Conservative atomizing

Input: A directed graph G = (V, A) with articles *V*, citations *A*, a subset $W \subseteq V$ of articles in an author's profile merged according to a partition \mathcal{P} of *W*, and numbers $h, k \in \mathbb{N}$.

Find: A partition \mathcal{R} of W such that i) $\forall R \in \mathcal{R} : |R| = 1 \lor R \in \mathcal{P}$, ii) $|\mathcal{P} \setminus \mathcal{R}| \le k$, iii) the h-index of \mathcal{R} is at least *h*.

How to count citations of merged articles $R \in \mathcal{R}$? See right column.

Theoretical results

(among others)

Conservative atomizing

- i) is linear-time solvable for sum-Cite and unionCite,
- ii) W[1]-hard parameterized by h + k + s for fusionCite,

where $s = \max_{P \in \mathcal{P}} |P|$.

Conservative atomizing is not solvable in time $f(h + k + s) \cdot \text{poly}(|V|)$ for any function f, under ETH.

If Google **used fusionCite**, manipulation would be **harder**!

Experiments

On Google Scholar profiles of earlycareer IJCAI 2013 authors and "AI's 10 to watch" 2011 and 2013.

H-index manipulation by undoing merges

R. van Bevern, C. Komusiewicz, H. Molter, R. Niedermeier, M. Sorge, T. Walsh *Quantitative Science Studies* 1(4):1529–1552, 2020.

Optimally unmerging articles to maximize the h-index in Google Scholar is easy.

A more intuitive citation measure for merged articles would make it harder.

Citation measures

Individual citation counts **before** merging the shaded articles.

After merging the shaded articles:

sumCite. Citation count is the sum of individual citation counts:

unionCite. Used by Google Scholar. Citation count is the number of citing individual articles:

fusionCite. More intuitive. Treat each merged article as one, i. e., remove double- and self-citations:

