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Bacterial cell segmentation 

The segmentation algorithm is applied here to phase contrast images (e.g. Figure S1A) to 
distinguish the foreground (bacteria cells) from the background in each frame of the time-lapse 
experiment. A pre-processing of the raw images is generally required before running the 
segmentation routine, which can then segment and count individual cells in a filtered frame. 
The segmentation algorithm output is a mask, used to calculate the fluorescence of individual 
cells (raw fluorescence image as in Figure S1B). and the average fluorescence across the 
bacteria population. The Matlab files implementing the reported algorithm are 
‘segmentation_main_offline_ol_video.m’,‘segmentation_GF.m’, 
‘fluorescence_eval_FG_Init.m’, ‘fluorescence_eval_GF.m’ and reshapeHist.m. 

 

Figure S1. Two channels frames.  A) Raw phase contrast image. B) Raw green fluorescence 
image. 

1. Pre-processing of the raw images 
For image pre-processing, firstly the user defines manually in the original image a crop; in so 
doing, the region of interest where cells are expected to grow is defined, excluding external 
objects (e.g. microfluidic device borders). Then, interpolation by Interp2 is required to set the 
proper size of the image and to increase the resolution. Finally, filters such as Wiener2 (2-D 
adaptive noise-removal filter) and Medfilt2 (2-D median filter) are applied to reduce noise 
and blurriness (Figures S2A, B); the Adapthisteq function is used to enhance the contrast of 
the grayscale image (Figure 2C). 

 

 

 

 

Figure S2. Matlab filters for pre-processing. A) Wiener2 filtering: adaptive noise-remove 
filter; B) Medfilt2 filtering: the function performs median filtering of a matrix in two 
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dimensions; C) Adapthisteq contrast saturation: the function enhances the image contrast; it 
operates on small data regions (tiles), rather than on the entire image. 

2. Global and local thresholding 
After pre-processing, the algorithm applies the Otsu method 1 to binarize the greyscale image 
by the Imbinarize function and uses morphological operators such Imdilate and Imfill to 
calculate the global area where cells are located (Figure S3). Local thresholding is then applied 
to find cell centres and edges to segment individual cells by the Niblack and Averagefilter user-
defined functions (Figure S4).  
 

a. Global thresholding  
A first step for the computation of a mask is given by the identification of the “global area” 
where cells can be distinguished from the background. This rough result is achieved using three 
simple functions: Imbinarize, that calls the Otsu method and generates a binary image; Imdilate 
and Imfill, which dilate the objects in the image and then fill the internal gaps, respectively 
(Figure S3).  

 

Figure S3. Global thresholding functions. A) The Imbinarize function binarizes the 
grayscale image by thresholding (Otsu method). The threshold is automatically defined as 
global, unless a different method is specified. B) The Imdilate function dilates the image 

referring to the shape of a structuring element object (STREL). C) The Imfill function 
performs a filling operation on background pixels of the input binary image specified. 

b. Local Thresholding  
Local thresholding is needed to differentiate individual cells in a binary mask. First, an 
automatic crop is applied to select the zone of the image containing cells (Figure S4A). The 
size for the crop is chosen referring to the mask size, previously calculated by global 
thresholding.  To apply a local thresholding routine, we use two user-defined functions 
(Niblack and Averagefilter) to segment individual objects; the Averagefilter function is nested 
inside the Niblack call (Figure S4B). 
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Figure S4. Local thresholding functions. A) The Imcrop function crops an image; if no area 
is specified, the command can create an interactive window to select an area to be cropped. 

B) Niblack and Averagefilter user-defined functions: these nested functions, based on the 
Niblack  algorithm in 2, divide foreground and background using local information about the 

image.  
 

3. Segmentation refinement and evaluation 
After local thresholding, we refine the segmentation results to get rid of possible artefacts of 
the segmentation process. Firstly, small objects which are out of the individual cells size range 
are removed. This is done by a selective Matlab function – Bwareafilt - that keeps the n largest 
objects according to user-defined criteria (Figure S5A). Then, the morphological operators 
Imfill and Imopen are called to smooth the edges and fix small objects which are likely to be 
artefacts of the segmentation algorithm (Figures S5B and C). The resulting local thresholding 
mask is shown (Figure S5C); there are still few small objects which are removed later by a 
user-defined function based on fluorescence calculation (see below). 

 

 

 

 

 

Figure S5. Segmentation refinement functions and mask resulting from local thresholding. 
A) The Bwareafilt function extracts objects from a binary image by size. A value for the size 

must be specified. B) Imfill function, as in Figure S3C. C) Imopen function: the 
morphological operation is an erosion followed by a dilation, using the same structuring 

element (STREL) for both operations. This operation allows a further removal of some small 
objects.  

A further refinement routine is carried out by the user-defined function 
segmentationRefinement. This method aims at removing artefacts due to the fact that individual 
cells, if too close, can get segmented as a single object. Firstly, the algorithm chooses the 
objects which have an area twice bigger than the average area calculated over all the objects 
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present in the mask. These larger objects are further segmented until identifying individual 
cells (Figure S6). 

 

Figure S6. Long objects refinement A) The image shows the original mask before the 
refinement process. Long objects, highlighted in red, are detected by the algorithm. B) The 

bigger objects are divided by a line, drawn calculating the convex points representing edges 
where two cells touch. 

A final refinement of the mask is made by deleting the remaining small objects. The average 
cell area evaluated in the previous step is used again to identify objects with an area at least 
50% smaller than the average. Through the user-defined function SmallObjectsRemoval, those 
objects are deleted from the mask, which is then resized to the original crop size defined in the 
pre-processing stage (Figure S7). 

 

Figure S7. Small objects removal. The image shows the last process of small objects 
removal (user-defined function) to delete the spots around the segmented cells. This is 

also the final mask used to calculate the fluorescence. 

4. Fluorescence calculation and segmentation evaluation 
The final mask (Figure S7) is overlapped to the green field image to calculate the fluorescence 
using the custom function fluorescence_eval.m. This is computed as the sum of all pixels in 
the segmented area minus the background fluorescence value. The background is calculated as 
the mean of the pixels acquired cropping an area without cells from the green field channel. A 
threshold fluorescence value (using fluorescence_eval_Init.m) is computed to exclude cells 
over a fluorescence threshold set by the user: in this way possible outliers (e.g. mutants 
resulting from phototoxicity effects) are removed. The threshold is calculated as the highest 
fluorescence in a set of images. The final average fluorescence value is then computed as the 
mean of the fluorescence exhibited by all the objects in the final mask after removing those 
over the threshold. The algorithm outputs at each sampling time of the experiment the average 
fluorescence across the cell population (Figure 1C, Supporting Movie 1), its statistical 



 
 

 S6 

moments and the fluorescence histogram.  The algorithm outputs also the cell number by 
counting the numbers of individual objects 3. 

To assess the quality of segmentation, we compared our computed masks with the ground truth 
images (i.e., images annotated by an expert, using the Image Labeler toolbox in Matlab and 
manually drawing the cell’s interior). As in  4, the Dice coefficient metric was used; it 
represents the ratio of overlapped region between the segmented and the ground truth regions, 
and is defined as 

𝐶!"#$ =
2	|M	 ∩ GT|
|M| + |GT| 		 

where M is the segmented mask, GT the ground truth and | | corresponds to a measure of the 
area. Results in S8 for two frames with partially full/full microfluidic chamber show an 
agreement with the ground truth > 75% for both images; as expected, the performance is 
slightly worst with increased device density. The fluorescence quantification was comparable 
using either of the masks (Figure S8C). 

Figure S8. Metrics calculation. A) Phase contrast, and corresponding ground truth and 
ChipSeg-computed masks at two specific time points of the experiment in Supplementary 

Movie 1. B) Dice coefficient for ground truth and ChipSeg-computed masks. C) GFP 
quantification for ground truth and ChipSeg-computed masks. 
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Mammalian cell segmentation 

The segmentation algorithm for mammalian cells, similarly to the bacteria one, can be applied 
to different types of images to distinguish the foreground from the background. The algorithm 
can identify cellular marks, compute fluorescence and track cells over time. The steps and 
parameters have been optimised for our experimental settings (see below); the user might need 
to refine parameters or could possibly skip some pre-processing steps depending on the 
acquired raw images and the cells used. The Matlab files implementing the reported steps are 
‘Main_Offline.m’, ‘Offline_function.m’, ‘Mask_n_Track.m’ and ‘fluorescence_evaluation.m’. 

1. Selection of a channel for the segmentation process  
The algorithm applied to the first exemplar experiment shown here (Figures S9-S11, 
Supporting Movie 2) uses an Otsu method to identify masks and quantify the fluorescent 
reporter expression in a dome-shaped population of Rex1-GFPd2 mESCs. We applied the Otsu 
method to either the phase contrast images, or images collected using a Blue channel to capture 
a blue dye incorporated into cells (Figures S9A, D). Blue dye images were used for 
segmentation given the superior contrast in the scale of grey as compared to phase contrast 
images; furthermore, if based on dye images, the algorithm avoids including in the foreground 
non-fluorescent objects which are not cells (e.g. edges of the microfluidic device). In what 
follows, we show only the segmentation process in case dye images are used; still, the same 
routine could be used for phase contrast frames. 

 

Figure S9. Raw images, Rex1-GFPd2 mESCs. A) Phase contrast image. B) Green 
fluorescence image. C) H2B- Nuclei tag image. D) Blue dye image. 

2. Pre-processing of the raw images 
As for bacterial cells, at the start of the time-lapse a crop is manually made to define the region 
of interest from the initial picture frame (Figure S10A); the same crop is then used throughout 
the time-lapse. At the start of the experiment, an additional crop is required to identify a region 
without cells, which will be later used to calculate the background fluorescence. Then, the 
cropped image with cells is filtered to adjust the colour intensity values; 1% of data is saturated 
at low and high intensities by the Imadjust MATLAB function (Figure S10B).  
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Figure S10. Pre-processing functions. A) Imcrop function: the original raw image is 
manually cropped from the first timeframe. The crop function is the same described in Figure 

S4A. B) Imadjust function operates a saturation of 1% of data at low and high intensities. 

3. Global thresholding and single-cell tracking 
 

a. Global Thresholding  

Before and after applying the Otsu algorithm (Imbinarize function), some filtering actions 
might be required to improve the image and mask quality, as for bacterial cells (Figure S11). 
Of note, parameters in these functions (e.g. the structuring element object within the Imerode 
function) need to be optimised by trial and error, depending of the images; if segmenting 
images acquired under different settings, some of these functions might be redundant. 

 

 

 

 

 

 

 

 

Figure S11. Global thresholding and filters. A) Medfilt2* filter: as described in Figure S2B, 
this function performs a median filtering of a matrix. B) Adapthisteq* function: as described 

in Figure S2C, enhances the contrast of images. C) Imbinarize function: as described in 
Figure S3A. D) Imdilate* function: as described in Figure S3B. E) Imfill* function: described 
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in Figure S3C. F) Imerode* function: erodes images referring to the shape of a structuring 
element object (STREL). * Depending on the raw images, some of these functions might be 

redundant. 

b. Single-cell tracking  
Single-cell tracking is another feature embedded in our code, always relying on the Otsu method 
for mask recognition. Here we show an application to a time-lapse where dual-reporter mESC 
images of three channels were collected (Figure S12); to clearly identify individual cells we used 
an H2B-tag reporter for nuclei (Figure S12C). 

 
Figure S12. Raw images of dual-reporter mESCs used in single-cell tracking experiment. A) 

Phase contrast image. B) mCherry fluorescence image. C) H2B nuclear tag image. 
 

The tracking code firstly computes a rough mask detecting nuclei intensity by applying filters 
and thresholding functions (Figure S13), as defined within the user-defined function 
mask_n_Track. Then, the mask is used to identify and label connected objects (i.e. individual 
cells). We employed the mCherry fluorescent image (expressed both in the nucleus and in the 
cytosol, Figure S12B) to calculate the average cell area; using the Bwareafilt function, objects 
whose area is less than the 5% of the average are removed (Figure S13F). This step might be 
neglected if the nuclei images have a higher contract as compared to the background than in 
our exemplar experiment.  
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Figure S13. Filtering functions.  A) Imcrop function: the original raw image is 
manually cropped in the first timeframe. The crop function is the same described in 

Figure S4A. B) Adapthisteq function: as described in Figure S2C. C) Imbinarize 
function: as described in Figure S3A. D) Imclose function: the morphological open 
operation is a dilation followed by an erosion, using the same structuring element 
(STREL) for both operations. E) Imfill* function, as described in Figure S3C. F) 

Bwareafilt function: as described in Figure S5A. 

Using the Matlab function Bwlabel, the code then associates to each object a label, that is going 
to be maintained throughout the whole time-lapse experiment. For each object, a centroid is 
evaluated using the Matlab function Regionprops; this function also computes the major and 
minor axis of the ellipses defining the dimensions, their orientation and the area of cells nuclei. 
The algorithm then performs tracking by using the custom functions MaskGenerator and 
Tracking_fun (the latter encompassing SaveStructEllipse, TraceOldNew and UpdateOBJS 
functions). MaskGenerator generates multiple masks, one for each cell detected, overlapping 
the rough mask previously computed with ellipses data generated by Regionprops. Then, from 
the second timeframe onwards, the centroids among contiguous timeframes are compared. 
Each object (i.e. cell) is saved by SaveStructEllipse along with the ellipse associated data and 
computed masks, and a minimum distance problem is solved by the TraceOldNew function to 
identify an object in two consecutive frames. The label associated to each cell is kept or 
swapped with another cell during the experiment according to the updateOBJS method; a cell 
label is removed only in case the cell goes out of focus or leaves the cropped region. Some 
parameters of the routine (e.g. the maximum nuclei dimension) need to be fixed by the user 
given the acquisition settings and specific cell morphology. In Figure S14 we show two 
consecutive frames and the relative tracking of individual cells. 

 

 

Figure S14. Cell tracking. The tracking of individual cells using the functions Mask_n_Track 
and Tracking_fun in two consecutive frames is shown. 

5. Fluorescence calculation and segmentation evaluation 
Once a mask is available, it can be applied to the frame of interest to evaluate the associated 
fluorescence value at cell population (Figure 1D, Supporting Movie 2) or single-cell (Figure 
1E, Supporting Movie 3) level; an average background fluorescence is subtracted to cell 
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fluorescence. The background intensity value can be either computed by cropping an empty 
area of the frame or by defining the reversed logical mask. In the latter case, the background is 
then obtained as it would be for cells fluorescence, i.e. by applying the mask to a frame and 
averaging over the non-covered area. When a fluorescent tag is inserted into mammalian cell 
nuclei, a nuclei normalization can also be performed within fluorescence computation. 

The performance of ChipSeg using global thresholding for mammalian cells was compared to 
ground truth, manually annotated images using the Dice coefficient, as for bacterial cells (see 
above). Results on two timeframes of the time-lapse in Supplementary movie 2 show > 90% 
overlap of the ChipSeg-computed vs manually annotated masks (Figure S15B), and 
comparable fluorescence quantification (Figure S15 C). 

 

Figure S15. Metrics calculation. A) Phase contrast and corresponding ground truth and 
ChipSeg-computed masks at two specific time points of the experiment in Supplementary 

Movie 2. B) Dice coefficient for ground truth and ChipSeg-computed masks. C) GFP 
quantification for ground truth and ChipSeg-computed masks. 
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