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Figure S1 – Overview of key LC-MS metabolomics workflow steps  

 
Overview of the key stages in the metabolomics workflow for the transformation of LC-MS untargeted profiling 
measurements into interpretable data, including definitions, common terminology and currently available open-
source software. 
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Figure S2 – Advanced filtering applied to a range of full profiling feature sets  

 
Assessment of the impact of applying rudimentary response and range-based filtering methods to full profiling 
feature sets. Feature sets selected to cover two biofluids (serum and urine), three chromatographic methods 
(small molecule SmMol RPC, Lipid RPC, HILIC) and two ion modes (positive and negative). In each Venn dia-
gram1, the numbers of features not meeting each filtering strategy are given according to the following inclusion 
criteria: RSD,  RSD in pooled QC samples ≤ 30; Correlation, Pearson correlation coefficient between dQC series 
and dilution factor ≥ 0.7;  Response, greater than 80% of study samples within an intensity range where fold-
change error ≤ 20%; Range, greater than 80% of study samples within a range covered by the dQC series sam-
ples. For full experimental details see Methods S1 and S3. 
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Figure S3 – Dilution series design 

 
Dilution of study and pooled QC samples (blue circles and green triangles respectively) allows more complete 
dQC series (red crosses) range coverage in metabolic profiling studies without need for sample concentration. 
When undiluted (top panel), approximately half of the study samples are above the upper boundary of the dQC 
series, hindering assessment of their quality with respect to the high end of linear dynamic range. Adding a dilu-
tion step to all study samples and the pooled QC (bottom panel) captures more of the dataset within the bounda-
ries of the dilution series, allowing better assessment of feature response across the range. 
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Methods S1 – Experimental details of the serum feature sets 

 
The serum datasets used as examples in this paper have been previously published2. Fifteen healthy men were 
recruited to investigate the effects of kisspeptin on glucose-stimulated insulin secretion and appetite. Serum sam-
ples (N = 112) were taken pre-infusion (T = -15 minutes) and at steady state (T = 45 minutes). Sample handling 
(sorting, formatting, preparation), UPLC-MS and data pre-processing was performed as previously described2. For 
QC assessment and data pre-processing, a QC sample was initially prepared by pooling equal parts of each study 
sample, and a dilution series was created from the pooled QC sample (10x 100%, 5x 80%, 3x 60%, 3x 40%, 5x 
20%, 10x 1%). Samples were subjected to RPC tailored for complex lipid separation, while HILIC was used to 
separate small polar metabolites. Aliquots (50 μL) were taken from each study sample and pooled QC and diluted 
1:1 v/v with ultrapure water and protein was removed by addition of organic solvent (diluted sample/isopropanol in 
1:4 v/v ratio for lipid RPC profiling and diluted sample/acetonitrile in 1:3 v/v ratio for HILIC profiling). Mixtures of 
method specific chemichal standards were added (at dilution stage for HILIC and protein precipitation stage for 
RPC) in order to monitor data quality during acquisition (see Izzi-Engbeaya et al. supplementary information (Me-

tabolite profiling) for full details2). All analyses were performed on Acquity UPLC instruments, coupled to Xevo G2‐
S TOF mass spectrometers (Waters Corp., Manchester, UK) via a Z‐spray electrospray ionization (ESI) source. 
The lipid RPC profiling was conducted in both positive and negative ion modes (generating the serum lipid RPC+ 
and lipid RPC- feature sets, respectively), while the HILIC assay was performed in positive ion mode only (gener-
ating the serum HILIC+ feature set). For QC assessment and data pre-processing, the pooled QC sample was 
acquired every 10 study samples throughout the analysis and a set of dilution series samples were acquired im-
mediately prior to and after the study sample analysis. Feature extraction and retention time alignment were per-
formed in Progenesis QI (Waters Corp., Milford, MA) and data pre-processing for the elimination of potential run-
order effects was performed using the nPYc-Toolbox3. 

 

 

 

Methods S2 – Data pre-processing, modelling and lipid assignment details for Figure 2 

 
Data was acquired as per Methods S1. For each feature set (lipid RPC+, lipid RPC-, HILIC+) features were filtered 

using the nPYc-Toolbox3 according to the following inclusion criteria: RSD in pooled QC  20, dQC series Pearson 

correlation to dilution factor  0.8, RSD in study samples  1.1* RSD in pooled QC. As previously detailed2, for each 
final dataset, linear mixed effect (LME) models were generated using the lmer4 R package4 for each feature ac-
cording to the formula: model <− Feature ~ Time*Class + (1|SubjectID) + (1|Challenge), including fixed effects for 
the interaction between class (kisspeptin or vehicle alone) and time (T = -15 minutes and T = 45 minutes), and ran-
dom affects for participant and challenge (owing to the presence of multiple challenges per participant). Statistical 
significance was determined by local FDR correction5 of the appropriate LME model estimates (local FDR-corrected 
value < 0.05). Where possible, chemical identity of significant features was assigned by matching accurate mass 
and tandem mass spectrometry (MS/MS) fragmentation measurements to reference spectra using LIPID MAPS 
online tools (for lipid species)6 or, where available, to authentic chemical standards. Figure 2 shows a Manhattan 
style plot of the 5200 features measured by serum lipid RPC+. Of these, 392 significantly changed over time with 
kisspeptin administration (colored red for increasing and blue for decreasing). See Izzi-Engbeaya et al supplemen-
tary information (Table S4) for full details2. 
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Methods S3 – Experimental details of the urine feature sets 

 
The urine feature sets used as examples in this paper were generated as part of an ongoing study where data has 
been acquired for 126 urine samples. Sample handling (sorting, formatting, preparation), UPLC-MS and data pre-
processing was performed as previously described7, with an additional sample dilution step as detailed below. For 
QC assessment and data pre-processing, a QC sample was initially prepared by pooling equal parts of each study 
sample, and a dilution series was created from the pooled QC sample (10x 100%, 5x 80%, 3x 60%, 3x 40%, 5x 
20%, 10x 1%). Samples were subjected to RPC tailored for small molecule separation, while HILIC was used to 
separate small polar metabolites. Initially, aliquots (75 μL for RPC and 25 μL for HILIC) were taken from each study 
sample and pooled QC and diluted 1:1 v/v with ultrapure water. Subsequent stages follow that previously pub-
lished7. In brief, samples were diluted 1:1 v/v with ultrapure water and with assay specific chemical standards for 
monitoring data quality during acquisition (see Lewis et al. for full details7). In order to better match the initial solvent 
conditions, acetonitrile was added to diluted samples for HILIC analysis (diluted sample/acetonitrile in 1:3 v/v ratio). 

All analyses were performed on Acquity UPLC instruments, coupled to Xevo G2‐S TOF mass spectrometers (Wa-
ters Corp., Manchester, UK) via a Z‐spray electrospray ionization (ESI) source. The small molecule (SmMol) RPC 
profiling was conducted in both positive and negative ion modes (generating the urine SmMol RPC+ and SmMol 
RPC- feature sets, respectively), while the HILIC assay was performed in positive ion mode only (generating the 
urine HILIC+ feature set). For QC assessment and data pre-processing, the pooled QC sample was acquired every 
10 study samples throughout the analysis and a set of dilution series samples were acquired immediately prior to 
and after the study sample analysis. Raw data was converted to the mzML open source format and signals below 
an absolute intensity threshold of 100 counts were removed using the MSConvert tool in ProteoWizard8. Feature 
extraction was performed by XCMS9 and data pre-processing for the elimination of potential run-order effects was 
performed using the nPYc-Toolbox3. 
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Table S1 – Feature reduction strategies and open-source software 

 
Strategies for reducing features putatively derived from the same compound into a single representative measure-
ment. Software tools in this table are restricted to those which perform (or can perform) feature reduction (either by 
combination or selection). Note, most strategies highlight the utility of reduction for statistical analysis, but to retain 
all features for future reference. Abbreviations: m/z, mass-to-charge ratio; RT, retention time. 
 

Approach Strategy Tool Details 

Combine Sum MS-FLO10 Feature set inspected for putative related 
molecular and adduct ions based on user 
defined parameters (including expected 
adduct types and m/z and RT tolerances). 
Feature pairs meeting these criteria and 

with peak height correlation of R2  0.8 
across all samples, are automatically 
joined by summing their intensity values. 
Features meeting these criteria but with R2 
< 0.8, or multiple features meeting criteria 

with R2  0.8 are flagged for manual review. 

Mean PagR11 Presents results of four peak aggregation 
(feature reduction) strategies: three ways 
of combining and one way of selecting fea-
tures (see below). All methods resulted in a 
significant increase in predictive power 
compared to the non-reduced dataset.  

Principal component 
analysis decomposition 

Non-negative matrix fac-
torisation reduction 

Weighted mean RAMClust12 Unsupervised method using RT and corre-
lation between features across all samples 
(including MS/MS if available) to group fea-
tures into spectra. Outputs include a da-
taset where grouped features are con-
densed into spectral intensities using a 
weighted mean function (where more 
abundant signals contribute more to the 
spectral intensity). 

Select Largest mean peak area  CROP13 Features grouped based on Pearson’s 
pairwise correlations and RT, with each re-
sulting group represented in the final da-
taset by the feature with the highest mean 
peak area. 

PagR11 Presents results of four peak aggregation 
(feature reduction) strategies: three ways 
of combining (see above) and one way of 
selecting features. All methods resulted in 
a significant increase in predictive power 
compared to the non-reduced dataset.  

Largest median peak 
area 

LICRE14 (Lipid) features grouped based on correla-
tion, for each final node (set of highly cor-
related features) the feature with highest 
median measurement is retained in the fi-
nal dataset. 

NoTaMe15 Features grouped using a novel undirected 
graph approach based on Pearson’s pair-
wise correlations and RT. Each resulting 
group represented in the final dataset by 
the feature with the highest median peak 
area. 
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(De)protonated ion MET-COFEA16 Used (de)protonated ions for quantitation in 
exemplar datasets, illustrating success of 
sample class separation and ease of inter-
pretation in reduced dataset. 

MetaboAnalyst17 Optional filter (using the FormatPeakList 
function, for more details see online tutorial 
documentation18) post annotation (using 
CAMERA19) to remove all adducts except 
for the (de)protonated ions. 

Highest degree of con-
nection (having the most 
relationships to other 
features) 

 

Highest intensity 

MetaDB20 Pre-processing workflow includes optional 
output of a relative intensity measure for 
chemical compounds rather than features, 
representative feature selected based on 
abundance and cluster membership (uses 
MSClust21). 

MS-CleanR22 Post feature clustering (using MS-DIAL23) 
the user can select the number of features 
to keep between three selection strategies 
(highest connectivity, highest intensity, or 
both). 

Highest intensity Workflow4Metabolom-
ics24 

Options for feature reduction using the An-
alytic Correlation Filtration (ACorF) tool. Af-
ter grouping (using CAMERA19) the user 
can choose between one of these four 
strategies to select a representative feature 
from each group.  

Highest mass 

Highest mass2 average 
intensity 

Highest mass among 
the top highest average 
intensities  

  
 
 

 

Table S2 – Feature filtering strategies and open-source software 

 
Post extraction feature filtering options. Throughout the text sample definitions have been unified: SS: study sam-

ple, comprising the biological/experimental sample set; QC: quality control, comprising repeated injections of a 

representative sample (e.g., a pool of SS); dQC series: diluted QC series, comprising the QC sample diluted to a 

number of different relative concentrations. Other abbreviations: CV, coefficient of variation; IQR, interquartile 

range; RSD, relative standard deviation. 

Approach Strategy Tool Details 

Biological 
variance 

Feature must exhibit suf-
ficient variance, or more 
variance in SS than in 
QC samples 

MetaboAnalyst17 Optional filter to exclude low-variance fea-
tures. This filtering is based on either IQR, 
CV, or standard deviation, and empirical 
rules are applied (less than 250 variables: 
5% will be filtered; between 250 - 500 var-
iables: 10% will be filtered; between 500 - 
1000 variables: 25% will be filtered; over 
1000 variables: 40% will be filtered). 
NOTE, no filtering is only an option for da-
tasets with less than 5000 features, other-
wise some filtering must be applied. 

Metabolomics-Filtering25 By manual pre-definition of a subset of 
high and low-quality peaks, and visualisa-
tion of the corresponding distributions of 
intra-class correlation coefficients (ICC, or 
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proportion of between-subject variation to 
total variation, where repeated measures 
of a pooled QC sample are considered a 
‘pseudo-subject’) an appropriate (data 
specific) threshold can be selected for fea-
ture filtering. ICC simultaneously consid-
ers both technical and biological variabil-
ity, thus a large ICC indicates that much of 
the total variation is biological (regardless 
of the magnitude of the CV).  

NoTaMe15 Flags or excludes features with D-ratio < 
0.4 (where D-ratio = standard deviation in 
QC/standard deviation in SS26). 

nPYc-Toolbox3 Excludes features where QC RSD * 
threshold > SS RSD. Default threshold 
1.1. 

Specmine27 for more de-
tails see online docu-
mentation28 

Optional filter to exclude low-variance fea-
tures. Filtering is based on either IQR, 
RSD, standard deviation or median abso-
lute deviation, and features excluded ei-
ther by "percent" variables in the dataset 
or "threshold" absolute values. Percent or 
threshold values defined by the user or de-
termined automatically if required. 

Workflow4Metabolom-
ics29 for more details see 
online tutorial documen-
tation30 

Optional filter (using quality metric compu-
tation and generic filter) to flag and ex-
clude features where QC CV/SS CV < 
threshold%. User defined threshold. Flexi-
ble, where QC samples not included, fea-
tures can be filtered based on overall 
standard deviation or CV values. 

Intensity Feature must be present 
at sufficient intensity 

MetaboAnalyst17 Optional filter to exclude low-value fea-
tures. Filtering is based on either sample 
means or medians, and empirical rules are 
applied (less than 250 variables: 5% will 
be filtered; between 250 - 500 variables: 
10% will be filtered; between 500 - 1000 
variables: 25% will be filtered; over 1000 
variables: 40% will be filtered). NOTE, no 
filtering is only an option for datasets with 
less than 5000 features, otherwise some 
filtering must be applied. 

mzMatch31, 32 for more 
details see online tutorial 
documentation 33 

Optional filter to exclude features not 
meeting threshold intensity. User defined 
threshold. 

Specmine27 for more de-
tails see online docu-
mentation28 

Optional filter to exclude low-value fea-
tures. Filtering is based on either sample 
means or medians, and features excluded 
either by "percent" variables in the dataset 
or "threshold" absolute values. Percent or 
threshold values defined by the user or de-
termined automatically if required. 

Workflow4Metabolom-
ics29 for more details see 
online tutorial documen-
tation 30 

Optional filter (using quality metric compu-
tation and generic filter) to flag and ex-
clude features not meeting threshold in-
tensity (e.g., in mean intensity across sam-
ples). User defined threshold. 
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Linear  
response 

Feature must respond in 
expected way to dilution 
of replicate samples (di-
lution series) 

mzMatch31, 32 for more 
details see online tutorial 
documentation33 

Excludes features with Pearson’s correla-
tion of dilution factor order to binary loga-
rithm of the peak intensities in dQC series 
samples < -0.85. 

nPYc-Toolbox3 Excludes features with Pearson’s correla-
tion of dilution factor to intensity in dQC se-

ries samples  threshold. Default thresh-
old 0.7. 

Workflow4Metabolom-
ics29 for more details see 
online tutorial documen-
tation30 

Optional filter (using quality metric compu-
tation and generic filter) to flag and ex-
clude features with correlation of dilution 
factor to intensity in dQC series samples < 
threshold%. User defined threshold. 

Non-biologi-
cal source 

Feature must not be pre-
sent in procedural blank 
samples 

Galaxy-M34 Excludes features that appear to be as 
strong in the blanks as in the biological 
spectra. User defined thresholds. 

Metabolomics-Filtering25 By manual pre-definition of a subset of 
high and low-quality peaks, and visualisa-
tion of mean-difference plot between fea-
ture abundances in blank and SS an ap-
propriate (data specific) threshold can be 
selected for feature filtering. 

mzMatch31, 32 for more 
details see online tutorial 
documentation33 

Optional filter to exclude features where 
signal intensity in blanks is greater than or 
equal to that in SS. 

nPYc-Toolbox3 Optional filter to exclude features where 
average intensity is greater than that seen 
in procedural blank injections *threshold. 
Default threshold 1.1. 

Workflow4Metabolom-
ics29 for more details see 
online tutorial documen-
tation30 

Optional filter (using quality metric compu-
tation and generic filter) to flag and ex-
clude features where signal intensity in 
blanks exceeds a certain threshold (or is 
greater than that in SS). User defined 
threshold. 

Precision Feature must be present 
with less than a certain 
CV/RSD in replicate 
samples 
 

CV/RSD = /, where  
is the standard deviation 

and  the mean intensity 
across sample replicates 

MetaboAnalyst17 Optional filter to exclude features which 
show low repeatability, i.e., RSD in QC 
samples > x% (suggested threshold 20% 
for LC-MS data). NOTE, no filtering is only 
an option for datasets with less than 5000 
features, otherwise some filtering must be 
applied. 

MetaDB20 Calculates QC RSD (suggests threshold 
0.2). 

MetMSLine35 Excludes features with QC RSD > 0.3. 

MSPrep36 Three technical replicates per sample re-
quired. User specified threshold for CV. 
Only features found in at least two repli-
cates are retained. If CV < threshold, aver-
age of replicates is used; if CV > threshold 
and found in 2/3 replicates, observation is 
left blank; if CV > threshold and found in 
3/3 replicates, median of replicates is 
used. Dataset subsequently filtered by 
prevalence (see above). 

mzMatch31, 32 for more 
details see online tutorial 
documentation 33 

Optional filter to exclude features irrepro-
ducible in biological and/or technical repli-
cates. User defined RSD threshold (0.3 
used in tutorial). 
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NoTaMe15 Flag or exclude features with QC RSD > 
0.2.  

nPYc-Toolbox3 Excludes features with QC RSD > thresh-
old%. Default threshold 30%. 

Workflow4Metabolom-
ics29 for more details see 
online tutorial documen-
tation30 

Optional filter (using quality metric compu-
tation and generic filter) to flag and ex-
clude features with QC RSD < threshold%. 
User defined threshold. 

xMSanalyzer37 If analytical replicates acquired, uses QC 
CV or percent intensity difference (PID = 
absolute intensity difference/mean inten-
sity*100) between analytical replicates to 
define the best quality features. 

Prevalence Feature must be present 
in at least a certain num-
ber or percentage of 
samples 

Galaxy-M34 Excludes features not present in x-out-of-
n study samples in total or in any sample 
class. User defined threshold for x. 

MetaboAnalyst17 Optional filter to exclude low-prevalence 
features, by exclusion of features with > 
threshold% missing values (default 
threshold 50%). Also options for missing 
value imputation. NOTE, no filtering is only 
an option for datasets with less than 5000 
features, otherwise some filtering must be 
applied. 

Metabolomics-Filtering25 By manual pre-definition of a subset of 
high and low-quality peaks, and visualisa-
tion of the corresponding distributions of 
percent missing values an appropriate 
(data specific) threshold can be selected 
for feature filtering. 

MetaX38 Excludes features not present in > 50% 
QC samples and > 20% SS. Post filtering 
options for missing value imputation. 

MSPrep36 Excludes features not present in > 
threshold% samples. Threshold set by 
user (80% used in example). Post filtering 
options for missing value imputation. 

mzMatch31, 32 for more 
details see online tutorial 
documentation33 

Optional filter to exclude features not pre-
sent in x samples. User defined threshold. 

NoTaMe15 Flags features not present in > 70% QC 
samples. NOTE, features are excluded 
from analysis but retained in case useful 
for future metabolite identification. 
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