SUPPORTING INFORMATION

Title: Chemically synthesised Cu₃Se₂ film based solid state symmetric supercapacitor: effect of reaction bath temperature

Authors: D. B. Malavekar¹, S. B. Kale^{1,2}, V. C. Lokhande³, U. M. Patil¹, J. H. Kim², C. D. Lokhande¹*

¹Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur, 416-006, India.

²Department of Material Science and Engineering, Chonnan National University, Gwangju – 500-757, South Korea.

³Department of Electronics Communication and Computer Engineering, Chonnan National University, Gwangju – 500-757, South Korea.

Corresponding author footnote*

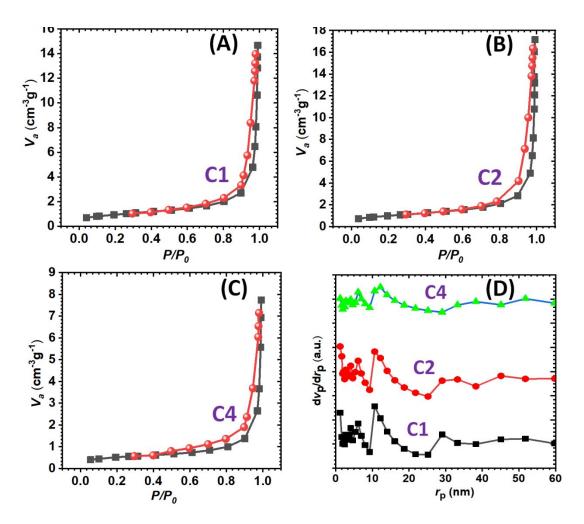
Prof. C. D. Lokhande Phone: +91 231 2601212

Email: 1 chandrakant@yahoo.com

Number of pages: 09

Number of figures: 05

1: Calculation of theoretical capacitance of Cu ₃ Se ₂	Page S3
Figure S1: N ₂ adsorption-desorption isotherms of A) C1, B) C2, C) C4, and D) Pore	Page S4
size distribution of C1, C2, and C4 electrodes.	
Figure S2: The contact angles of A) C1, B) C2, C) C3, and D) C4 films.	Page S5
Figure S3: The CV curves of A) C1, B) C2, and C) C4 electrodes at various scan	Page S6
rates.	
Figure S4: The contribution of capacitive and diffusion controlled currents of A) C1,	Page S7
B) C2, and C) C4 electrodes.	
Figure S5: The GCD plots of A) C1, B) C2, and C) C4 electrodes at various current	Page S8
densities.	
Figure S6: The GCD curves at different cycles for A) C1, B) C2, C) C3, and D) C4	Page S9
electrodes.	


1. Calculation of theoretical capacitance:

Molecular weight of Cu₃Se₂: 348.558 g/mol

Theoretical specific capacitance = $\frac{n \times F}{M \times V}$

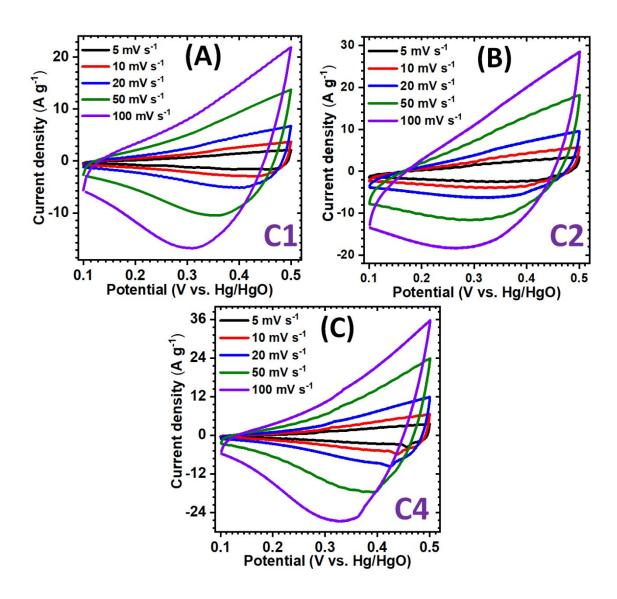
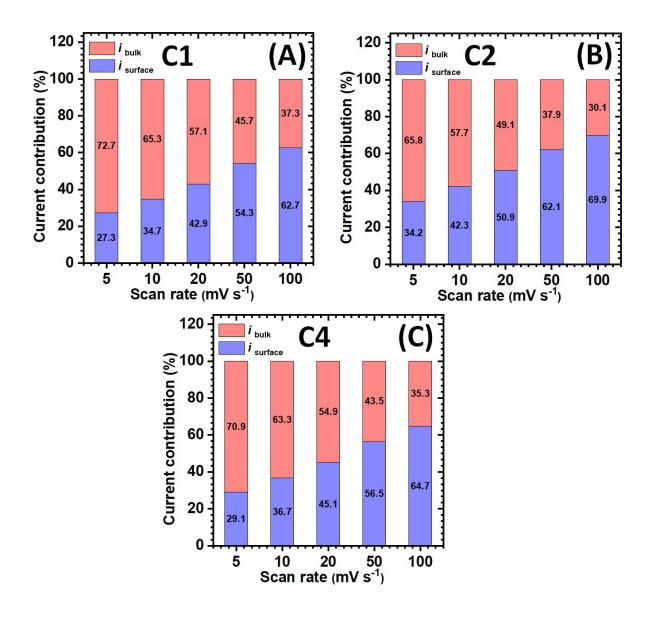
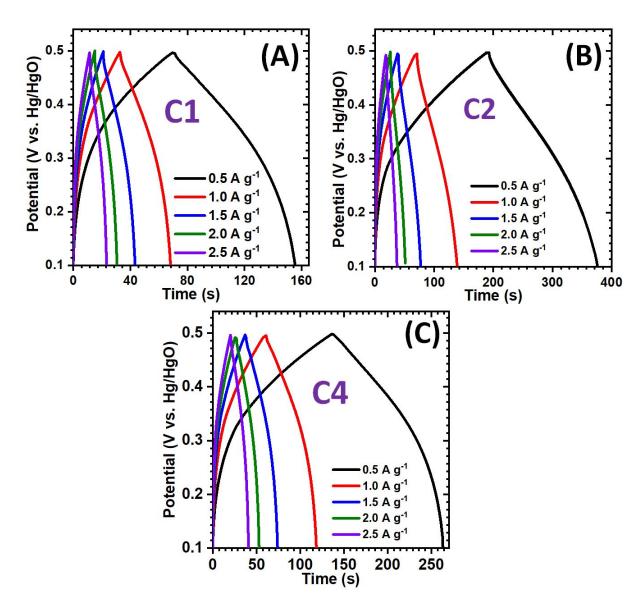
where n is number of electrons transferred, F is faradays constant, M is molecular weight and V is the potential.

Theoretical specific capacitance of
$$Cu_3Se_2 = \frac{2 \times 96485.33212}{348.558 \times 0.4}$$

= 1384 F g⁻¹.

Figure S1: N₂ adsorption-desorption isotherms of A) C1, B) C2, C) C4, and D) Pore size distribution of C1, C2, and C4 electrodes.

Figure S2: The contact angles of A) C1, B) C2, C) C3, and D) C4 films.

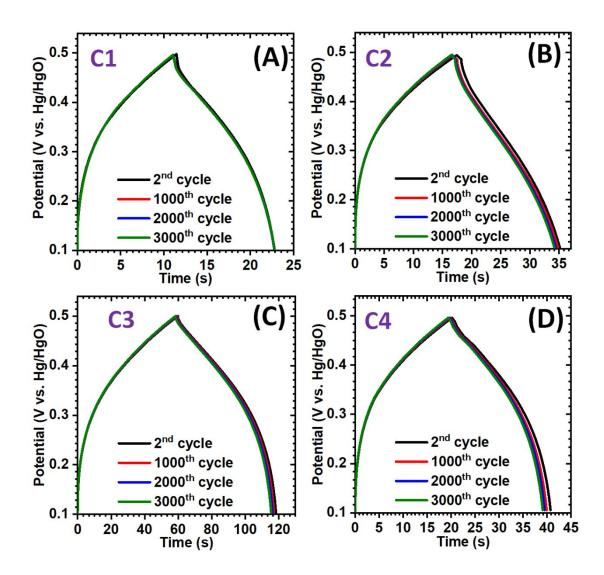

Figure S3: The CV curves of A) C1, B) C2, and C) C4 electrodes at various scan rates.

Figure S4: The contribution of capacitive and diffusion controlled currents of A) C1, B) C2, and C) C4 electrodes.

Figure S5: The GCD plots of A) C1, B) C2, and C) C4 electrodes at various current densities.

Figure S6: The GCD curves at different cycles for A) C1, B) C2, C) C3, and D) C4 electrodes.