield is 40% (37 mg , single isomer). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{~d}$,
$J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{dd}, J=16.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H})$, $2.11(\mathrm{~s}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.08(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 167.7, 143.3, 125.8, 114.4, 61.5, 41.4, 32.7, 26.1, 25.9, 21.3. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{H})^{+}$ Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{2}$ 238.1802; Found 238.1800.
(2Z)-5-Cyclohexyl-2-(4-methoxyphenyl)-1-(pyrrolidin-1-yl)penta-2,4-dien-1-one (3ma).

Prepared according to General Procedure 1. Colourless liquid; Eluent (30\% ethyl acetate in hexane). Isolated as an inseparable mixture of E / Z in the ratio of $2: 1$ and the yield is 84% (62 $\mathrm{mg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}$, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.56-2.50(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.79(\mathrm{~m}$, $2 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.06(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.1,168.8$, 168.7, 159.4, 159.2, 144.3, 141.5, 137.5, 135.9, 128.4, 128.4, 126.8, 126.6, 125.8, 124.3, $122.8,120.3,55.3,55.2,47.2,47.2,45.1,41.2,36.9,33.2,32.8,27.1,26.0,25.9,25.8,25.8$, 25.7, 24.6, 24.5. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{2}$ 340.2271; Found 340.2268.
(2Z)-2-(4-Chlorophenyl)-5-cyclohexyl-1-(pyrrolidin-1-yl)penta-2,4-dien-1-one (3na).

Prepared according to General Procedure 1. Colourless liquid; Eluent (30\% ethyl acetate in hexane). Isolated as an inseparable mixture of E / Z in the ratio of $3: 1$ and the yield is 69% (50 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=14.8,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dd}, J=15.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.61$ $(\mathrm{m}, 2 \mathrm{H}), 3.20-3.15(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.80(\mathrm{~m}, 2 \mathrm{H})$, $1.73-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.20-1.07(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.1,146.1,135.1$, $134.4,133.4,131.3,129.3,129.1,129.0,128.9,128.2,126.9,126.6,124.1,122.5,47.2,45.2$, 41.2, 33.1, 32.6, 29.7, 26.0, 25.8, 25.8, 25.7, 24.5. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{Na})^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{ClNONa} 366.1595$; Found 366.1592.

Prepared according to General Procedure 1. Colourless liquid; Eluent (20\% ethyl acetate in hexane). Isolated yield is 45% (40 mg , single isomer). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29$ $7.24(\mathrm{~m}, 1 \mathrm{H}), 5.91(\mathrm{dd}, J=16.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 3.51(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{t}, J$ $=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.14-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 4 \mathrm{H})$, $1.29-1.09(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.1, 144.9, 142.2, 125.9, 118.7, 47.0, 45.4, 41.3, 32.7, 26.2, 26.1, 26.0, 24.4, 20.8. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO} 248.2009$; Found 248.2007.
(2Z)-5-Cyclohexyl-2,3-dimethyl-1-(pyrrolidin-1-yl)penta-2,4-dien-1-one (3pa)/(Z)-5-Cyclohexylidene-2,3-dimethyl-1-(pyrrolidin-1-yl)pent-2-en-1-one (3'pa).

Prepared according to General Procedure 1. Colourless liquid; Eluent (30\% ethyl acetate in hexane). Isolated as an inseparable mixture of $\mathbf{3 p a} / \mathbf{3}$ ' pa in the ratio of $5: 1$ and the yield is $54 \%(46 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.05-6.00(\mathrm{~m}, 1 \mathrm{H}), 5.63(\mathrm{dd}, J=15.6,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.53(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.75$ $(\mathrm{s}, 3 \mathrm{H}), 1.71-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.28-1.02(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.9$, 138.3, 137.2, 130.2, 129.7, 126.7, 126.4, 47.0, 45.0, 41.1, 33.5, 33.1, 26.1, 25.9, 25.9, 25.9, 25.8, 24.6, 15.9, 13.2. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NO} 262.2165$; Found 262.2164.
(2Z,4E)-2-Methyl-1-(pyrrolidin-1-yl)trideca-2,4-dien-1-one (4ab)/(Z)-2-Methyl-4-methylene-1-(pyrrolidin-1-yl)dodec-2-en-1-one (4'ab).

Prepared according to General Procedure 1. Colourless liquid; Eluent (30\% ethyl acetate in hexane). Isolated as an inseparable mixture of $\mathbf{4 a b} / \mathbf{4} \mathbf{a b}$ in the ratio of $3: 1$ and the yield is $59 \%(59 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.94-5.83(\mathrm{~m}, 2 \mathrm{H}), 5.72-5.65(\mathrm{~m}, 1 \mathrm{H}), 3.53$ $(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.33-3.27(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{dd}, J=14.2,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.90-$ $1.85(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.24(\mathrm{~m}, 12 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $46.8,45.1,45.0,35.2,32.7,31.8,29.5,29.4,29.4,29.3,29.2,29.2,29.1,28.3,27.6,25.9$, 25.9, 24.5, 24.4, 22.6, 21.6, 20.0,14.0. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NO}$ 278.2478; Found 278.2482.
(2Z,4E)-2-Methyl-1-(pyrrolidin-1-yl)undeca-2,4-dien-1-one (4ac)/(Z)-2-Methyl-4-methylene-1-(pyrrolidin-1-yl)dec-2-en-1-one (4'ac).

Prepared according to General Procedure 1. Colourless liquid; Eluent (30\% ethyl acetate in hexane). Isolated as an inseparable mixture of 4ac/4'ac in the ratio of $7: 1$ and the yield is $67 \%(60 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.96-5.82(\mathrm{~m}, 2 \mathrm{H}), 5.72-5.65(\mathrm{~m}, 1 \mathrm{H}), 3.54$ $(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.34-3.29(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.87(\mathrm{~m}$, $4 \mathrm{H}), 1.37-1.26(\mathrm{~m}, 8 \mathrm{H}), 0.89-0.85(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,136.5$, 133.8, 132.2, 128.2, 126.3, 123.0, 113.8, 47.2, 45.1, 32.7, 31.7, 29.2, 28.8, 25.9, 24.5, 22.6, 20.0, 14.1. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NO} 250.2165$; Found 250.2167.
(2Z,4E)-2-Methyl-1-(pyrrolidin-1-yl)nona-2,4-dien-1-one (4ad)/(Z)-2-Methyl-4-methylene-1-(pyrrolidin-1-yl)oct-2-en-1-one (4'ad).

Prepared according to General Procedure 1. Colourless liquid; Eluent (30\% ethyl acetate in hexane). Isolated as an inseparable mixture of 4ad/4'ad in the ratio of $3: 1$ and the yield is $68 \%(54 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.94-5.82(\mathrm{~m}, 2 \mathrm{H}), 5.73-5.65(\mathrm{~m}, 1 \mathrm{H}), 3.56-$ $3.51(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.28(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.86(\mathrm{~m}, 4 \mathrm{H})$, $1.33-1.24(\mathrm{~m}, 4 \mathrm{H}), 0.90-0.85(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,144.6,136.4$, $132.2,128.5,128.2,126.3,124.2,123.0,113.8,47.2,46.9,45.2,45.0,34.9,32.3,31.3,30.4$, $27.3,25.9,25.9,24.5,24.4,22.4,22.1,21.6,20.0,13.9,13.9$. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{Na})^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NONa}$ 244.1672; Found 244.1677.
(2Z,4E)-2,6,6-Trimethyl-1-(pyrrolidin-1-yl)hepta-2,4-dien-1-one (4ae)/(Z)-2,5,5-Trimethyl-4-methylene-1-(pyrrolidin-1-yl)hex-2-en-1-one (4'ae).

Prepared according to General Procedure 1. Colourless liquid; Eluent (30\% ethyl acetate in hexane). Isolated as an inseparable mixture of 4ae/4'ae in the ratio of $4: 1$ and the yield is $44 \%(35 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.95-5.80(\mathrm{~m}, 2 \mathrm{H}), 5.73(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.55-3.45(\mathrm{~m}, 4 \mathrm{H}), 3.34-3.28(\mathrm{~m}, 4 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 4 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,147.1,143.0,135.6,132.5,132.2,128.5,125.8,123.7$, $122.6,121.3,110.0,47.19,46.80,45.0,45.0,44.0,42.1,33.2,31.4,29.5,29.4,27.4,27.3$, 26.0, 26.0, 24.6, 20.0. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO} 222.1852$; Found 222.1855.
(2Z,4E)-2-Methyl-1-(pyrrolidin-1-yl)trideca-2,4-dien-1-one (4ob).

Prepared according to General Procedure 1. Colourless liquid; Eluent (20\% ethyl acetate in hexane). Isolated yield is $50 \%(50 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, J=14 \mathrm{~Hz}$, $1 \mathrm{H}), 6.04-5.94(\mathrm{~m}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, 3.44 (t, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.16(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.27(\mathrm{~m}$, $10 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1$, 144.6, 137.0, 128.1, 118.7, 47.1, 45.5, 33.3, 31.9, 29.5, 29.4, 29.3, 26.2, 24.4, 22.7, 20.9, 14.1. HRMS (ESI-TOF) m / z : $(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NO}$ 278.2478; Found 278.2475.
(2Z,4E)-3-Methyl-1-(pyrrolidin-1-yl)undeca-2,4-dien-1-one (4oc).

Prepared according to General Procedure 1. Colourless liquid; Eluent (20\% ethyl acetate in hexane). Isolated yield is $45 \%(40 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{~d}, J=16.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.04-5.93(\mathrm{~m}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 3.51(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.20$ $-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.26(\mathrm{~m}, 8 \mathrm{H})$, $0.87(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,144.6,136.9,128.1,118.6$,
47.1, 45.4, 33.2, 31.7, 29.2, 29.0, 26.1, 24.4, 22.6, 20.9, 14.1. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NO}$ 250.2165; Found 250.2169.
(2Z,4E)-3-Methyl-1-(pyrrolidin-1-yl)nona-2,4-dien-1-one (4od).

Prepared according to General Procedure 1. Colourless liquid; Eluent (20\% ethyl acetate in hexane). Isolated yield is $49 \%(39 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.21(\mathrm{~m}, 1 \mathrm{H})$, $6.00(\mathrm{dd}, J=15.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{t}, J=5.9 \mathrm{~Hz}$, $2.2 \mathrm{H}), 2.20-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.27(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, J$ $=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,144.6,136.8,128.2$, 118.7, 47.0, 45.4, 32.9, 31.4, 26.2, 24.4, 22.4, 20.8, 13.9. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}$ 222.1852; Found 278.1855.

2-((5Z)-6-Methyl-7-oxo-7-(pyrrolidin-1-yl)hepta-3,5-dien-1-yl)isoindoline-1,3-dione (5af).

Prepared according to General Procedure 1. Colourless liquid; Eluent (30\% ethyl acetate in hexane). Isolated as an inseparable mixture of E / Z in the ratio of $4: 1$ and the yield is 66% (80 $\mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.61(\mathrm{~m}, 2 \mathrm{H}), 5.93-5.80(\mathrm{~m}$, $2 \mathrm{H}), 5.60(\mathrm{dt}, J=14.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{t}$, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta 168.3,168.2,133.9,133.5,132.0,131.3,128.7,128.1,127.8,127.2,123.2,122.4$, 47.2, 47.0, 45.1, 45.1, 37.3, 37.3, 32.0, 26.6, 25.8, 24.4, 24.4, 21.0, 20.1, 19.9, 14.2. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}$ 339.1703; Found 339.1706.

2-((5Z)-6-Methyl-7-oxo-7-(pyrrolidin-1-yl)hepta-3,5-dien-1-yl)benzo[d]isothiazol-3(2H)one 1,1-dioxide (5ag).

Prepared according to General Procedure 1. Colourless liquid; Eluent (30\% ethyl acetate in hexane). Isolated as an inseparable mixture of E / Z in the ratio of $2.5: 1$ and the yield is 59% $(78 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.80(\mathrm{~m}, 3 \mathrm{H}), 6.04-$ $5.90(\mathrm{~m}, 2 \mathrm{H}), 5.80-5.68(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{t}, J$ $=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.66-2.60(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.74(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6,158.8,137.6,134.8,134.4,131.9,131.6,129.0,128.8$, $128.3,127.2,127.2,127.0,125.2,125.1,123.6,120.9,120.8,47.7,47.6,45.9,45.7,38.6$, 38.5, 31.7, 26.8, 25.7, 25.6, 24.3, 24.3, 20.0, 19.6. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{Na})^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}$ 397.1192; Found 397.1192.

Ethyl (6Z)-7-methyl-8-oxo-8-(pyrrolidin-1-yl)octa-4,6-dienoate (5ah).

Prepared according to General Procedure 1. Colourless liquid; Eluent (30\% ethyl acetate in hexane). Isolated as an inseparable mixture of E / Z in the ratio of $2: 1$ and the yield is 72% (72 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.00-5.86(\mathrm{~m}, 2 \mathrm{H}), 5.71-5.64(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.09(\mathrm{~m}$, $2 \mathrm{H}), 3.55-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.84(\mathrm{~m}$, $4 \mathrm{H}), 1.27-1.22(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8,170.2,133.5,130.6,127.7$, $127.4,125.5,122.5,60.4,60.3,47.2,47.1,45.0,34.1,33.9,27.9,25.9,24.5,23.1,20.2,19.9$, 14.2. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{3}$ 266.1751; Found 266.1750.

4-(((5Z)-6-Methyl-7-oxo-7-(pyrrolidin-1-yl)hepta-3,5-dien-1-yl)oxy)-2H-chromen-2-one (5ai).

Prepared according to General Procedure 1. Colourless liquid; Eluent (30\% ethyl acetate in hexane). Isolated as an inseparable mixture of 5ai/ $\mathbf{5}$ 'ai in the ratio of $4: 1$ and the yield is 54% $(69 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.12(\mathrm{~m}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.65$ $(\mathrm{s}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.56-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{q}, J=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 4 \mathrm{H}) . \delta{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.1,165.5,162.9$, $153.3,134.6,132.4,129.7,129.4,127.4,123.9,123.0,122.2,118.8,116.7,115.6,90.5,68.4$, $60.4,47.2,45.1,31.8,29.7,27.0,25.9,24.4,21.0,20.0,14.2$. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{Na})^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na} 376.1519$; Found 376.1515.
($9 E, 11 Z$)-12-Methyl-13-oxo-13-(pyrrolidin-1-yl)trideca-9,11-dien-1-yl acetate (5aj)/(Z)-11-Methyl-9-methylene-12-oxo-12-(pyrrolidin-1-yl)dodec-10-en-1-yl acetate (5'aj).

Prepared according to General Procedure 1. Colourless liquid; Eluent (30\% ethyl acetate in hexane). Isolated as an inseparable mixture of $\mathbf{5 a j} / \mathbf{5} \mathbf{\prime a j}$ in the ratio of $6: 1$ and the yield is 68% $(82 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.93-5.83(\mathrm{~m}, 2 \mathrm{H}), 5.70-5.62(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.06-2.00(\mathrm{~m}, 5 \mathrm{H}), 1.90(\mathrm{~s}$, $3 \mathrm{H}), 1.89-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.24(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.1,170.4,144.6,136.2,133.5,133.0,132.3,128.3,128.1,126.3,124.3,122.9$, $113.8,64.5,64.5,47.1,47.0,46.8,45.1,45.0,35.1,32.6,29.4,29.3,29.3,29.1,29.1,29.1$, 29.0, 29.0, 28.5, 28.5, 28.5, 28.2, 27.5, 25.9, 25.8, 24.5, 24.4, 24.3, 21.5, 20.9, 20.2, 19.9. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NO}_{3} 336.2533$; Found 336.2533.
(4E,6Z)-7-Methyl-8-oxo-8-(pyrrolidin-1-yl)octa-4,6-dien-1-yl benzoate (5ak)/(Z)-11-(Z)-6-Methyl-4-methylene-7-oxo-7-(pyrrolidin-1-yl)hept-5-en-1-yl benzoate (5'ak).

Prepared according to General Procedure 1. Colourless liquid; Eluent (30\% ethyl acetate in hexane). Isolated as an inseparable mixture of 5ak/5'ak in the ratio of $5: 1$ and the yield is $69 \%(78 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.02-5.90(\mathrm{~m}, 2 \mathrm{H}), 5.74-5.66(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{t}, J=6.4 \mathrm{~Hz}$, 2 H), $3.52-3.47$ (m, 2H), $3.30-3.26$ (m, 2H), 2.24 (dd, $J=14.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.92$ (s, 3H), $1.88-1.82(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2,166.5,134.3,133.2,132.9,131.4$, $130.3,129.5,128.3,127.8,127.3,125.5,122.5,114.7,64.1,64.0,47.2,47.1,45.1,45.0,31.5$, 29.1, 28.4, 28.2, 27.4, 25.9, 25.8, 24.4, 24.4, 24.0, 21.6, 20.1, 19.9. HRMS (ESI-TOF) m/z: $(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{3}$ 328.1907; Found 328.1908.

Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR and DEPT-135 Spectra

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{3 a a}$ in CDCl_{3} at 400 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound 3aa in CDCl_{3} at 101 MHz

DEPT 135 NMR spectra of compound 3aa in CDCl_{3} at 101 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound 3ba in CDCl_{3} at 400 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound 3ba in CDCl_{3} at 101 MHz

DEPT 135 NMR spectra of compound 3ba in CDCl_{3} at 101 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{3 c a}$ in CDCl_{3} at 500 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound 3 ca in CDCl_{3} at 126 MHz

DEPT 135 NMR spectra of compound 3ca in CDCl_{3} at 126 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound 3da in CDCl_{3} at 400 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound 3da in CDCl_{3} at 101 MHz

DEPT 135 NMR spectra of compound 3da in CDCl_{3} at 101 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{3 e a}$ in CDCl_{3} at 500 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound 3 ea in CDCl_{3} at 126 MHz

DEPT 135 NMR spectra of compound 3ea in CDCl_{3} at 126 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{3 f a}$ in CDCl_{3} at 400 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 f a}$ in CDCl_{3} at 101 MHz

DEPT 135 NMR spectra of compound $\mathbf{3 f a}$ in CDCl_{3} at 101 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{3 g a}$ in CDCl_{3} at 400 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 g a}$ in CDCl_{3} at 101 MHz

DEPT 135 NMR spectra of compound 3ga in CDCl_{3} at 101 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound 3ha in CDCl_{3} at 500 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound 3ha in CDCl_{3} at 126 MHz

DEPT 135 NMR spectra of compound 3ha in CDCl_{3} at 126 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{3 i a}$ in CDCl_{3} at 500 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound 3ia in CDCl_{3} at 126 MHz

DEPT 135 NMR spectra of compound $\mathbf{3 i a}$ in CDCl_{3} at 126 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{3 j a}$ in CDCl_{3} at 500 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 j a}$ in CDCl_{3} at 126 MHz

DEPT 135 NMR spectra of compound $\mathbf{3 j a}$ in CDCl_{3} at 126 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{3 k a}$ in CDCl_{3} at 400 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 k a}$ in CDCl_{3} at 101 MHz

DEPT 135 NMR spectra of compound $\mathbf{3 k a}$ in CDCl_{3} at 101 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound 3la in CDCl_{3} at 400 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound 31a in CDCl_{3} at 101 MHz

DEPT 135 NMR spectra of compound 3la in CDCl_{3} at 101 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{3 m a}$ in CDCl_{3} at 500 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 m a}$ in CDCl_{3} at 126 MHz

DEPT 135 NMR spectra of compound $\mathbf{3 m a}$ in CDCl_{3} at 126 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound 3 na in CDCl_{3} at 500 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound 3na in CDCl_{3} at 126 MHz

DEPT 135 NMR spectra of compound 3na in CDCl_{3} at 126 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{3 o a}$ in CDCl_{3} at 500 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 o a}$ in CDCl_{3} at 126 MHz

DEPT 135 NMR spectra of compound $\mathbf{3 o a}$ in CDCl_{3} at 126 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound 3pa in CDCl_{3} at 500 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound 3pa in CDCl_{3} at 126 MHz

DEPT 135 NMR spectra of compound 3pa in CDCl_{3} at 126 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{4 a b}$ in CDCl_{3} at 500 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 a b}$ in CDCl_{3} at 126 MHz

DEPT 135 NMR spectra of compound $\mathbf{4 a b}$ in CDCl_{3} at 126 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{4 a c}$ in CDCl_{3} at 500 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 a c}$ in CDCl_{3} at 126 MHz

DEPT 135 NMR spectra of compound 4 ac in CDCl_{3} at 126 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound 4 ad in CDCl_{3} at 500 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound 4 ad in CDCl_{3} at 126 MHz

DEPT 135 NMR spectra of compound $\mathbf{4 a d}$ in CDCl_{3} at 126 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound 4 ae in CDCl_{3} at 500 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound 4ae in CDCl_{3} at 126 MHz

DEPT 135 NMR spectra of compound 4 ae in CDCl_{3} at 126 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{4 o b}$ in CDCl_{3} at 500 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 o b}$ in CDCl_{3} at 126 MHz

DEPT 135 NMR spectra of compound $\mathbf{4 o b}$ in CDCl_{3} at 126 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{4 o c}$ in CDCl_{3} at 400 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 o c}$ in CDCl_{3} at 101 MHz

DEPT 135 NMR spectra of compound $\mathbf{4 o c}$ in CDCl_{3} at 101 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound 4 od in CDCl_{3} at 400 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound 4 od in CDCl_{3} at 101 MHz

DEPT 135 NMR spectra of compound $\mathbf{4 o d}$ in CDCl_{3} at 101 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{5 a f}$ in CDCl_{3} at 500 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 a f}$ in CDCl_{3} at 126 MHz

DEPT 135 NMR spectra of compound 5af in CDCl_{3} at 126 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{5 a g}$ in CDCl_{3} at 500 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 a g}$ in CDCl_{3} at 126 MHz

DEPT 135 NMR spectra of compound $\mathbf{5 a g}$ in CDCl_{3} at $126 \mathbf{M H z}$

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{5 a h}$ in CDCl_{3} at 500 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 a h}$ in CDCl_{3} at 126 MHz

DEPT 135 NMR spectra of compound $\mathbf{5 a h}$ in CDCl_{3} at $126 \mathbf{M H z}$

${ }^{1} \mathrm{H}$ NMR spectra of compound 5ai in CDCl_{3} at 400 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound 5ai in CDCl_{3} at 101 MHz

DEPT 135 NMR spectra of compound 5ai in CDCl_{3} at 101 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{5 a j}$ in CDCl_{3} at 500 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 a j}$ in CDCl_{3} at 126 MHz

DEPT 135 NMR spectra of compound 5aj in CDCl_{3} at 126 MHz

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{5 a k}$ in CDCl_{3} at 500 MHz

${ }^{13} \mathrm{C}$ NMR spectra of compound 5ak in CDCl_{3} at 126 MHz

DEPT 135 NMR spectra of compound $\mathbf{5 a k}$ in CDCl_{3} at 126 MHz

