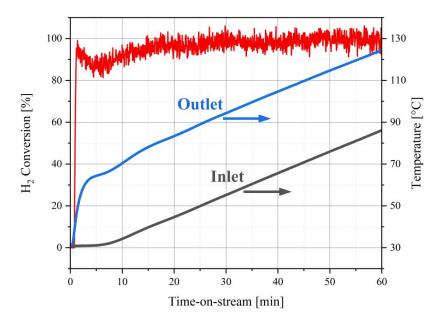
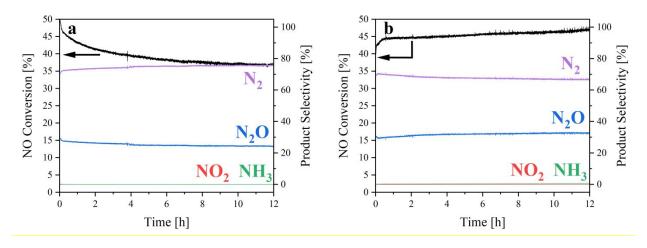
Supporting Information

Selective catalytic reduction of NO_x with H_2 for exhausts of hydrogen engines: Impact of H_2O , O_2 , and NO/H_2 -ratio


Michael Borchers[†], Kevin Keller[†], Patrick Lott, Olaf Deutschmann*

Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131 Karlsruhe, Germany


*deutschmann@kit.edu

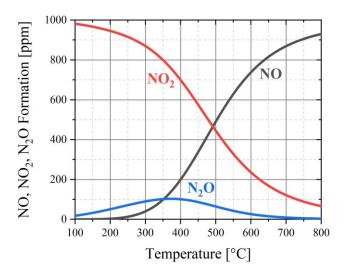

Figure S1. Difference between inlet and outlet temperature of the 1%Pd/5%V₂O₅/20%TiO₂-Al₂O₃ monolith during the light-off experiments with gas mixtures A-E (Table 1).

Figure S2. H_2 conversion (red) of a light-off of the $1\%Pd/5\%V_2O_5/20\%TiO_2-Al_2O_3$ monolith catalyst with a NO-free gas mixture (1% H_2 , 10% O_2 in N_2). Reactor temperatures are shown for the thermocouples located upstream of the catalyst at the gas inlet (black) and downstream at the outlet (blue).

Figure S3. NO conversion and product selectivities during a long-term measurement over 12 h of the $1\%Pd/5\%V_2O_5/20\%TiO_2-Al_2O_3$ monolith catalyst at 220 °C inlet temperature with the gas mixtures A (a, 1000 ppm NO, 5000 ppm H₂ and 10% O₂ in N₂) and E (b, 1000 ppm NO, 5000 ppm H₂, 10% O₂ and 5% H₂O in N₂), GHSV = 60 000 h⁻¹.

Figure S4. Thermodynamic equilibrium of the product distribution in a feed exhaust gas of 1000 ppm NO, $10\% O_2$ in N₂ calculated with the DETCHEMTM software package.