A transcriptomic Analysis of the Activity and Mechanism of Action of a Ruthenium(II)-Based Antimicrobial That Induces Minimal Evolution of Pathogen Resistance

Adam M Varney,¹ Kirsty L Smitten,² Jim A Thomas^{2*} and Samantha McLean^{1*}.¹ School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS.

²Department of Chemistry, The University of Sheffield, Western Bank, Sheffield, S3 7HF.

* Corresponding authors

Contents	Page
S-1. Chemistry methods	S-2
S-1a. [Ru(3,4,7,8-tetramethyl-1,10-phenanthroline) ₂ Cl ₂] ²⁺	S-2
S-1b. [{Ru(TMP) ₂ } ₂ (tpphz)] ⁴⁺	<u>Ş-2</u>
S-1c. Anion metathesis	S-2

S-2. Supporting data	<u>S-</u> 3 – S-4
Table S-1 - Primer sequences designed for transcriptomic analysis.	<u>S-</u> 3
Table S-2 - Kinetic turbidimetric solubility plate readings	<u>S-</u> 4
Figure S-1 – Variation in colony size of <i>Escherichia coli</i> after exposure to 1 ⁴⁺	<u>S-4</u>
Figure S-2 – Minimal inhibitory and bactericidal concentrations for <i>Escherichia co</i>	<i>li</i> BL21 and porin

Figure S-2 – Minimal inhibitory and bactericidal concentrations for *Escherichia coli* BL21 and porin knockout mutants after exposure to 1⁴⁺ S-4

Supplementary 1 – Chemistry methods

The ligand TPPHZ was synthesised through established procedure.¹

S-1a. [Ru(3,4,7,8-tetramethyl-1,10-phenanthroline)₂Cl₂]²⁺, ²

RuCl₃.3H₂O (1.14 g, 5.50 mmol), TMP (2.4 g, 10.16 mmol) and LiCl (1.47 g, 34.68 mmol) were heated for 8 h under reflux in DMF (19 mL). The reaction mixture was cooled to room temperature and acetone was added (100 mL). The solution was stored at 4 °C for 16 h forming a dark purple precipitate. The product was washed with water and ethanol and dried *in vacuo*. Mass = 2.07 g (3.21 mmol, 63.2 %) purple solid. MS m/z (%): 609.1 (62) [M –Cl]+, 637.1 (100) [M]+ 667.1 (44) [M + Na]+. Carbon monoxide displaced one of the chlorines.

 $[M-3(PF_6)]^{3+}$. ¹H NMR (MeCN-d₆) δ (splitting integration): 2.1 (s, 48H), 7.8 (s, 4H), 7.9 (t, 8H), 8.2 (dd, 4H), 8.4 (s, 8H)

S-1b. [{Ru(TMP)₂}₂(tpphz)]⁴⁺, ³

Ru(TMP)₂Cl₂]²⁺ (1.12 g, 1.73 mmol) and TPPHZ (0.260 g, 0.68 mmol) were added to a 1:1 solution of ethanol and water (80 mL). The solution was refluxed for 12 h under argon. After completion the reaction mixture was cooled to room temperature and stored at 4 °C for 16 h. The red solution was filtered, and ethanol removed by rotary evaporation. A saturating amount of NH₄PF₆ was added; this caused the formation of a dark red precipitate. The precipitate was collected *via* vacuum filtration, washed with water and recrystallised in acetonitrile by addition of diethyl ether. The product was dried *in vacuo* and purified on an alumina column, solvent system: 95 % MeCN, 3 % dH₂O and 2 % KNO3. Mass = 1.22 g (0.58 mmol, 85.7 % yield). MS; m/z (%): 911 (10) [M – 2(PF6)]2+, 559 (100) [M-3(PF₆)]³⁺. ¹H NMR (MeCN-d₆) δ (splitting integration): 2.1 (s, 48H), 7.8 (s, 4H), 7.9 (t, 8H), 8.2 (dd, 4H), 8.4 (s, 8H), 9.9 (dd, 4H). ¹H NMR (Acetone-d6) δ (splitting integration): 2.1 (dt, 48H), 8.0 (m, 4H), 8.1 (s, 4H), 8.2 (s, 4H), 8.52 (d, 4H), 8.6 (s, 8 H), 10.1 (d, 4H). Elemental analysis [{Ru(3, 4, 7, 8-Tetramethyl-1,10-phenanthroline)₂}₂(tpphz)](PF6)₄·5.5H2O, C88H87N14O5.5Ru₂P₄F₂₄ Calculated: C; 47.93, H; 3.97, N: 8.89. Found C; 47.92, H; 3.83, N; 8.82. Accurate mass analysis: C88H76N14[102Ru]₂⁴⁺ Calculated 383.1111. Found 383.1112.

S-1c. Anion metathesis

The hexafluorophosphate salt of each complex was dissolved in the minimum volume of acetone, and a saturated solution of tetrabutylammonium chloride in acetone added. The resultant precipitated chloride salt was collected by filtration, washed with cold acetone, and dried *in vacuo*.

Supplementary 2 – Supporting data

Table	S-1 ·	- Primer	sequences	designed	for	transcriptomic	analysis.	Annealing	temperature	and	GC
percei	ntage	stated fo	or each sequ	ence.							

Gene		tm	gc%	Sequence
heaT	Forward	59.4	47.62	cgctcggctatttcacatact
ncui	Reverse	59.89	45.45	gacgctccagaaaggtagaaaa
idaT	Forward	60.61	45.45	agggattgctttactcctgctt
Iani	Reverse	59.91	45.45	ttcgactgaggtgacgacttta
neeM	Forward	58.77	40.91	acaactgaccatcagcaacttt
reciv	Reverse	59.94	38.1	catgccgctatgaaaatcaat
need	Forward	60.37	40.91	atggctatcgacgaaaacaaac
recA	Reverse	60.2	40.91	catgatggagcctttaccaaat
hhad	Forward	59.43	36.36	aaaaacgtaaaaaccctcatcg
DNSA	Reverse	59.35	45	cgactttttgttggccttct
thu A	Forward	60.2	36.36	aactttgatttatccccgcttt
торя	Reverse	59.77	36.36	atagcaatgcggtaatggtttt
	Forward	59.5	40.91	atgtttgccctctgtgatgtaa
umuc	Reverse	59.99	40.91	caaccgtcattattcgatagca
umbE	Forward	60.51	45.45	gtctgtggcgaatttagtcgat
yrbr	Reverse	59.85	50	agacggagtagcgtcgttttac
	Forward	59.98	50	ctgcactgtttgttgcctctac
spy	Reverse	60.37	47.62	gaccgaacttgcctttatggt
adh A	Forward	59.88	45.45	ccagtcagagaatttgatgcag
sanA	Reverse	60.51	57.14	cgggaagaccttagagagcag
omnE	Forward	61.2	54.55	gtgatcgtccctgctctgttag
ompr	Reverse	59.97	45.45	ccttggagaaataatgcagacc

Table S-2 - Kinetic turbidimetric solubility plate readings – absorbance at 620 nm

Concentration µM	14+ (1)			14+ (2)			Nicardipine (1)			Nicardipine (2)		
0.2	0.130	0.123	0.149	0.132	0.125	0.152	0.435	0.504	0.540	0.499	0.531	0.514
2	0.039	0.054	0.061	0.053	0.045	0.040	0.171	0.195	0.186	0.195	0.192	0.175
4	0.012	0.012	0.012	0.012	0.011	0.013	0.002	0.009	0.018	0.004	0.021	0.009
20	0.005	0.007	0.006	0.006	0.006	0.006	0.000	0.000	0.000	0.000	0.000	0.000
40	0.001	0.002	0.002	0.002	0.002	0.001	0.000	0.000	0.000	0.000	0.000	0.000
100	0.000	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
200	0.000	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Figure S-1 - Variation in colony morphology of *Escherichia coli* after exposure to 14+

Cultures exposed to $\mathbf{1}^{4+}$ consistently show differing colony size and morphology when plated onto rich medium in the absence of the compound. Microscopy images were taken using a GX Microscope L2000A at 40x magnification. (A-C) Images of typical colonies of *Escherichia coli*. (D-E) Images of colonies of *Escherichia coli* after exposure to $\mathbf{1}^{4+}$.

Figure S-2 – Minimal inhibitory and bactericidal concentrations for Escherichia coli BL21 and porin knockou
mutants after exposure to 1 ⁴⁺ .

MIC (μM) ± SEM	MBC (μM) ± SEM
0.91 ± 0.07	1.39 ± 0.14
1.39 ± 0.14	4.17 ± 0.89
0.87 ± 0.07	1.74 ± 0.14
1.04 ± 0	1.48 ±0.07
1.04 ± 0	2.43 ± 0.38
1.39 ± 0.14	2.60 ± 0.43
	MIC (μ M) ± SEM 0.91 ± 0.07 1.39 ± 0.14 0.87 ± 0.07 1.04 ± 0 1.04 ± 0 1.39 ± 0.14

 $N = 3 \pm SEM$. Origin of strains⁴.

Supplementary references

- Bolger, J.; Gourdon, A.; Ishow, E.; Launay, J.-P. Mononuclear and Binuclear Tetrapyrido [3, 2-a: 2', 3'-C: 3", 2"-H: 2", 3"-"J] Phenazine (Tpphz) Ruthenium and Osmium Complexes. *Inorg. Chem.* 1996, 35, 2937–2944.
- (2) Sullivan, B. P.; Salmon, D. J.; Meyer, T. J. Mixed Phosphine 2,2'-Bipyridine Complexes of Ruthenium. *Inorg. Chem.* **1978**, *17*, 3334–3341.
- (3) Rajput, C.; Rutkaite, R.; Swanson, L.; Haq, I.; Thomas, J. A. Dinuclear Monointercalating Rull Complexes That Display High Affinity Binding to Duplex and Quadruplex DNA. *Chem. Eur. J.* **2006**, *12*, 4611–4619.
- (4) Meuskens, I.; Michalik, M.; Chauhan, N.; Linke, D.; and Leo, J. L. A New Strain Collection for Improved Expression of Outer Membrane Proteins. *Front. Cell. Infect. Microbiol.* **2017**, 7 (464).