Table S2. Summary of ecosystem services (ES) provided by the Southern Ocean (SO) and how they may be affected by change.

Ecosystem services (ES) are categorised in this table as provisioning, regulating, supporting and cultural (MEA, 2005); followed by a summary of the biological components deemed essential to the provision of each ES¹ (Grant et al., 2013); the key climate-related² drivers of change (IPCC, 2019); followed by summaries of potential future impacts on the biological components³. This information was used to assess the risk of climate-driven change affecting the capacity of the ecosystem to deliver the ES in the future (Tables 1 and 2 in the main text). Drivers in italics are those for which there may be potential biological impacts but there is currently insufficient evidence to include these as part of the risk assessment. Other key (non-climatic) drivers are listed here and discussed further in the main text (while noting that for each ES this could potentially include all the drivers that affect Southern Ocean (SO) ecosystem structure and processes⁴). Information is included on demand⁵ and whether the ES (and/or the biological components) are explicitly considered by instruments of the ATS⁶. The table focuses on the circumpolar scale (unless otherwise stated) with regional-scale nuances discussed in the main text and case studies. The table is split into two parts: (a) the ES for which we undertook our risk assessment (Table 2 in the main text) and (b) additional ES that we identified but did not assess in this study (see Methods). We have not included the ES water or air quality regulation. i.e. the uptake of chemicals and pollutants from the ocean and atmosphere, or waste treatment, i.e. decomposition of organic wastes by bacteria and microorganisms. These are underpinned by a complex network of interacting ecosystem processes and merit separate studies. For information about levels of confidence, see Abram et al. (2019).

*the ES that form the detailed case studies in this study.

¹The table does not include physical components of ES. The source of information on biological components is primarily Grant et al. (2013) with any additional references cited.

²The source of information on the drivers in this table is the IPCC SROCC (IPCC, 2019), predominantly Chapter 3 (Meredith et al., 2019), those included are those considered as the key drivers in the context of ecosystem change in the SROCC i.e. sea ice, ocean temperature, ocean acidification, stratification, retreating glaciers, ice sheets, and ice shelf loss, and circulation. Circulation refers to the key components of ocean circulation, especially the horizontal circulation and movement of fronts, and overturning circulation and water mass formation.

³The source of information on the drivers and impacts is the IPCC SROCC (IPCC, 2019), predominantly Chapter 3 (Meredith et al., 2019), with detail from other sources discussed in the case studies in the main text.

⁴Each ES is potentially influenced by all drivers that affect aspects of ecosystem structure and processes (including all those listed in both the climate-related and other drivers columns). For space and readability this general-level information is not included except where more specific information is lacking in part (b).

 5 We consider demand to be the societal need for these ES, ranging from the demand for fish as a food source to the reliance on the role of the blue carbon pathway in climate regulation. Based on global increases in human population growth, demand for food, atmospheric CO₂ concentrations and environmental degradation, we expect the demand for all the ES in this table to increase. However, the uncertainty in this expectation is explored further in the main text for each of the case study ES.

⁶For further information refer to https://www.ats.aq/index_e.html and http://www.ccamlr.org/en , and the main text. Note that additional fisheries and environmental management measures (i.e. not within the ATS) are established around some sub-Antarctic islands under national jurisdiction.

Table S2 (a) The ES for which we undertook our risk assessment

ES	Description and importance/value	Ecosystem/ biological components essential to the provision of the ES	Key drivers of change (climate- related)	Potential future impacts on ecosystem / biological components (that underlie ES)	Other key drivers	Anticipated changes in demand for ES in the future	Consideration of the ES in ATS instruments
Provisioning servi	ces						
Fishery products	*Antarctic krill (<i>Euphausia</i> <i>superba</i>) Used mainly in meal and krill oil production, and as the basis for various biochemical products. In the 2017/2018 fishing season, 11 vessels from 5 nations participated in the fishery catching 312,989 tonnes (CCAMLR, 2019), with a first sale value of \$US100 to 416 million (based on the values in CCAMLR Commisison	Recruitment – including: availability of suitable habitat, e.g. sea ice – winter/spring krill habitat; dispersal/transport of larvae and juveniles via ocean current systems, e.g. transport of krill in ACC across the Scotia Sea, e.g. from spawning sites along western Antarctic Peninsula to South Georgia. Food availability – primary production – algae associated with sea ice (winter)	Sea ice Ocean temperature Ocean acidification <i>Circulation</i>	Regional sea ice changes will have an overall negative effect on Antarctic krill (medium confidence) (SROCC Fig 3.6). Some of the temporal and spatial shifts in the fishery have been attributed to reductions in winter sea ice extent (low confidence) (SROCC 3.2.4.1.2). Ocean warming and ocean acidification will have an overall negative effect on Antarctic krill	Fishing Population recovery of previously harvested krill- consuming species (e.g. whales)	Increase. Parts of the Southern Ocean other than the Scotia Sea region may become increasingly attractive to the industry as markets and supply chains change. While Antarctic krill is an important economic resource it is not a major source of fishmeal or polyunsaturated fatty acids (contributing <1% of global production of each), nor is it currently an important human food source.	Commercial fishery for Antarctic krill is managed by CCAMLR. CCAMLR principles of conservation: i) Prevention of decrease in size of populations, to ensure stable recruitment; ii) Maintenance of ecological relationships (associated & dependent species); iii) Prevention of changes to ecosystem which are not reversible

Report 2016 and	and phytoplankton	(medium	However, this	over two to three
Grant et al 2013a).	blooms (summer).	confidence and	fishery is one of	decades.
This accounts for		low confidence,	the few that are	
95% of the annual	Distribution of	respectively)	theoretically	Further
catch in the	adults (availability	(SROCC Fig 3.6).	capable of	development of
Southern Ocean	to fishery),		supporting	CCAMLR's krill
but <0.5% of the	associated with	Projected climate-	significantly	fishery
global annual	habitat	induced changes	higher catches and	management
marine fisheries	quality/food	include changes in	may therefore	strategy aims to
catch (GAMFC).	availability.	distribution,	become important	include regularly
		further habitat	future food	updated krill
		contraction and	resources. Better	biomass estimates
		changes in	prognostic	and the spatial
		abundance for	information would	allocation of krill
		Antarctic krill	be useful,	catches, together
		(medium	including forecasts	with a risk
		confidence).	of future demand	assessment
		Optimal	for krill products.	framework to
		conditions for krill	1	consider impacts
		are predicted to		on krill-dependent
		move southwards		species.
		(medium		
		confidence), with		
		the decreases		
		most apparent in		
		the areas with the		
		most rapid		
		warming. Greatest		
		projected		
		reductions in krill		
		due to warming		
		and ocean		
		acidification are		
		predicted for SW		
		Atlantic/Weddell		
		Sea region (low		
		confidence), which		

			is the area of highest current krill concentrations, contains important foraging grounds for krill predators, and is also the main area of operation of the krill fishery (SROCC 3.2.3.2.1).			
Toothfish:Patagoniantoothfish(Dissostichuseleginoides) andAntarctic toothfish(D. mawsoni), soldmainly as high-value fish fordirect humanconsumption.In the 2017/2018fishing season,vessels from 13nationsparticipated in thefisheries forAntarctic andPatagoniantoothfish, with atotal reportedcatch of 11,370	Recruitment - including availability of spawning areas in deep water and shallow nursery habitats. Food availability - including notothenids, myctophids, krill. Distribution of adults (availability to fishery).	Ocean temperature	Projected ocean warming may negatively affect cold-adapted fish (<i>low confidence</i>) (SROCC Fig 3.6). Increasing water temperatures may affect toothfish species differently due to differences in temperature tolerances for Patagonian toothfish (wide temperature tolerance) and Antarctic toothfish (limited by low tolerance for water temperatures above 2°C), the	Fishing Population recovery of previously harvested species	Increase	Commercial fishery for toothfish is managed by CCAMLR (see principles of conservation above). Catch limits and other regulations for fisheries in each subarea are reviewed annually.

tonnes (inside the CCAMLR Area; both species combined)latter may be faced with reduced habitat and potential competition with southward-moving PatagonianMean annual wholesale value of Southern Ocean toothfish fisheries: US\$206.7 millionIatter may be faced with reduced habitat and potential competition with southward-moving Patagonian toothfish (very low (SROCC 3.2.3.2.3).	
both species combined) (CCAMLR, 2019).habitat and potential competition with southward-moving PatagonianMean annual wholesale value of Southern Ocean toothfish fisheries:Mean annual (SROCC 3.2.3.2.3).Suthern Ocean (SROCC	
combined) (CCAMLR, 2019).potential competition with southward-moving Patagonian toothfish (very low confidence) Southern Ocean toothfish fisheries:potential competition with southward-moving	
(CCAMLR, competition with 2019). southward-moving Patagonian Patagonian Mean annual toothfish (very low wholesale value of confidence) Southern Ocean (SROCC toothfish fisheries: 3.2.3.2.3).	
2019). southward-moving Mean annual Patagonian wholesale value of confidence) Southern Ocean (SROCC toothfish fisheries: 3.2.3.2.3).	
Mean annual wholesale value of Southern Ocean toothfish fisheries:Patagonian toothfish (very low confidence)Southern Ocean toothfish fisheries:(SROCC 3.2.3.2.3).	
Mean annual wholesale value of Southern Ocean toothfish fisheries:toothfish (very low confidence)Southern Ocean toothfish fisheries:(SROCC 3.2.3.2.3).	
wholesale value of Southern Ocean toothfish fisheries: confidence) \$3.2.3.2.3\$	
Southern Ocean (SROCC toothfish fisheries: 3.2.3.2.3).	
toothfish fisheries: 3.2.3.2.3).	l
toothfish fisheries: 3.2.3.2.3).	,
US\$206.7 million	ľ
	ľ
per year 2011- Recruitment has	
2015. been shown to be	
inversely	
Publicly available correlated with sea	ľ
information on the surface	
market value of temperature for	
toothfish products Patagonian	ľ
indicates a wide toothfish at South	
price range from Georgia (SROCC	ľ
US\$10-50/kg 3.2.3.2.3).	
(Grilly et al.,	ľ
2015). Differences in	ľ
temperature	ľ
tolerance of	ľ
toothfish species	ľ
may have	
implications for	
future fisheries	
(SROCC	
3.2.3.2.3).	
Mackerel icefish Recruitment. Ocean temperature Increasing water Fishing Increase Commerc	ial
(<i>Champsocephalu</i> temperatures may fishery fo	r
s gunnari). Food availability displace icefish Population mackerel	icefish is
(e.g. krill, (family recovery of	
copepods, Channichthyidae)	I

In the 2017/2018	myctophids,	in marginal	previously	managed by
fishing season,	benthos).	habitats (e.g.,	harvested species	CCAMLR.
total reported		shallow regions		
catch of mackerel	Distribution of	around		
icefish was 573	adults (availability	subantarctic		
tonnes.	to fishery).	islands) as they		
		lack haemoglobin		
(see also Table		and are unable to		
S2(b) - Previously		adjust blood		
and potentially		parameters to an		
harvested species)		increasing oxygen		
		demand (low		
		confidence)		
		(SROCC		
		3.2.3.2.3).		
		Lack of recovery		
		of mackerel		
		icefish stocks after		
		cessation of		
		fishing around the		
		Antarctic		
		Peninsula in 1995		
		has been related to		
		anomalous water		
		temperatures		
		(~2°C increase		
		related to a strong		
		El Niño) in the		
		subantarctic Indian		
		Ocean and to		
		availability of krill		
		prey in the		
		Atlantic region		
		(low confidence)		
		(SROCC		
		3.2.4.1.2).		

Regulating services							
Regulating services Climate regulation	*The blue carbon pathway is the capture and fixation of carbon by marine organisms, through storage in the bodies of organisms (for up to 100 years) to sequestration (which is removal of carbon from the carbon cycle for 100+ years).	Carbon capture from dissolved CO ₂ by phytoplankton. Consumption of the phytoplankton and storage of this carbon by consumers (zooplankton and benthos). Burial (and subsequent sequestration) of pelagic and benthic biomass. Most carbon is recycled in the microbial loop by bacterial breakdown of phytoplankton and animals. The amount actually sequestered depends on factors	Sea ice Retreating glaciers, ice sheets, and ice shelf loss Ocean temperature Ocean acidification Stratification Circulation	Carbon uptake and storage by Antarctic benthic communities is predicted to increase with sea ice losses (SROCC 3.2.3.2.2). There is <i>high</i> <i>agreement</i> based on <i>medium</i> <i>evidence</i> that ice shelf retreat or collapse is leading to new marine habitats and to biological colonisation. These newly- revealed habitats have resulted in enhanced carbon uptake by coastal marine ecosystems (<i>medium</i> <i>confidence</i>) (SROCC 3.3.3.4).	Generally the drivers that affect SO biodiversity, e.g. disruption by non indigenous species establishments and fishing, e.g. longline bycatch.	Increase. The reduction of atmospheric carbon is a major societal goal with the blue carbon pathway is recognized as an important ecosystem service, and increasing interest in the polar regions.	There is currently no specific management or policy for this ecosystem service by the ATS. However fisheries management and other conservation measures (e.g. to reduce impact on Vulnerable Marine Ecosystems (VMEs)) under CCAMLR, and regulation of other human activities under the Environmental Protocol (e.g. to prevent pollution and the introduction of non-native species have the potential to influence biological carbon storage and its likelihood of sequestration, despite not being
		actually		confidence) (SROCC 3.3.3.4).			storage and its likelihood of

		what the organisms are made of, local microbial activity		confidence) (SROCC 3.3.3.4).			
G		etc.					
production (Assimilation of energy and nutrients by phytoplankton, as a food source for higher trophic levels.	Production of oxygen and uptake of CO ₂ by phytoplankton. Summer phytoplankton blooms, growth of winter and spring sea ice algae. Upwelling of nutrient-rich waters. Role of metazoans, e.g. recovery of depleted whale populations, could enhance the recycling of iron in the upper water column and so increase primary production (Nicol et al., 2010).	Sea ice Ocean acidification Stratification Retreating glaciers, ice sheets, and ice shelf loss <i>Circulation</i>	Regional sea ice changes have mixed effects on phytoplankton (medium confidence). Projected changes in ocean acidification will have a negative effect on coastal phytoplankton (medium confidence) and mixed effects on open ocean phytoplankton (low confidence). Projected changes to stratification (mixed layer depth) will have mixed effects on phytoplankton (mixed effects on phytoplankton (mixed effects on phytoplankton (medium confidence). Increased light and iron have positive effects on phytoplankton at	Population recovery of previously harvested species (e.g. whales)	Increase	No specific recognition

Nutrient cycling	Cycling of nutrients required for plant production such as nitrogen, phosphorus & silicon. The supply of limiting micronutrients for productivity (most commonly iron) is a dominant influence on Southern Ocean marine ecosystem dynamics.	Nitrogen fixation, microbial communities, decomposition of organic wastes. Role of metazoans, e.g. fertilisation by krill, myctophids and whales (Nicol et al., 2010; Cavan et al., (2019).	Retreating glaciers, ice sheets, and ice shelf loss Sea ice Stratification Circulation	 high latitudes (south of 65°S) (low confidence), associated with ice melt and changes in stratification. Ice shelf losses have positive effects on phytoplankton (medium confidence). E.g. exposure/creation of new habitat. Both polar ice sheets have the potential to release dissolved and sediment-bound nutrients and organic carbon directly to the surface ocean via subglacial and surface meltwater, icebergs, melting of the base of ice shelves, in addition to indirectly stimulating nutrient input via upwelling associated with subglacial 	Population recovery of previously harvested species (e.g. whales)	Increase	No specific recognition
------------------	---	--	--	--	---	----------	----------------------------

Cultural services				meltwater plumes (SROCC 3.3.3.3).			
Tourism and recreation	*Tourist cruises, yachts, scenic flights, adventure tourism, etc. Much of the tourim is based on wildlife present at established landing sites.	Antarctic wildlife, particularly marine mammals and birds, and their prey species, including Antarctic krill. Areas of particular aesthetic value.	Sea ice Retreating glaciers, ice sheets, and ice shelf loss	Climate-induced changes may change access to established visitor sites/facilitate access to new locations; and affect the wildlife present at established tourist sites: Regional sea ice changes are currently having and will have (in the future) mixed effects on marine mammals and penguins (<i>high</i> <i>confidence</i>). Krill- dependant predators may also be affected by changes in Antarctic krll populations (see above) (<i>medium</i> <i>confidence</i>) (SROCC 3.2.3.2.1, 3.2.3.2.4, 3.2.3.2.5);	Visitations Pollution Fishing (potential impacts on krill- dependent predators) Population recovery of previously harvested species (e.g. whales)	Temporary decline in response to COVID-19 pandemic, then increase.	The ATCM regulates tourism activities, in accordance with the ATS. All operators undertaking activities under the jurisdiction of nations that are signatories to the Protocol on Environmental Protection must also comply with the Protocol. They are also subject to Environmental Impact Assessments. Since the Protocol entered into force (in 1998) two Measures and several Resolutions have been adopted, including the 'General Principles of Antarctic Tourism'.

rr	1	1	
	Changes to the		
	presence of sea ice		
	as a physical		
	barrier, either		
	allowing or		
	restricting the		
	movement and		
	access of species		
	(medium		
	confidence)		
	(SROCC		
	3.2.3.2.4), and		
	fishing and		
	tourism vessels		
	(SROCC 3.2.4.2,		
	Table 3.4).		
	Newly available		
	habitat on		
	coastlines may		
	provide breeding		
	or haul out sites		
	for predators such		
	as penguins and		
	seals (low		
	confidence)		
	(SROCC 3.3.3.4).		

Table S2 (b) Additional ES that we identified but did not assess in this study

ES	Description and	Ecosystem/	Key drivers of	Potential future	Other key drivers	Anticipated	Consideration of
	importance/value	biological	change (climate-	impacts on		changes in	the ES in ATS
		components essential to the provision of the ES	related)	ecosystem / biological		demand for ES in the future	instruments

				components (that			
				underlie ES)			
Provisioning service	ces						
Genetic resources.	Genetic diversity	A range of	Essentially all the	A range of effects	Drivers that affect	Increase	No specific
	in all marine	ecosystem	drivers that affect	on ecosystem	SO ecosystem		recognition or
	species, including	components.	SO ecosystems	structure and	structure and		legislation under
	harvested			processes.	processes		the ATS, although the CCAMLR
	resources.						principles of
Biochemicals,	Bioprospecting for						conservation
medicines and	biological						require the
pharmaceuticals.	resources (plants,						maintenance of
	animals,						harvested.
	microorganisms)						associated and
	that can be used						dependent
	for e.g.						populations, and
	pharmaceutical or						the Protocol on
	industrial						Environmental
	products.						Protection
							regulates human
							activities to
							minimse impacts
							on species and
							habitats (including
							requirements for
							Environmental
							Impact
							Assessment).
Previously and	Finfish species	Recruitment.	Sea ice	The Antarctic	Population	Increase	Fishing for any of
potentially	such as marbled			silverfish	recovery of		these species is not
harvested species.	rock-cod	Food availability.	Ocean temperature	(Pleuragramma	previously		currently
	(Notothenia rossi)			antarctica) has an	harvested species		permitted by
	and Patagonian			ice-dependent life			CCAMLR, but the
	rockcod			cycle. There have			development of
	(Patagonotothen			been documented			future harvesting

guntheri) were		declines in the	Potential future	could be regulated
heavily exploited		abundance of this	fishing	under existing
during the 1960s		species in some		CCAMLR
and 1970s, but		parts of the West		frameworks.
stocks remain low.		Antarctic		
Antarctic		Peninsula		
silverfish		(SROCC		
(Pleuragramma		3.2.3.2.3).		
antarctica) were				
also targeted in the		Species		
1970s and 1980s.		distribution		
Fishing for these		models for		
species is not		Electrona		
currently		<i>antarctica</i> , a		
permitted by		dominant		
CCAMLR, but		myctophid species		
could resume in		in the Southern		
the future.		Ocean, project		
		habitat loss		
Additional		associated with		
potentially		increased sea		
harvested species		surface		
(not previously		temperature		
exploited) could		(SROCC		
include		3.2.3.2.3).		
myctophids,				
grenadiers, rays				
and copepods.				
Other species such				
as southern blue				
whiting				
(Micromesistius				
australis), squid				
and sub-tropical				
tuna species may				
migrate into the				
Southern Ocean				

	and be subject to harvesting in the future.							
Cultural services								
Spiritual and religious value	Spiritual and symbolic value of Antarctica as a wilderness. There are a small number of religious sites operated by some nations.	A range ecosystem components.	of	Essentially all the drivers that affect SO ecosystems	A range of effects on ecosystem structure and function.	Visitation and generally drivers that affect SO ecosystem structure and processes	Increase	Annex V of the Protocol on Environmental Protection recognises "areas of outstanding aesthetic and wilderness value" as areas to be
Aesthetic value	Wilderness areas, wildlife, undisturbed spaces.							included in the system of Antarctic Specially Protected Areas (ASPAs).
Education/science	About 4400 people reside in Antarctic in the summer and about 1100 in the winter, predominantly based at research stations of which approximately 40 are occupied year- round.							
	Southern Ocean as a 'natural laboratory'/ reference area.							

References

Abram, N., Gattuso, J.-P., Prakash, A., Cheng, L., Chidichimo, M.P., Crate, S., et al. (2019): Framing and Context of the Report. In: H.-O. Pörtner, D. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, et al. (Eds.), *IPCC Special Report on the Oceans and Cryosphere in a changing climate*. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/srocc/

Cavan, E. L., Belcher, A., Atkinson, A., Hill, S. L., Kawaguchi, S., McCormack, S., et al. (2019). The importance of Antarctic krill in biogeochemical cycles. Nature Communications, 10(1), 1–13. https://doi.org/10.1038/s41467-019-12668-7

CCAMLR, 2019. Statistical Bulletin, Vol. 31. https://www.ccamlr.org/en/document/data/ccamlr-statistical-bulletin-vol-31, accessed September 2020

- Grant, S. M., Hill, S. L., Trathan, P. N., and Murphy, E. J. (2013). Ecosystem services of the Southern Ocean: trade-offs in decision-making. *Antarctic Science*, 25(5), 603–617. https://dx.doi.org/10.1017/S0954102013000308
- Grilly, E., Reid, K., Lenel, S., and Jabour, J. (2015). The price of fish: A global trade analysis of Patagonian (Dissostichus eleginoides) and Antarctic toothfish (Dissostichus mawsoni). *Marine Policy*, *60*, 186–196. https://doi.org/10.1016/j.marpol.2015.06.006
- IPCC (2019). *IPCC Special Report on the Ocean and Cryosphere in a Changing Climate* [H.-O. Pörtner, D. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska et al. (Eds.)]. https://www.ipcc.ch/srocc/
- Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., et al. (2019). Chapter 3: Polar Regions. In: H.-O. Pörtner, D. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, et al. (Eds.), *IPCC Special Report on the Oceans and Cryosphere in a changing climate*. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/srocc/
- Nicol, S., Bowie, A., Jarman, S., Lannuzel, D., Meiners, K. M., and Van Der Merwe, P. (2010). Southern Ocean iron fertilization by baleen whales and Antarctic krill. *Fish and Fisheries*, *11*(2), 203–209. https://doi.org/10.1111/j.1467-2979.2010.00356.x

Millennium Ecosystem Assessment. (2005). Ecosystems and Human Well-being: Synthesis. Island Press, Washington, DC.