Structure-activity relationship studies of pyrimidine-4-carboxamides as

inhibitors of *N*-acylphosphatidylethanolamine phospholipase D (NAPE-PLD)

Elliot D. Mock, Ioli Kotsogianni, Wouter P. F. Driever, Carmen S. Fonseca, Jelle M. Vooijs, Hans den Dulk,

Constant A. A. van Boeckel & Mario van der Stelt*

Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands.

E-mail: m.van.der.stelt@chem.leidenuniv.nl

Supporting Information

Contents:

Figure S1-2

Table S1

Scheme S1-10

¹H and ¹³C NMR spectra for compounds 1-107

HPLC-traces for 1 (LEI-401) and 2

Figure S1. Structure of fluorescence-quenched substrate PED6.

Figure S2. NAPE-PLD PED6 activity assay dose-response curves for **1** (**LEI-401**) and reference inhibitors lithocholic acid (LCA), ARN19874 and hexachlorophene (HCP). Data represent mean values ± SEM (N = 2, n = 2).

ID -	PED6 assay					Reported
	pIC ₅₀ ± SEM	IC ₅₀ (μM)	K _i (μM)	cLogPª	LipE ^b	 IC₅₀ (μM)
1 (LEI-401)	7.14 ± 0.04	0.072	0.027	3.46	3.68	-
Lithocholic acid	< 4.3	-	-	6.60	-	68 ¹
Hexachlorophene	4.94 ± 0.07	11	4.27	7.03	-2.09	1.6 ²
ARN19874	4.27 ± 0.07	54	20.1	2.13	2.08	3 4 ³

Table S1. NAPE-PLD inhibitory activities of 1 (LEI-401) and reference inhibitors.

^a cLogP was calculated using Chemdraw 15; ^b Lipophilic efficiency (LipE) = $pIC_{50} - cLogP$.

References

Margheritis, E.; Castellani, B.; Magotti, P.; Peruzzi, S.; Romeo, E.; Natali, F.; Mostarda, S.; Gioiello, A.; Piomelli, D.;
Garau, G. Bile acid recognition by NAPE-PLD. ACS Chem. Biol. 2016, 11, 2908-2914.

(2) Aggarwal, G.; Zarrow, J. E.; Mashhadi, Z.; Flynn, C. R.; Vinson, P.; Weaver, C. D.; Davies, S. S. Symmetrically substituted dichlorophenes inhibit *N*-acyl-phosphatidylethanolamine phospholipase D. *J. Biol. Chem.* **2020**, 295, 7289-7300.

(3) Castellani, B.; Diamanti, E.; Pizzirani, D.; Tardia, P.; Maccesi, M.; Realini, N.; Magotti, P.; Garau, G.; Bakkum, T.; Rivara, S.; Mor, M.; Piomelli, D. Synthesis and characterization of the first inhibitor of *N*-acylphosphatidylethanolamine phospholipase D (NAPE-PLD). *ChemComm* **2017**, 53, 12814-12817.

Scheme S1. Synthesis of pyrimidine regioisomer **5**. Reagents and conditions: a) morpholine, DiPEA, MeOH, 0 °C, 5% (+ 89% regioisomer **29**); b) *N*-methylphenethylamine, DiPEA, MeOH, 70 °C, 71%.

Scheme S2: Synthesis of triazine **6**. Reagents and conditions: a) morpholine, DiPEA, DCM, rt, 72%; b) *N*-methylphenethylamine, K₂CO₃, acetone, rt, 68%; c) KCN, DABCO, DMF, rt, 53%; d) NaOH, H₂O, THF, 60 °C, 85%; e) cyclopropylmethanamine, PyBOP, DiPEA, DMF, rt, 67%.

Scheme S3. Synthesis of R_1 cyclopropylmethylamine analogue **7**. Reagents and conditions: a) NaH, MeI, DMF, 0 °C to rt, 48%.

Scheme S4. Synthesis of R₁ cyclopropylmethylamine analogues **20-22**. Reagents and conditions: a) NaOH, THF, MeOH, H₂O, rt, 99%; b) *N*-methylphenethylamine, DiPEA, *n*-BuOH, 120 °C, 20%; c) EDC·HCl, HOBt, MeOH, DCM, rt, 62%; d) MeNH₂·HCl, PyBOP, DiPEA, DMF, 48%.

Scheme S5. Synthesis of R_1 cyclopropylmethylamine analogue 24. Reagents and conditions: a) NaOtBu, Mel, DMF, 0 °C to rt, 28%.

Scheme S6. Synthesis of R_1 cyclopropylmethylamine analogue 29. Reagents and conditions: a) 2-bromocyclopropylethanone, Cs_2CO_3 , DMF, rt, 53%; b) NH₄OAc, xylene, 140 °C, 6%.

Scheme S7. Synthesis of **30**. Reagents and conditions: a) *N*-methylphenethylamine, DiPEA, 2-PrOH, reflux, 64%; b) morpholine, DiPEA, *n*-BuOH, μW, 180 °C, 89%; c) *i*. 2-cyclopropylacetic acid, oxalyl chloride, DCM-d₂, rt; *ii*. **139**, DCM, rt, 34%.

Scheme S8. Synthesis of R₂ analog **32** and 3-phenylpiperazine analogues **68-70**. Reagents and conditions: a) Pd/C, H₂, MeOH, rt, 95%; b) **141**, DiPEA, *n*-BuOH, 120 °C, 99%; c) Pd/C, H₂, MeOH, rt, 90%; d) BnBr, DiPEA, CH₃CN, rt, 74%; e) CbzCl, NaHCO₃, THF, H₂O, 0 °C to rt, 90%; f) 4 M HCl, 1,4-dioxane, rt, quant.

Scheme S9. Synthesis of R₃ morpholine analogues **77-79**. Reagents and conditions: a) Pd/C, H₂, MeOH, AcOH, rt, 63%; b) Ac₂O, DiPEA, DCM, rt, 78%; c) BzCl, Et₃N, DCM, rt, 74%.

Scheme S10. Synthesis of R_3 morpholine analogue 92. Reagents and conditions: a) NaH, MeI, DMF, 0 °C to rt, 44%.

NMR Spectra

¹H-NMR: 1, (LEI-401)

¹H-NMR: 7 (two rotamers in a ratio of 6:4 in CDCl₃ at T = 298 K)

¹³C-NMR

¹³C-NMR

S79

¹H-NMR: 77

¹H-NMR: 81

-

1H-NWK: 106

 8.80

 8.80

 9.81

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82

 9.82<

¹H-NMR: 107

HPLC-traces:

(S,S)-1, LEI-401: 10-90% (CH₃CN in H₂O + 0.1% TFA), RT = 5.97 min, Purity: >95%.

2: 10-90% (CH₃CN in H₂O + 0.1% TFA), RT = 6.12 min, Purity: >95%.

