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This study focuses on analyzing the effects of traveling modes on the boundary layer flow

over a rotating cone in still fluid system. Non-stationary modes are known to manifest in

the boundary layer of rotating cones with highly polished very smooth surfaces. For this

paper, only the broad rotating cone (defined as a cone with the half angle ψ ≥ 40◦) system

is considered. An asymptotic analytical method is used to solve the governing equations

and output the wave angle and wave number of the system. This is then compared to a

numerical formulation which uses a Chebyshev spectral method. The resulting solutions

show that increasing the wave frequency destabilizes the system, with a much stronger

destabilization for the viscous wall type II modes than the inviscid cross-flow type I mode,

where the type I mode is the dominant mode seen in experiments. This result suggests

that a slower frequency wave should be selected in order to maximize the stability of the

system. It also was observed that the negative frequency values have a minima of the

critical Reynolds number values for each cone half angle. It also shows that there is a

comparison limit for high frequency positive values. After this an energy balance analysis

is conducted to see the effect on the total mechanical energy transferred between the basic

flow and the perturbation quantities. This showed that as the frequency of the traveling

modes increases, the energy transferred decreases.
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I. INTRODUCTION

There has recently been great interest in the mechanics governing the flow around a rotating

cone. The broad rotating cone considered in this paper can be used to model the behavior of air

flowing over the central nose cone of an aero-engine fan. The large half angles used in these nose

cones are chosen to deflect the ensuing turbulent flow from entering the turbofan core, whilst also

ensuring that sufficient amount of airflow is flowing into the fan blades. It is important due to

environmental and noise concerns to understand the system that governs the intake of this airflow,

with the aim to improve the efficiency of the system. This paper extends the work done by1–3

to study the effect of considering non-stationary modes on the broad rotating cone model, using

both an asymptotic and numerical method. Physically, non-stationary modes will appear in the

system for a highly polished smooth cone (where the roughness in both the radial and azimuthal

direction being close if not equal to 0), as surface roughness tends to select stationary modes.

In the literature covering the eigenmodes on the rotating disk/cone model, there are three distinct

families of eigenmodes. The first of which are the type I modes. These modes are the upper branch

inviscid modes, where the boundary layer becomes unstable away from the wall of the disk/cone.

Second is the type II modes. These are short-wavelength viscous wall modes, these modes have

instability which stems from the effects of being near the wall of the disk/cone. Finally, there is

the type III eigenmodes, which have been observed by Mack4, Lingwood5 and Federov6. These

modes have only been observed in experimental studies which covered the rotating disk geometry.

They occurred in these experimental studies at the turbulent region of the disk, in the form of

several fine tracks on the surface on the disk, and are known to coalesce with the type I modes to

form an absolute instability.

For traveling mode analysis of the rotating disk, the first main resource was a report by

Turkyilmazoglu7.This report investigated the linear absolute/convective instability of the flow due

to a rotating disk and expanded the work done by both8,9, covering the numerical and asymptotic

study of the boundary layer on a rotating disk with stationary modes respectively. It also expanded

the work done on in the study by Balakumar and Malik10 who studied traveling disturbances on

the rotating disk flow. Balukmar and Malik covered the derivation of the traveling mode pertur-

bation equations and solved them numerically using a spectral method and covers an asymptotic

investigation where the wavenumber quantities are able to be solved separately. Then they solved

the values of the Reynolds numbers and eigenvalues for the scaled traveling mode frequencies
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ω = −5,4,7.9,10, which are the values used in further traveling mode literature for comparative

purposes. This was expanded by Turkyilmazoglu11 who used a non-linear method to solve for the

type II modes on a rotating disk. This paper showed a second branch being present for positive

frequency values, which the author described as the representation of the type III eddies found

in the experimental study done by Federov6. This paper gives a good analysis of the non-linear

type II modes, but doesn’t cover the asymptotic derivation of the type I modes. The work done in

this paper was expanded by Hussain, Garrett and Stephen3 who covered both type I and type II

modes using the scaling method similar to the method presented in Hussain’s thesis12. They found

that the traveling modes had a larger effect on the type II modes and had very little effect on the

type I modes for the rotating disk. This paper also compared the asymptotic results to numerical

analysis by using the same selection of frequency terms Turkyilmazoglu7. These terms are used

due to the great care required to compare the numerical and asymptotic results due to the different

scalings used for each case, as well as the fact that type II modes only have a solution up until

the frequency value of ω = 4 for the asymptotic method. One of the main experimental studies

on the rotating cone was done by Kobayashi and Izumi13. This experiment used cones with half

angles 15◦,30◦,45◦,60◦ and 75◦ and used a hot wire anemometer technique to measure the waves

formed on the boundary layer. The main results that they found was that the cones with half angles

15◦,30◦ formed counter-rotating vortices meanwhile for the other half angles above 30◦ unidirec-

tional waves were formed instead. As well as this experimental study, more recently, experiments

has been performed using a hot wire anemometer for a rotating cone with additional roughness

elements added to the surface in the paper14. As well as this, experiments have been performed on

the rotating cone by the Delft university of technology in the papers15,16. In these experiments they

used a non-invasive infra-red thermography technique to capture the boundary layer disturbances

on a rotating cone. In these studies, it was found that traveling waves which moved slower than the

surface of the cone were detected. The theory of the boundary layer of the rotating cone was then

expanded by Garrett and Peake17 who studied the absolute stability of the rotating cone, and found

the values of the critical Reynolds numbers for absolute instability, using a local stability analysis.

This absolute instability analysis was recently updated by Thomas and Davis18 who used a global

stability analysis to calculate the absolute instability of the rotating cone, and found that the global

method produced results which compared well with the local absolute stability analysis. They

found that for large azimuthal wave numbers, a faster than exponential growth occurred which

had a greater azimuthal wavenumber requirement than the critical Reynolds number for absolute
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instability. Using the results from Garrett and Peake17, the study by the Garrett group2 uses both

numerical and asymptotic analysis to predict the waveangle and wavenumber of the instability

waves formed on the boundary layer of a broad cone. The asymptotic method followed a similar

method to the method presented by Hall9 except with the inclusion of scaling with the cones half

angle. They found that increasing the half angle of the cone stabilized the flow for the inviscid

type I and viscous-Coriolis force balance type II modes.Whilst finding that for slender cones (i.e

cones with less than 40◦) that a centrifugal instability was dominant. The thesis by Hussain12 also

covers an asymptotic analysis of the rotating cone in still fluid, as well as covering the case with

added external oncoming (axial) flow and deriving the expressions for the centrifugal instability

modes for slender cones. Garrett also published a paper which analyzed the growth rates of the

type I and type II modes in the rotating cone boundary layer19. This paper covered both stationary

and traveling mode growth rates and showed that the stationary type I mode becomes less ampli-

fied with decreasing half angle. It also found that for traveling mode growth rates, the change in

frequency had a more significant effect for type II modes compared to type I modes (similar to

the results found for the rotating disk). It also found that the type I modes traveling at 75% the

speed of the cone were the most desired for vortex speed selection. For studies which covered an

energy balance analysis, the first was the work done by Cooper and Carpenter20.Who conducted

an energy balance analysis on the rotating disk for both stationary and traveling modes. They used

the maximum growth rate at the position R = 600 (where R represents the Reynolds number) and

found that only the energy production due to Reynolds stresses and energy dissipation due to vis-

cosity had meaningful effects on the total mechanical energy for the rotating disk. Cooper et al21

expanded the energy balance analysis to cover a rotating disk with the effects of anisotropic and

isotropic roughness taken into consideration. This was then recently expanded further by Miller et

al22, who extended this energy analysis for the rotating disk to include the effects of temperature

dependent viscosity. In this paper Miller et al used the position of R = Rc +200, where Rc is the

critical Reynolds number for the rotating disk, and found the same observation for the temperature

independent case, with the effects of temperature dependent viscosity included in the formulation

of energy dissipation due to viscosity.

The discovery by Tambe et al15,16 that detected traveling mode waves forming on the surface

of the rotating cone has motivated this study to provide an expansion to existing formulations

for the broad cone to include the effect of traveling modes frequencies. To achieve this, we use

both asymptotic and numerical methods. This is to cover the effects of traveling modes at high
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Reynolds numbers using the asymptotic method, and low Reynolds numbers (including the effect

of the frequency on the critical Reynolds numbers for various broad cone half angles) using the

numerical methods. As although traveling modes for the rotating cone have been covered briefly

before, there has been a gap in how these modes effect the critical Reynolds numbers as the half

angle changes, as well as detail on the changes to the formulation when including the traveling

mode frequency. This is of great interest to engineering and experimental study design, as well

as others who wish to expand the basic still fluid model to include the effects of other physical

parameters such as axial flow or surface roughness. Also the recent interest for the energy balance

analysis work done by20–22 indicated an opportunity to study the effects of the change in half angle,

and separately the change in frequency, on the energy budget for a rotating cone. As previous

studies have only been conducted for the rotating disk case (i.e the special case where the cone

half angle is 90◦).

This paper first introduces the formulation of the problem in Section II. Then we introduce

the asymptotic linear analysis in Section III, leading to the integral expansions for both the type I

(Section III A) and type II (Section III B) modes before moving on to the traveling modes analysis

in Section IV (again for both the type I (Section IV A) and type II (Section IV B) modes). After

this, the numerical formulation for the Chebyshev spectral method is shown in Section V A. Then

the results of this numerical analysis are shown in Section V. The asymptotic and numerical results

are then compared in Section VI. After this a critical Reynolds number study is then conducted

in Section VII. After which, an energy balance analysis is conducted for the numerical regime in

Section VIII. Finally the conclusions of the study are shown in Section IX.

II. PROBLEM FORMULATION

Consider a smooth rigid cone (with roughness in both the radial and azimuthal direction being

0), which is rotating about in the z∗ axis which is its axis of symmetry, where an asterisk indicates

a dimensional quantity. The radial and azimuthal coordinates which rotate with the cone are

given by x∗ and θ respectively. We use l∗ as the dimensional length scale along the cone. Ω∗

represents the angular velocity of the cone. ψ represents the cones half angle, which is the angle

between the cones slanting surface and the cones symmetry. Finally ν∗ represents the kinematic

viscosity. This cone is then placed in an incompressible still fluid (with no axial flow). This

causes the dimensional surface velocity distribution along the boundary layer of the cone to be

5
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given by U∗
0 (x

∗) = 0. A diagram of this formulation can be seen in Figure 1. If we transform

FIG. 1. Figure showing the geometry for the broad rotating cone problem. Where (X∗,Y ∗,Z∗) are the

Cartesian coordinates. The transformed curvilinear coordinates are (x∗,θ ,z∗) . The angular velocity is

represented by Ω∗. The length of the cone is given by l∗. The cone half angle is given by ψ . Finally

the radius of the cone r∗ is given by r∗ = x∗ sinψ . Used with permission from Z. Hussain, Ph.D. thesis,

University of Birmingham (2010).

the Navier-Stokes equations to a curvilinear coordinate system, we then get the following well-

known governing Navier-Stokes equations for the broad rotating cone (an interested reader is

recommended to see12 for a more detailed derivation of this transformation):

∂u∗
∂x∗ +

u∗ sinψ
h∗ + 1

h∗
∂v∗
∂θ + ∂w∗

∂ z∗ +
w∗ cosψ

h∗ = 0, (1)

∂u∗
∂ t∗ +u∗ ∂u∗

∂x∗ +
v∗
h∗

∂u∗
∂θ +w∗ ∂u∗

∂ z∗ −
v∗2 sinψ

h∗ −2Ω∗v∗ sinψ −Ω∗2h∗ sinψ

=− 1
ρ∗

∂ p∗

∂x∗ +ν∗
(

∇∗2u∗− (u∗ sinψ+w∗ cosψ)sinψ
h∗2 − 2sinψ

h∗2
∂v∗
∂θ

)

, (2)

∂v∗
∂ t∗ +u∗ ∂v∗

∂x∗ +
v∗
h∗

∂v∗
∂θ +w∗ ∂v∗

∂ z∗ +
(u∗ sinψ+w∗ cosψ)v∗

h∗ +2Ω∗(u∗ sinψ +w∗ cosψ)

6
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=− 1
ρ∗h∗

∂ p∗

∂θ +ν∗
(

∇∗2v∗+ 2sinψ
h∗2

∂u∗
∂θ + 2cos ψ

h∗2
∂w∗
∂θ − v∗

h∗2

)

, (3)

∂w∗
∂ t∗ +u∗ ∂w∗

∂x∗ +
v∗
h∗

∂w∗
∂θ +w∗ ∂w∗

∂ z∗ −
v∗2 cosψ

h∗ −2Ω∗v∗ cosψ −Ω∗2h∗ cosψ

=− 1
ρ∗

∂ p∗

∂x∗ +ν∗
(

∇∗2w∗− (u∗ sinψ+w∗ cosψ)cos ψ
h∗2 − 2cosψ

h∗2
∂v∗
∂θ

)

. (4)

Where the dimensional Laplacian operator for the curvilinear coordinate system (x∗,θ ,z∗) present

in the Navier-Stokes equations is given by:

∇∗2 =
∂ 2

∂x∗2 +
1

h∗2

∂ 2

∂θ 2 +
∂ 2

∂ z∗2 +
sinψ

h∗
∂

∂x∗
+

cosψ

h∗
∂

∂ z∗
. (5)

The appropriate boundary conditions for this system are:

u∗ = 0, v∗ = 0, w∗ = 0, on z∗ = 0, (6)

u∗ →U∗
0 (x

∗) = 0, v∗ →−x∗Ω∗ sinψ, as z∗ → ∞. (7)

We begin the asymptotic study by the non-dimensionalisation of Equations (1-4) in a similar way

to Hussain12. This leads to the expression for the Reynolds number as:

R =
Ω∗l∗2 sinψ

ν∗ , (8)

The distances in the z∗ direction are scaled on the boundary layer thickness δ ∗ = (ν∗/Ω∗)1/2,

which leads to the non dimensional rescaled wall normal coordinate η = z∗/δ ∗. The boundary

layer thickness is given by R1/2. The velocity scales for the basic steady flow are given by:

u = ub = Ω∗l∗ sinψ
(

xU(η),xV (η),R−1/2W (η)
)

, (9)

which is in the radial, azimuthal and normal directions respectively. These scales are determined

by the non dimensional Navier-Stokes (N-S) equations and are reduced to the Von Kármán equa-

tions:

2U +W ′ = 0, (10)

U2+WU ′− (V +1)2 =U ′′, (11)

WV ′+2U(V +1) =V ′′, (12)

(V +1)2 cotψ = P′. (13)
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With the boundary conditions given as

U = 0, V = 0, W = 0, on η = 0,

U → 0, V →−1, as η → ∞. (14)

Where the prime denotes differentiation with respect to η . Equations (10-13) are solved using a

fourth order Runge-Kutta integration method. The result of which are the well known results for

the velocity profile of a broad rotating cone in still fluid as shown in Figure 2.

FIG. 2. Plot of the well known Von Kármán velocity profiles U,V,W for the rotating cone as seen in2,12 in

the range η = 0−20

III. ASYMPTOTIC LINEAR STABILITY ANALYSIS

To begin the linear stability analysis we must derive the estimates for the wavenumber γ∗δ and

the wave angle φ of the resulting disturbances formed on the boundary layer of the cone in the

large Reynolds number limit. This is achieved by considering the type I and type II modes present

in the system. To obtain the equations for linear disturbances, one must linearize Equations (1-4)

8
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about the mean flow profile (ub) and the fluid pressure (pb). This is done in a similar way to2,12 by

introducing small perturbation quantities to both the mean flow profile and basic fluid pressure (ũ

and p̃∗ respectively) as shown below:

u = ub + ũ, (15)

p∗ = p∗b + p̃∗. (16)

Where the perturbation quantities are given by:

ũ = Ω∗l∗ sinψ(ũ, ṽ, w̃), (17)

p̃∗ = (ρ∗Ω∗2l∗2 sin2 ψ)p̃. (18)

Then non-dimensionalizing and removing non-linear terms from Equations (1-4) leads to:

∂ ũ
∂x

+ ũsinψ+w̃cosψ
h

+ 1
h

∂ ṽ
∂θ + ∂ w̃

∂ z
= 0, (19)

(

∂
∂ t
+ xU ∂

∂x
+ xV

h
∂

∂θ +R−1/2W ∂
∂ z

)

ũ+Uũ+ xw̃∂U
∂ z

−2
(

xV sinψ
h

+1
)

ṽ

=−∂ p̃
∂x

+ 1
R

(

∇2ũ− (ũsinψ+w̃cosψ)sinψ
h2 − 2sinψ

h2
∂ ṽ
∂θ

)

, (20)

(

∂
∂ t
+ xU ∂

∂x
+ xV

h
∂

∂θ +R−1/2W ∂
∂ z

)

ṽ+V ṽ+ xw̃∂V
∂ z

+
(

xV sinψ
h

+2
)

(ũ+ w̃cotψ)

+ (xU sinψ+R−1/2W cosψ)ṽ
h

=−1
h

∂ p̃
∂θ + 1

R

(

∇2ṽ+ 2sinψ
h2

∂ ũ
∂θ + 2cosψ

h2
∂ w̃
∂θ − ṽ

h2

)

, (21)

(

∂
∂ t
+ xU ∂

∂x
+ xV

h
∂

∂θ +R−1/2W ∂
∂ z

)

w̃+R−1/2w̃∂W
∂ z

−2
(

xV sinψ
h

+1
)

ṽcotψ

=−∂ p̃
∂ z

+ 1
R

(

∇2w̃− (ũsinψ+w̃cosψ)cos ψ
h2 − 2cos ψ

h2
∂ ṽ
∂θ

)

. (22)

These equations are the linearized perturbation equations. Where the quantity h = h∗/l∗ and

the quantity ∇2 = l∗2∇∗2 represents the non-dimensional Laplacian operator for the perturbed

equations. The main difference with these equations to the linearized equations featured in2,12 is

the inclusion of the time derivative term, which is required to obtain the relevant traveling mode

terms in the asymptotic analysis.

A. Inviscid type I modes

The type I modes analysis follows an almost identical process to the analysis shown in3 except

with an added scale factor of sinψ . The inviscid mode wavelength is scaled on boundary layer

9

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
33

20
2



thickness, which has the order of R−1/2 in the stream-wise and azimuthal directions. Then a small

parameter is introduced, ε , which is given by ε = R−1/6 and we define the perturbation velocities

and pressure as functions of the wall-normal coordinate z = ηε3:

(ũ, ṽ, w̃, p̃) = (u(z),v(z),w(z), p(z)) exp

{

i

ε3

[

∫ x

α I(x,ε)dx+β I(ε)θ − εω I
At

]}

. (23)

The disturbance quantities α I and β I are considered as real quantities as the disturbances asso-

ciated with these perturbations are neutrally stable. The traveling mode frequency is given by

ω I
A = ω/R. We expand these quantities as well as the traveling mode frequency term ω I

A to get:

α I = α I
0 + εα I

1 + · · · , (24)

β I = β I
0 + εβ I

1 + · · · , (25)

ω I
A = ω I

0 + εω I
1 + · · · . (26)

Where the perturbation of the radial velocity is given by:

u = u0(η)+ εu1(η)+ · · · , (27)

with similar expansions for v,w and p. These expressions are then used to solve the resulting per-

turbation equations at each order. For the leading order eigenmodes, it is found that the frequency

terms are removed at this order, so the results of the leading order are the same as found in12.

For the first order eigenmodes, we follow a similar method as the Garret group2 and observe the

existence of two layers, an inviscid layer with thickness O(ε3) and a viscous layer with thickness

O(ε4). We then use the wall normal coordinate ξ = ε4z to match the leading order solution to the

first order solution which results in:

w′
0(0)Ai′(τ0)

γ
∫ ∞

τ0
Ai(s)ds

= 2

(

α I
0α I

1 +
β I

0β I
1

x2 sin2 ψ

)

I1 +

(

α I
1

β I
0

− β I
1α I

0

β I2

0

)

xsinψI2 + xω I
0I3. (28)

The function w represents the leading order Rayleigh normalized eigenfunction, which has the

gradient w′(0) = 1 (the plot of which is shown in Figure (3.2) in Hussain’s Thesis12). The value of

γ is defined as: γ =

[

i
(

α I
0u0x+β I

0v0/sinψ
)

]1/3

. The wall normal coordinate has been rescaled

in the same way as Hussain3 so that τ = γξ − τ0, where τ0 = −iω I
0/γ2. Notice that Equation

(28) and the expression for γ is very similar to the expression obtained by Hussain3 apart from

the introduction of a sinψ term due to the changing half angle for the rotating cone case. The

integrals I1, I2 are the same as Equations 3.44 and 3.45 in Hussain’s Thesis12. These integrals and
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I3 are calculated using the Simpsons numerical integration method, where the integral for I3 is

represented as:

I3 =
∫ ∞

0
w2

0(θ)
U

′′

U
2 dθ . (29)

Where U = α0xU +β0V/sinψ is the effective velocity profile which is defined in2. For the inte-

grals I2 and I3, we must use residue theorem to integrate around a singularity that is caused when

U =U
′′
= 0. The results of these integrals are given as:

I1 = 0.096561, (30)

I2 = 0.058240+0.031535i, (31)

I3 =−4.443651−1.002451i. (32)

B. Viscous type II modes

To analyse the viscous type II modes, we build a triple deck structure similar to3,9 using the

small parameter ε = R−1/16. The lower, main and upper deck are built with thickness O(ε9),O(ε8)

and O(ε4) respectively. We define the inner variables which have O(1) at the respective layers as

ξ ,ζ and Z. Using this setup, the streamwise and and azimuthal wave numbers α,β are scaled

upon a viscous length scale so the velocity and pressure perturbations become the values:

(ũ, ṽ, w̃, p̃) = (u(z),v(z),w(z), p(z))exp

(

i

ε4

[

∫ x

α II(x,ε)dx+β II(ε)θ − ε2ω II
A t

])

. (33)

And we expand the streamwise and azimuthal wavenumbers as well as the frequency term to get:

α II = α II
0 + ε2α II

1 + ε3α II
2 + · · · , (34)

β II = β II
0 + ε2β II

1 + ε3β II
2 + · · · , (35)

ω II
A = εω II

0 + ε2ω II
1 + ε3ω II

2 + · · · . (36)

Note that the order ε terms for α II and β II are zero, and α II
j and β II

j are real quantities. As with

the case for Section (III A) the analysis follows the method shown in3 apart from the introduction

of a factor of sinψ . The result of this triple deck analysis leads to the eigenrelation for type II as:

γ2
0 I4+

iγ0U0 sinψ

β II
0

(

1+
V 2

0

U2
0

)

I5+
∆

3
4 iω II

0 γ0(sinψ)2

β II2

0

I6 =
i∆

1
2 γ0(sinψ)2

β II2

0

(

α II
1 xU0 +

β II
1 V0

sinψ

)

. (37)
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Where γ0 = (α II2

0 +β II2

0 /x2 sin2 ψ)1/2 and ∆ = i
(

α II
0 xU1 +

β II
0 V1

sinψ

)

. The integrals I4, I5 are the same

expressions as I3, I4 in Equations (4.68) and (4.69) in12. The Integral I6 is represented by:

I6 =

∫ ∞
0 θ 2Uc(0,θ)dθ√

2Uc(0,0)
. (38)

Where Uc(0,θ) is the parabolic cylinder function as defined in23. Similar to the type I integrals,

I4, I5 and I6 are solved using the Simpsons rule integration method. The solutions are given as:

I4 = 0.598393, (39)

I5 = 0.456945, (40)

I6 = 1.346820. (41)

In order to solve Equation (37), we use the methods to investigate the boundary layer structure

discussed in3,12. In the upper deck, the disturbances decay exponentially. Whilst in the main deck,

we use the no slip condition (an interested reader can refer to Hussain’s thesis12 for more detail)

which argues that the effective wall shear tends to zero. This motivates us to choose the leading

order radial and azimuthal wavenumbers so that they satisfy the expression:

α II
0 U ′(0)+

β II
0 V ′(0)
xsinψ

= 0. (42)

For the lower deck, the decay of the leading order solution is represented in terms of the parabolic

cylinder function Uc(0,
√

2∆1/4ξ ) (which is defined in23) through the balance of the Coriolis and

viscous forces:

∆ = i

(

α II
0 xU ′′(0)+

β II
0 V ′′(0)
sinψ

)

. (43)

IV. ASYMPTOTIC TRAVELING MODES ANALYSIS

For the analysis on traveling modes in this section, the non-dimensional frequency values that

were used were ω =−5,0,4,7.9,10. Where negative values of ω are interpreted as modes travel-

ing slower than the cones surface, and positive values of ω are interpreted as traveling faster than

the cone surface. These were chosen to allow for comparison with the asymptotic cases for the the

rotating disk case in3 as well as the frequency of zero corresponds to stationary modes to test the

validity when compared to previous asymptotic analysis on rotating cones2,12.
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A. Inviscid type I modes

For the analysis of the type I modes, it was discovered that like the rotating disk case, there

are no time dependent terms for the leading order equations, meaning that the solutions at leading

order are the same as the solutions for stationary modes. The time dependent terms manifest,

however, in the first order terms. We solve the eigenvalue equation (Equation (28)) for our various

frequency values which results in the following expressions for the wavenumber and the wave

angle respectively:

γ1
δ ∗ = 1.162−B1

t R
∗−1/3
δ (sinψ)1/6 + · · · , (44)

tan
(π

2
−φ
)

=
4.256

sinψ
+D1

t R
∗−1/3
δ (sinψ)−5/6 + · · · , (45)

where R∗
δ = R1/2x(sinψ)1/2 is the Reynolds number that has been scaled based on boundary layer

thickness. We use this scaled Reynolds number to convert the numerical frequency into the asymp-

totic frequency which allows us to calculate the frequency without explicitly calculating the value

of x. This is done using the relation:

ω I
0x−2/3 = ωR

∗−2/3
δ (sinψ)1/3. (46)

Where ω I
0x−2/3 is the asymptotic frequency for type I mode. The values for B1

t and D1
t are given

in Table (I) for the fixed Reynolds number of R∗
δ = 107, and ψ = 70◦. Using these values of B1

t

ω ω I
0x−2/3 B1

t D1
t

−5 −0.000106 8.312592 16.522721

0 0.000000 8.311373 16.526076

4 0.000084 8.310398 16.528759

7.9 0.000167 8.309447 16.531375

10 0.000211 8.308935 16.532784

TABLE I. Table of B1
t and D1

t values for each frequency values at R∗
δ = 107, ψ = 70◦

and D1
t , as well as the rest of the Reynolds number values between 104 and 107, we can now

plot the solution of the wavenumber and wave angle against the re-scaled Reynolds number for

each of these frequency values. We plot the change in frequency for a fixed half angle (chosen as

70◦) in Figures (3) and (4) to have a better view of the effects of the change of frequency on the

wavenumber and waveangle respectively.

13

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
33

20
2



FIG. 3. Plot of the type I wavenumber (γδ ) for ψ = 70◦ for ω = −5,0,4,7.9,10 against the rescaled

Reynolds number R∗
δ . Where ω =−5 (top solid line), ω = 0 (dotted line), ω = 4 (dot-dashed line), ω = 7.9

(dashed line) and ω = 10 (bottom solid line)

B. Viscous type II modes

Solving the viscous type II modes leads to the the observation that the upper and main deck

solutions leads to Equation (42). We also find that the time dependent terms of do not appear until

the first order problem in the lower deck. Using this, we solve Equation (37) to obtain the estimates

for the leading order wavenumber and the first order wave angle. By equating and comparing real

and imaginary parts we obtain the following eigenrelation:

aω0 +bγ
1/4
0 − γ

9/4
0 = 0. (47)

Where ω0 = ω II
0 x−1/8 and γ0 = γ0x1/2 are the re-scaled frequency and wavenumber terms respec-

tively. The value of ω II
0 x−1/8 is given as:

ω II
0 x−1/8 = ωR

∗−1/8
δ (sinψ)1/16, (48)

and the quantities a and b are represented as:

a =

[

cos 3π
8 − sin 3π

8

]

(

V0
U0

)3/4
(

1
2

)3/4
I6

I4

(

1+
V 2

0

U2
0

)5/8

, (49)
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FIG. 4. Plot of the type I waveangle (φ ) for ψ = 70◦ for ω =−5,0,4,7.9,10 against the re-scaled Reynolds

number R∗
δ . Where ω =−5 (top solid line), ω = 0 (dotted line), ω = 4 (dot-dashed line), ω = 7.9 (dashed

line) and ω = 10 (bottom solid line)

b =
U0

(

1+
V 2

0

U2
0

)3/2
I5

I4
. (50)

Then substituting the solution of Equation (47) back into Equation (37) gives the following eigen-

relation for the first order wave angle:

Φ1 = d

(

γ
3/2
0 + cω0γ

−3/4
0

)

= sinψ

(

α1

β0
− β1α0

β 2
0

)

x−5/4. (51)

Where the constants c and d are given by:

c =
sin 3π

8 I6

(

1+
V 2

0

U2
0

)5/8(
V0
U0

)3/4
(

1
2

)3/4

I4

(

1+ V0
U0

)2 , (52)

d =
2I4

(

1+ V0
U0

)2

(

1+
V 2

0

U2
0

)1/4
|U0V0|1/2

. (53)

Where Φ1 = Φ1x−5/4 = sinψ
(

α II
1 /β II

0 −β II
1 α II

0 /β II2

0

)

x−5/4 is the re-scaled wave angle term and

U0 =U ′(0),V0 =V ′(0). The plots of the eigenrelation equations (47 and 51) are shown in Figures

(5) and (6) respectively.
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FIG. 5. Plot of the type II rescaled asymptotic frequency ω0 against the re-scaled asymptotic wavenumber

γ0
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FIG. 6. Plot of the the type II rescaled asymptotic frequency ω0 against the rescaled asymptotic waveangle

Φ1

16

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
33

20
2



We then get expressions for the wavenumber and wave angle respectively by solving for the

values of Equation (47) and (51) to get:

γ0 = AIIR
∗−1/2
δ , (54)

tan
(π

2
−φ
)

=CII +DIIR
∗−1/4
δ . (55)

Where AII,CII and DII are given as:

AII = γ0(sinψ)1/4, (56)

CII =
1.207

sinψ
, (57)

DII = Φ1(sinψ)−7/8. (58)

The numerical values of these variables for each frequency value are given in Table II (for the fixed

Reynolds number value of R∗
δ = 107 and ψ = 70◦). We see from Figure 5, there are no solutions

for ω0x−1/8 > 0.7288 which limits the available frequencies for comparison. Notice that there are

two branches for the positive frequency values of ω > 0. This was also observed in3,11 for the

case of the rotating disk and appears due to the existence of two solutions at this value of ω when

solving the eigenrelations for the wave angle and the wavenumber simultaneously as seen also in

Figure (5). The results of the predicted wavenumber for the frequency values of ω =−5,0,4 and

the type II second branch of 4 are shown in Figure 7 and the waveangle for each frequency are

given in Figure 8.

TABLE II. Numerical values of AII , CII and DII for R∗
δ = 107, ψ = 70◦

ω ω II
0 x−1/8 CII AII DII

−5 −0.664174 1.284463 1.516669 1.282383

0 0.000000 1.284463 1.206132 2.441395

4 0.531339 1.284463 0.815349 4.109524

4 (second branch) 0.531339 1.284463 0.071911 17.043524

C. Asymptotic results for both type I and II modes

We now look at both the type I and type II modes results for the wavenumber for each frequency

value in Figures (9-11). And the type I and II modes results for the waveangle in Figures (12-14).
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FIG. 7. Plot of the type II wavenumber γ∗δ for each value of ω . Where ω =−5 (solid line), ω = 0 (dashed

line) and ω = 4 (dot-dashed line)

FIG. 8. Plot of the type II waveangle φ for each value of ω . Where ω = −5 (solid line), ω = 0 (dashed

line) and ω = 4 (dot-dashed line)

It is to be noted we have only plotted the frequencies up to ω = 4 due to there being no solutions

for the type II branch for the frequency values 7.9,10.
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FIG. 9. Plot of the wavenumber γ0 for ω = −5 for half angles 40◦− 90◦. Where the Type I branch (solid

line), Type II branch (dashed line)

FIG. 10. Plot of the wavenumber γ0 for ω = 0 for half angles 40◦ − 90◦. Where the Type I branch (solid

line), Type II branch (dashed line)

The results of the type I study show that the effects of traveling modes on the predicted effective
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FIG. 11. Plot of the wavenumber γ0 for ω = 4 for half angles 40◦ − 90◦. Where the Type I branch (solid

line), Type II branch (dashed line) and Type II Second Branch (SB) is represented by a dot dashed line

FIG. 12. Plot of the wave angle φ for ω = −5 for half angles 40◦− 90◦. Where the Type I branch (solid

line), Type II branch (dashed line)

wavenumber and waveangle are slight. As the frequency increases from ω =−5 to ω = 10 we see
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FIG. 13. Plot of the wave angle φ for ω = 0 for half angles 40◦−90◦. Where the Type I branch (solid line),

Type II branch (dashed line)

FIG. 14. Plot of the wave angle φ for ω = 4 for half angles 40◦−90◦. Where the Type I branch (solid line),

Type II branch (dashed line) and Type II Second Branch (SB) is represented by a dot dashed line

that it reduces the effective wavenumber, which in turn decreases the area of the stable region. This
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means that as the wave frequency becomes faster than the rotation of the cone, the more unstable

the system becomes. It also shows that as we reduce the frequency of the waves in relation to the

cone, the more stable the system becomes. However, the asymptotics at negative frequency values

around ω = −5 cause the waveangle around the lower Reynolds numbers (R∗
δ = 104) to begin

to curve upwards, which may be caused by a change in sign in the higher order terms. Though

since it only occurs at the lower end of the Reynolds number domain, it is of little concern as the

valid region for our analysis is the high Reynolds numbers (R∗
δ = 106). Also notice from Figures

3 and 4 that as the Reynolds number increases towards R∗
δ = 107, the effect of traveling modes

reduces on the wavenumber and waveangle, this is due to the high Reynolds number causing

the asymptotic frequency value to become very small in order to allow valid comparison to the

numerical frequency value. For type II modes, we see that traveling modes have a much more

significant effect on the effective wavenumber and the waveangle. We see similar effects to type

I modes in that as the frequency increases, the area of the stable region decreases, which also

suggests that as expected that as the frequency increases the more unstable the system becomes.

We also notice that there is a presence of a second branch for positive frequency values for the

type II modes. This second branch has also been seen in previous traveling mode asymptotic

studies for the rotating disks in3,11. However, when comparing the plots with those obtained by

Turkyilmazoglu, we see that the second branch obtained in our study (see Figure 7) occurs at a

much lower wavenumber range. This result could be due to our study not considering non-linear

terms. Another feature of the Figure (11) and Figure (14) is the cut off point for the type II

branch at around R∗
δ = 106. This is due to the asymptotic frequency term becoming larger than the

limit of ω0x−1/8 > 0.7288. This shows that there is a limit for the results for positive frequency

values using this asymptotic method. This limit decreases as the frequency value decreases until it

reaches ω = 0, at which point this solution limit disappears due to the asymptotic frequency term

never exceeding ω0x−1/8 = 0.7288 at these positions. We see this limit in Figures 11 and 14 also

decreases as the half angle increases for the type II branch due to the sin(ψ) in Equation 48.
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V. NUMERICAL ANALYSIS

A. Numerical problem formulation

We now present a numerical analysis for the rotating cone in still fluid with traveling modes

case. In this case we use a slightly different basic flow setup than with the asymptotic method in

Section III. The altered basic flow equations are given by:

U ′′ =WU ′+(U2 −V 2)sinψ,

V ′′ =WV ′+2UV sinψ,

W ′ =−2U sinψ. (59)

Which are the same as the Equations (2-5) in the paper17. Notice these basic flow equations now

have dependence on the half angle of the cone and the Coriolis force terms are removed. The

numerical stability analysis is conducted at local points along the cone surface x∗ = x∗L, with the

local surface radius given by r∗L = x∗L sinψ . We use the same non-dimensionalizing procedure as2

to get the local Reynolds number given by:

RL =
x∗LΩ∗δ ∗ sinψ

ν∗ = xL sinψ = rL. (60)

This differs from the Reynolds number defined in our asymptotic study, but is equivalent to the

displacement thickness Reynolds number R∗
δ such that RL = R∗

δ , which facilitates comparisons

between the asymptotic and numerical solutions. Next we must derive our disturbance equations.

First we follow the steps in the paper2 and define the small perturbation quantities as:

Ũ(η,x,θ , t;RL,ψ) =
rL

RL
U(η;ψ)+ û(η,x,θ , t;RL,ψ), (61)

Ṽ (η,x,θ , t;RL,ψ) =
rL

RL

V (η;ψ)+ v̂(η,x,θ , t;RL,ψ), (62)

W̃ (η,x,θ , t;RL,ψ) =
1

RL
W (η;ψ)+ ŵ(η,x,θ , t;RL,ψ), (63)

P̃(η,x,θ , t;RL,ψ) =
1

R2
L

P(η;ψ)+ p̂(η,x,θ , t;RL,ψ). (64)

Where the hatted quantities represent small unsteady perturbations and the non hatted quantities

represent the non-dimensional flow terms which are determined by equation (59). Note also that

η = z∗/δ ∗. Then the non-dimensional continuity and Navier-Stokes equations are linearized with

23

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
33

20
2



respect to these perturbation quantities and the parallel flow approximation is made. This ap-

proximation ignores the variation in RL with local surface cross-sectional radius and assumes that

ηn/rL << 1 and the resulting equations are strictly local. This assumption that RL >> 1 prohibits

analysis close to the apex at which RL = O(1). The perturbation quantities can then be expressed

in normal mode form:

(û, v̂, ŵ, p̂) = ((u(η;ψ),v(η;ψ),w(η;ψ), p(η;ψ))exp(i(αxsinψ +βRLθ −ωAt)). (65)

Where the wavenumber in the x-direction α = αr + iαi is complex as required by the spacial

analysis and the circumferential wave number β (of O(1)) and the frequency ωA are real quantities.

The azimuthal wavenumber n = βRL is an integer quantity representing the number of vortices

present on the cone. Our numerical method differs from the continuation of the method shown in2

(who uses a Runge-Kutta method to solve a transformed eigenvalue problem) and instead obtain a

set of quadratic eigenvalue equations:

α2
(

ũ
RL

)

+α (iUũ+ ip̃)+
(

Mx+
U sinψ

RL

)

ũ+
(

W
RL

)

ũ′− ũ′′
RL

−
(

2V+2
RL

)

ṽsinψ +U ′w̃ = 0, (66)

α2
(

ṽ
RL

)

+α (iUṽ)+
(

Mx +
U sinψ

RL

)

ṽ+ 2V+2
RL

ũsinψ + W
RL

ṽ′− 1
RL

ṽ′′

+V ′w̃+ 2V+2
RL

w̃cosψ + iβ
RL

p̃ = 0, (67)

α2
(

w̃
RL

)

+α (iUw̃)− 2V+2
RL

ṽcosψ +
(

Mx− 2U sinψ
RL

)

w̃+ W
RL

w̃′− w̃′′
RL

+ p̃ = 0, (68)

α (iũ)+ 1
RL

ũsinψ + iβ ṽ
RL

+ w̃′+ w̃
RL

cosψ = 0. (69)

Where Mx = iβV + β 2

RL
− iωA. These equations are equivalent to the equations shown in22 with the

temperature dependent terms removed and half angle terms ψ included.

B. Numerical results

These eigenvalue equations are then solved using a spectral method using Chebyshev polyno-

mials. Similar to3 we use the dimensionless frequency term ω = ωARL and calculate the neutral

curves using a fixed ω which determines the value of ωA at each value of RL. Then use this value
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of ωA and steps in n = βRL (where β is obtained from β/RL) to calculate the value of α , which

is complex, and then record the result at the point at which the sign of the complex part of alpha

changes. This locates where the value of this complex term is approximately 0. We then plot the

neutral curves for the half angle of 70 degrees for α,β ,k,ε in Figure 15. As seen in2, the quantities

0 500 1000
0

0.1

0.2

0 500 1000
0

0.5

1

0 500 1000
0

0.2

0.4

0.6

0 500 1000

0

10

20

30

FIG. 15. Neutral stability curves for ω = −5 (solid), ω = 0 (dashed) and ω = 4 (dotted) for the case of

ψ = 70◦. (a) RL against β wavenumber, (b) RL against αr wavenumber, (c) RL against k wavenumber and

(d) RL against φ waveangle

α and β are related by α = αA(sinψ)1/2 and β = βA/x(sinψ)1/2, where αA,βA are the asymptotic

parameters as seen in Section III. This ensures the quantities k,φ correspond to the asymptotic

wavenumber(γ∗δ ) and waveangle (φ ) respectively and are calculated using the Equations (70 and
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71) respectively (which are the same as the Equations (5.1-5.2) in2):

k =

(

α2 +β 2
)1/2

(

sin2 ψ
)1/2

, (70)

φ = arctan

(

β sinψ

α

)

. (71)

We see from Figure 15 the negative and stationary frequency show similar behavior to the neu-

tral curves shown in Figure 9 in3 and Figure 5 in7 (with a difference due to these studies being

conducted on the case of ψ = 90). However we see a difference in behavior for the frequency

value of ω = 4 in both of the figures mentioned previously (though it is to be noted that the type II

branch of both of these plots at these frequencies also have a slight difference in behavior). This

difference is potentially due to the difference in solving algorithm used, and the way each algo-

rithm calculates and orders the points around this low Reynolds number range. Though it is to be

noted that this type II waveangle switching behavior is only present for high positive values (see

Figure 19 for example of lower positive frequency values) both of these papers also observed this

switching effect at frequency values of 4 and higher.

VI. COMPARISON BETWEEN ASYMPTOTIC AND NUMERICAL SOLUTIONS

Care must be taken when comparing the results for the asymptotic and numerical methods in

order to create consistent comparisons. First we must define the frequency ω in terms of each

normal mode expansions for the asymptotic method. This is why the frequency values for type

I and type II are defined as shown in equations (46 and 48) respectively. Such definitions also

limit the value of positive frequency that we can effectively study for type II due to the limit of

asymptotic frequency shown in Figure 5. We also recall that the local Reynolds number defined

in Section V A is equivalent to the boundary layer thickness scaled Reynolds number we use in

the IV such that RL = R∗
δ . Also we are unable to compare the values of α,β and n = βRL, as

for the asymptotic method, we cannot separate the wavenumber (γ∗δ ) and waveangle (φ ) terms.

So we can only compare the neutral curve results for the wavenumber and waveangle. Such

comparisons are shown in Figures 16 and 17 respectively for the wavenumber and waveangle

respectively. For these plots, the numerical result is halted at RL = 105 for the type I branch

and at the point before destabilization for the type II branch. The type I branch was halted at

RL = 105 due to destabilization occurring after this point, which has also been seen in the previous
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FIG. 16. Neutral stability curves for the wavenumber for ψ = 70◦ with numerical solutions (solid line) and

asymptotic solutions (dotted, red represents primary type I and type II solutions and blue represents the type

II second branch solutions)

studies2,3. We see from Figure 16 that the numerical result for the type I wavenumber agrees

well with the asymptotic solution as the Reynolds number values reach RL = 105, whereas type

II the results for ω = −5 and ω = 0 are reasonably close together from RL = 103 until the RL

value hits a few thousand, after which it crosses the asymptote and remains below it as it becomes

close to the where the numerical result is halted. Unfortunately, due to the numerical code for

type II destabilizing at this point, it is not clear whether this agreement will continue for the

higher RL values. Meanwhile for ω = 4 due to the asymptotic solution only existing from RL =
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FIG. 17. Neutral stability curves for the waveangle for ψ = 70◦ with numerical solutions (solid line) and

asymptotic solutions (dotted, red represents primary type I and type II solutions and blue represents the type

II second branch solutions)

106 on-wards, comparison is very difficult with the effect of the numerical destabilization for

the type II branch occurring at approximately RL = 1950. For Figure 17, however, we see that the

numerical type I results for each frequency value agree well with the asymptotic solutions, with the

agreement improving as the numerical solution approaches RL = 104. But then from RL = 104 −
105, the numerical solution, although remaining close, crosses the asymptote slightly. However,

for the numerical type II modes, although for the frequency values ω = −5 and 0 the values are

reasonably agreeable to the asymptotic solutions, we see that for ω = 4 that the asymptotic solution

fails to replicate the effect of the numerical type II branch. The numerical type II waveangle
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branch has now appeared at lower values than the type I branch, dropping to negative waveangle

values between RL = 102 − 103. This suggests that comparisons at such high frequency values,

physically meaning that the waves are traveling much faster than the rotation speed of the surface

of the cone, are not possible using this method(s). Because of this observation, we tested a further

three positive frequency values of ω = 0.5,1.2 and 2. The neutral curves of the wavenumber and

waveangle are shown in Figures 18 and 19 respectively. We see from Figure 18 that for the

FIG. 18. Neutral stability curves for the wavenumber for ψ = 70◦ with numerical solutions (solid line) and

asymptotic solutions (dotted, red represents primary type I and type II solutions and blue represents the type

II second solutions)

frequency value of ω = 0.5, the agreement between the primary results is similar to that seen in
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FIG. 19. Neutral stability curves for the waveangle for ψ = 70◦ with numerical solutions (solid line) and

asymptotic solutions (dotted, red represents primary type I and type II solutions and blue represents the type

II second solutions)

Figure 16 for the frequency value of ω = 0. For the frequency value of ω = 1.2, we see that there

is good agreement between the primary asymptotic and numerical solutions. However, in Figure

19, we see that the second asymptotic solution is almost completely aligned with the type I branch

for the entire domain. We also see that for the frequency value of ω = 2, the type I branch for both

primary asymptotic and numerical agree well, whereas for the type II numerical and asymptotic

solution, the numerical solution appears to agree more with the secondary asymptotic solution.

Though this is inferred after the stopping point for ω = 2, where the numerical solution beyond
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this point destabilizes.

VII. CRITICAL REYNOLDS NUMBER STUDY

We then performed a study on the effect of the frequency and half angle on the location of the

type I critical Reynolds number. The critical Reynolds number is the location at which the type I

mode is most dangerous, and the smallest Reynolds number in the type I branch that yields a neu-

tral curve value (i.e it is the smallest Reynolds number value that has a sign change in the complex

value of α). To study the effects of traveling modes and the half angle on the critical Reynolds

number, we plot the critical Reynolds number for each half angle 40◦−90◦ as the frequency varies

in the range ω =−5 to 4. The results of this are shown in Figure 20.

FIG. 20. Plot of the critical Reynolds number (Rc) for each frequency (ω) for rotating cones with half angles

between ψ = 40◦−90

We see from Figure 20 that the critical Reynolds number reduces as the half angle reduces

for each frequency value. However, we see that for each half angle, there is a minima for the

critical Reynolds number occurring for the negative frequency values. We will define the value

of frequency at which the critical Reynolds number is the lowest for a particular value of the

half angle (ψ), as the critical frequency which we will represent as ωc. We now plot this critical

frequency value for each half angle in Figure 21. We also show the values of the critical frequency

for each half angle and the corresponding critical Reynolds number in Table III.
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FIG. 21. Plot of the critical frequency values (ωc) for each half angle ψ between 40◦−90◦

ψ ωc Rc

40◦ −0.18 196.8924

50◦ −0.84 225.0902

60◦ −1.44 247.1184

70◦ −1.98 263.9246

80◦ −2.46 275.9818

90◦ −2.85 283.5423

TABLE III. Table showing the values of the critical frequency (ωc) and the critical Reynolds number value

(Rc) at this frequency for each half (ψ) angle in the cross-flow analysis regime

We see from both Figure 21 and Table III that as the half angle decreases, the critical frequency

value increases. This shows that the most dangerous mode occurs at a faster frequency, as the half

angle of the cone is decreased up to the boundary before the regime changes to the centrifugal

mode. It is also seen that for the half angle of 90◦ (i.e the rotating disk case) the results agree

well with the results obtained by Balakumar and Malik10 who obtained the critical omega value

of ωc = −2.9 at the Reynolds number Rc = 283.6 (referred to in that paper as the upper branch

minimum). Though it is to be noted that this critical value always occurs for modes traveling
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modes traveling slower than the speed of rotation of the cone for all half angles tested. Care

should be taken to extend this range to the half angles 0◦−39◦, an interested reader is encouraged

to read the following papers24–26 to fully explore the justification of not including those half angles

in this cross-flow analysis.

VIII. ENERGY ANALYSIS

In order to further understand the mechanics at work in the system for changing the traveling

mode frequency and half angle, we now perform an energy balance analysis. This method is

similar to the energy analysis conducted by20,22, however, we will include the effects of the half

angle. We conducted the analysis using the type I eigenfunctions at the position Rc +200, which

was chosen as it is a suitable distance in the unstable regime. Also this position facilitates clearer

comparison between the results obtained for the rotating disk case22, however, with temperature

dependent viscosity removed. We use the value of α at this position, where the disturbance is

most amplified such that the value of −αi is the maximum within the neutral curve. To perform the

energy balance analysis, we follow Cooper and Carpenter20 as well as Miller et al22 by multiplying

the momentum stability equations by their corresponding velocity component (the first momentum

stability equation is multiplied by û, the second equation v̂, and the third equation ŵ) and then they

are summed together (whilst removing terms of R−2
L and R−3

L as these contributions are extremely

small relative to the other terms) to get Equation 72.

û∂ û
∂ t

+ v̂∂ v̂
∂ t
+ ŵ∂ ŵ

∂ t
+U

(

û∂ û
∂x

+ v̂∂ v̂
∂x

+ ŵ∂ ŵ
∂x

)

+ V
RL

(

û ∂ û
∂θ + v̂ ∂ v̂

∂θ + ŵ∂ ŵ
∂θ

)

+ W
RL

(

û ∂ û
∂η + v̂ ∂ v̂

∂η + ŵ ∂ ŵ
∂η

)

+ ŵûU ′+ ŵv̂V ′+ ŵ2

RL
W ′+ û2U sinψ

RL
− 2v̂ûV sinψ

RL
+ v̂2U sinψ

RL
+ 2v̂ûV sinψ

RL
+ 2v̂ŵV cosψ

RL
− 2v̂ŵV cosψ

RL

=−û
∂ p̂
∂x

− 1
RL

v̂
∂ p̂
∂θ − ŵ

∂ p̂
∂η + 1

RL

(

û j
∂σi j

∂xi

)

. (72)

Where û j = û, v̂, ŵ and σi j represents the viscous stress terms given as:

σ11 =
∂ û
∂x
, σ12 =

1
R

∂ û
∂θ , σ13 =

∂ û
∂ z
,

σ21 =
∂ v̂
∂x
, σ22 =

1
R

∂ v̂
∂θ , σ23 =

∂ v̂
∂ z
,

σ31 =
∂ ŵ
∂x
, σ32 =

1
R

∂ ŵ
∂θ , σ33 =

∂ ŵ
∂ z
. (73)

If we introduce a new variable ê = 1/2
(

û2 + v̂2 + ŵ2
)

and average the equation over a single time

period and azimuthal mode, which removes all derivative terms of θ and t, whilst rearranging to
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get the x derivative terms on the left hand side. This leads to the energy contribution equation as:

∂E

∂x
=

{

∫ ∞

0
−〈ŵû〉U ′−〈ŵv̂〉V ′− 〈ŵ2〉

RL
W ′dη

}EPRS

− 1

RL

{

∫ ∞

0

〈

σi j

∂ û j

∂xi

〉

dη

}EDV

− 1

RL

{

∫ ∞

0
〈p̂(ûsinψ + ŵcosψ)〉dη

}PW

− 1

RL

{

∫ ∞

0

(

〈û2〉+ 〈v̂2〉)U sinψ −〈ê〉W ′)dη

}SC

.

(74)

Where the value of E is given by:

E =
∫ ∞

0
〈Uê〉+ 〈ûp̂〉− 1

RL

(〈ûσ11〉+ 〈v̂σ12〉+ 〈ŵσ13〉)dη. (75)

The terms in equation (75) are: Energy Production due to Reynolds Stresses (EPRS), Energy

Dissipation due to Viscosity (EDV), Pressure Work (PW) and Streamline Curvature (SC), and are

consistent with the terms obtained by20,22 when ψ = 90◦. The time averaged quantities have the

form 〈xy〉 = x∗y+ xy∗, where the x∗ represents the complex conjugate of x. The perturbations

retain normal form so we can express the derivatives as ∂ û
∂x

=−2αiûsinψ , ∂ û
∂ z

= û′.

A. Energy Analysis Results

We then solve equation 74 using numerical integration using the values obtained by the solution

of the eigenfunctions. For this energy analysis, we must study two separate cases. The first case

studies the effects of the changing half angle on the energy balance terms. And the second case

studies the effect of changing the traveling mode frequency for a fixed half angle for the cone.

Due to the difference in normalization of the eigenfunctions for these two distinct cases, it is not

possible to compare the effects of these two cases. We initiate the first case by solving equation

(74), setting the frequency value to ω = 0. This to observe the effects of the half angle on the

energy contribution. The results of this analysis are presented as the contribution of the combined

terms which are shown in Figure 22.

We see from Figure 22 that we can simplify the energy balance equation to remove the negli-

gible contribution terms (PW and SC), and then normalize with respect to the factor E to get:

{

−2αi sinψ
}T ME ≈

{

∫ ∞

0
V ′ 〈ŵv̂〉

}EPRS

−
{

1

RL

∫ ∞

0

〈

σi j

∂ û j

∂x j

〉}EDV

. (76)

This is the same simplification as made by22 for the rotating disk (i.e when ψ = 90◦). This shows

that for the half angle range of ψ = 40◦−90◦, this simplification is valid. We see from Figure 22,
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FIG. 22. Plot of the energy contribution of the energy terms: TME (Total Mechanical Energy), EPRS

(Energy Production due to Reynolds Stresses), EDV (Energy Dissipation due to Viscosity), PW (Pressure

Work) and SC (Streamline Curvature) for each half angle ψ = 40◦−90◦ with travelling mode frequency of

ω = 0 (i.e the stationary mode case)

that the trend of EPRS and EDV is that as the half angle reduces, the energy contributed by these

terms reduces in magnitude. Though it is to be noted that for EPRS and TME, the contribution

slightly increase as the half angle reduces in the range of 90◦−70◦. Suggesting that the maximum

values of EPRS and TME occur around 70◦. Next we look at the second case, where we study the

effect of changing the frequency for a particular half angle on the energy balance equation. In this

case we have chosen to fix ψ = 70◦. The results of this analysis are shown in Figure 23

This plot shows once again, that the simplification of removing PW and SC, shown in equation

76 is once again true for all of the frequency values between ω = −5 and ω = 4. We see that as

the frequency increases, the total mechanical energy of the system reduces. This is caused by the

EPRS term reducing at a stronger magnitude than the increase of the EDV term as the frequency

value increases. We theorise that the reduction in the total mechanical energy of the disturbance as
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FIG. 23. Plot of the energy contribution of the energy terms: TME (Total Mechanical Energy), EPRS

(Energy Production due to Reynolds Stresses), EDV (Energy Dissipation due to Viscosity), PW (Pressure

Work) and SC (Streamline Curvature) for each frequency between ω = −5 and ω = 4 for a rotating cone

with half angle 70◦

the frequency increases, shows that the energy in the system is being used to accelerate the speed

of the waves relative to the speed of the rotation of the surface of the cone.

IX. CONCLUSIONS

In this paper, we have first covered using an asymptotic and numerical method to evaluate the

type I and type II modes for a rotating broad cone in still fluid, with traveling modes as well

as the comparisons between the results of each method. The conclusion of this study is that

although increasing the traveling wave frequency destabilizes the flow around a rotating cone,

the stabilizing effect of increasing the half angle of said cone dominates the system for the type

I modes. However, for type II modes, the effect of the traveling mode frequency dominates the
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system. We also saw that for our numerical study, the results for the type II branch destabilized

much sooner than the numerical results for the type I branch. This made it very difficult to obtain

comparisons for the type II branch between the asymptotic and numerical methods. Further work

is recommended to look at resolving this issue with the current formulation presented, and we are

looking at applying navier-slip boundary conditions to the type II branch in future studies, which

may lead to a resolution to this issue. In practical applications, for larger half angles and for when

the waves are traveling slower than the rotating cone would render the flow over a spinning nose

rotor more stable. This would result in a smoother intake of airflow into the turbofan core by

delaying the onset of turbulence. This confirms the observation made in19 which recommended

that slower traveling vortices should be selected for when the type I instability dominates. For the

presence of the second branch for the type II analysis, it is unknown whether this second branch

solution is a physically valid new mode or whether it is an extra (non-physical) solution caused by

the scalings used in the triple deck analysis to obtain the type II solution. Though it is noted that

current experimental studies on the boundary layer of a rotating cone have rarely seen the effects

of the type II modes physically due to the dominant effect of the type I modes as well as the type

II mode occurring very close to the wall of the cone in a small area. Further work should be done

to find an experimental method that can capture the type II modes for the cone to see if this second

branch appears physically. Though the behavior of this second type II branch when compared to

the numerical type II solution for various positive frequencies suggest that it is more likely to be an

non-physical solution but this observation still needs to be validated with results experimentally.

We have also studied the effect of both the frequency and the half angle on the type I critical

Reynolds number. We saw that for each half angle, there was a minima in the critical Reynolds

number, which we defined as the critical frequency. This critical frequency value can be inter-

preted as the point of most interest where the most dangerous mode exists for each half angle.

These critical frequency values are recommended to be used for the purpose of a guide for which

experiments should be conducted to locate the most dangerous modes when looking at broad ro-

tating cones in still fluid. It is to be noted that the critical frequency values are always negative

(meaning that the modes are traveling slower than the rotation of the cone) in our current range of

broad cone half angles.

For the energy analysis part, we studied the contribution of the energy balance terms for two

distinct cases. It is important to note that a direct comparison between the changing of the half

angle case and the effect of changing the traveling mode frequency case is not possible, as the
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eigenfunctions for these distinct cases are normalized independently. For the stationary mode

energy analysis, of which we studied the effect of changing the half angle on the energy budget,

we observe that the Total Mechanical Energy (TME) exchanged between the base flow and the

perturbation quantities as the half angle changes remains mostly stable (where the TME slightly

increases between 90◦−70◦ and reduces slightly between 70◦−40◦). This shows that the energy

exchange is only slightly affected by the change in half angle for the broad cone half angle values.

We analyzed the effects of the changing frequency on a cone with a fixed half angle of 70◦. We saw

that as expected the total mechanical energy exchanged between the base flow and the perturbation

quantities reduces as the frequency increases i.e as the traveling modes speed up in relation to the

rotation speed of the cone, the energy exchanged reduces. This implies that the energy is being

used to accelerate the traveling modes relative to the speed of the cone, which results in less total

energy exchange as the frequency increases. It is recommended that further work should be done

on increasing the accuracy of this model by considering adding axial flow to the system, which

would model the effects of the speed of the airflow on the stability of the flow around the rotating

cone with traveling modes. This will provide a more physically accurate model of a turbofan

engine with an oncoming flow, and determine its effects on the critical Reynolds number, critical

frequency and the energy balance equations. As well as this, our model only considers the effects

for a broad cone, so the effect of traveling modes on the centrifugal mode present for a slender cone

should also be investigated. As these models of the slender cone can be used to model the effects

of traveling modes being present on a spinning projectile. After which comparisons could be made

between the neutral curves, critical Reynolds and frequency values as well as the energy balance

terms for both cross flow and centrifugal schemes for the half angles where both centrifugal and

cross flow modes are theorized to exist 50◦−40◦ which was mentioned in the paper25.
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