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This document provides supplementary information to the paper “Differentiable Scattering
Matrix for Optimization of Photonic Structures”.

1. MATRIX CONSTRUCTION IN RCWA

A. Construct Wave Equation Coefficient Matrices
When analyzing a meta-atom structure, we use z-direction to indicate the wave propagation
direction, and use periodic boundary condition on x-y plane. In the framework of RCWA, the
electric and magnetic fields at a distance z are represented under a set of Fourier basis functions
(also called harmonics).

Suppose the E- and H-fields are both represented using nx × ny harmonics. The i-th harmonic
along the x-axis together with the j-th harmonic along the y-axis describes a wave vector projected
on the x-y plane, that is,

~ki,j = (kix, kjy)

=

(
2π

Lx

(
i− nx + 1

2

)
,

2π

Ly

(
j−

ny + 1
2

)) (S1)

where Lx and Ly are periods along x- and y-axis, respectively. When i = nx+1
2 and j = ny+1

2 , the
wave vector~ki,j =~0, corresponding to the wave propagating only along z-direction.

With these Fourier basis functions, the E-field at a distance z can be expressed as

E(x, y, z) =
nx

∑
i=1

ny

∑
j=1

ci,j(z)ej(kix x+k jyy), (S2)

where ci,j(z) are Fourier coefficients, and they are functions of z. In other words, Eq. (S2) is
a representation using separation of variables. It discretizes the field on x-y plane but remain
analytic along z-direction. The H-field can be (semi-)discretized in the same way.

Substituting Eq. (S2) into the frequency-domain Maxwell’s equations leads to the semi-discussed
equations (2) in the main text. Here, for the sake of simplicity of the presentation and following the
use in common situations, we assume the materials are non-ferromagnetic. Then, the coefficient
matrices P and Q in Eqn. (2) have the following forms,

P =

 Kx[[ε]]
−1Ky k2

0I−Kx[[ε]]
−1Kx

Ky[[ε]]
−1Ky − k2

0I −Ky[[ε]]
−1Kx

 and

Q =

 −KxKy KxKx − k2
0[[ε]]

k2
0[[ε]]−KyKy KyKx

 ,

(S3)

where k0 = 2 π
λ is the considered wavelength λ, [[ε]] is the matrix describing the permittivity

distribution on x-y plane; its construction will be presented in the next subsection. Lastly, Kx
and Ky are both diagonal matrices of size nxny × nxny [1], and the

[
j− 1 + (i− 1)ny

]
-th diagonal

elements in Kx and Ky are expressed, respectively, as follows:
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)
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(S4)

In the expressions of P and Q, k0, Kx, and Ky are all independent from the structural design
parameters; they are constant values when one take the derivatives with respect to design



parameters. The permittivity matrix [[ε]], however, will change with respect to the design
parameters. Therefore, the derivatives of the coefficient matrices have the forms,

dP =

Kxd[[ε]]−1Ky −Kxd[[ε]]−1Kx

Kyd[[ε]]−1Ky −Kyd[[ε]]−1Kx

 and

dQ =

 0 −k2
0d[[ε]]

k2
0d[[ε]] 0

 (S5)

where the symbol d indicates the derivative with respect to a particular design parameter p, and
d[[ε]]−1 can be expressed as

d[[ε]]−1 = −[[ε]]−1d[[ε]][[ε]]−1. (S6)

Discussion. Closely related to RCWA is another semi-analytical method, the method of line. In
the method of line, the only difference from RCWA is that the E- and H-fields on the x-y plane are
represented in a discretized spatial domain, unlike RCWA’s representation in the Fourier domain
(i.e., using Eqs. (S1) and (S2)). This leads to different matrices P and Q and their derivatives dP
and dQ. But the rest of the computation (including the derivative computation presented in this
paper) stays the same. In this paper, we demonstrate the derivative computation in RCWA.

B. Permittivity Matrix of Grid-discretized Shapes
To construct the permittivity matrix [[ε]] in Eq. (S3), we consider the cross-sectional region of the
photonic structure on x-y plane. Suppose the region has a size Lx × Ly. The continuous Fourier
transform of the permittivity distribution in this region is written as

ε(m, n) =
1
S

∫ ∫
S

ε(x, y)e(−i 2π
Lx

mx)e
(
−i 2π

Ly
ny
)

dxdy (S7)

where S is the cross-sectional region and S is its area.
To compute Eq. (S7) numerically, we first divide the cross-sectional region into Px × Py grids.

Assume that the permittivity in each grid (l, p) is uniformly distributed, denoted as εl,p. Then,
the (discrete) Fourier transform of all grids is a summation of the Fourier transform of each grid,
namely,

ε(m, n) =
Px

∑
l=1

Py

∑
p=1

εl,p

[
1

Lx
exp

(
−i

mπ

Lx
(ul + ul−1)

)
sinc

(
mπ
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(ul − ul−1)
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(ul − ul−1)

]

×
[

1
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exp
(
−i

nπ

Ly

(
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))
sinc

(
nπ

Ly

(
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)) (
vp − vp−1

)]
, (S8)

where sinc(x) = sin x
x , ul is the x-coordinate of the l-th vertical grid line, and vp is the y-coordinate

of the p-th horizontal grid line. m and n are indices of the discrete Fourier coefficients: m =
−(nx − 1), · · · , 0, 1, · · · , (nx − 1) and n = −(ny − 1), · · · , 0, 1, · · · , (ny − 1).

After computing ε(m, n) for all m and n, we can construct the permittivity matrix [[ε]], which
has the size nxny × nxny. The matrix [[ε]] has the so-called block-Toeplitz structure, containing
matrix blocks that are repeated down the diagonals of the matrix. Its element values are assembled
from the Fourier coefficients ε(m, n) in the following way:

[[ε]]
(
iny + j, kny + l

)
= ε (i− k, j− l) , (S9)

where the indices i and k are in the range 0, . . . , nx − 1; j and l are in the range 0, . . . , ny − 1.
Similarly, the derivative of [[ε]] with respect to a design parameter can be computed using

d[[ε]]
(
iny + j, kny + l

)
= dε (i− k, j− l) , (S10)

where the scalar derivative dε (i− k, j− l) is computed by differentiating Eq. (S8) with respect to
the design parameter.
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C. Permittivity Matrix of Star-Convex Shapes
For a star-convex shape discussed in Section 4.B (recall Fig. 8) of the main text, we do not need
to discretize the shape into grid-based representation. Suppose the shape is described by the
parameters p1, . . . , pN (recall Fig. 8-a in the main text). As derived in [2], in this case the Fourier
transform (S7) can be computed directly:

ε̃(m, n) =
1
S

N

∑
k=1

exp (j~w · ~pk)
n̂×~αk ·~αk−1

(~w ·~αk)(~w ·~αk−1)︸ ︷︷ ︸
Ek

, (S11)

where n̂ = (0, 0, 1) is the z-axis vector, ~w =
(
−2π m

Lx
,−2π n

Ly

)
, and~αk = ~pk+1 − ~pk.

There exist two corner cases in which the denominator in Eq. (S11) vanishes, and thus they
require special treatments:

1. When m = n = 0, the vector ~w in Eq. (S11) vanishes. In this case, we resort to the continuous
Fourier transform Eq. (S7), which leads to ε̃(0, 0) = 1.

2. ~w may become perpendicular to~αk, and we have

~w ·~αk = 0 and ~w · ~pk+1 = ~w · ~pk. (S12)

In this case, we consider two terms Ek and Ek+1 in the summation (S11). It can be shown
that Ek + Ek+1 = 0

0 , which is mathematically undefined. Instead, Ek + Ek+1 should be
defined as its limit as the parameter pk (i.e., the length of ~pk) approaches to the situation
where ~w ·~αk = 0 occurs. This limit can be computed using L’Hôpital’s rule, by taking the
derivatives of both the numerator and the denominator with respect to pk. This process
leads to the following form:

Ek + Ek+1 = exp (j~w · ~pk)

{
− [ p̂k · (n̂× (~ak +~ak−1))]

(~w · p̂k)(~w ·~ak−1)
+

[(n̂×~ak+1) · p̂k]

(~w · p̂k)(~w ·~ak+1)

− j[(n̂×~ak) ·~ak−1]

(~w ·~ak−1)
− [(n̂×~ak+1) ·~ak]

(~w ·~ak−1)(~w ·~ak+1)

}
(S13)

Here it is safe to assume that ~w is not perpendicular to~αk−1 or~αk+1. This is because, if it
is indeed perpendicular to~αk−1, then ~pk−1, ~pk, and ~pk+1 are co-linear, and we can discard
the parameter pk while still representing the same star-convex shape. Similarly, if ~w is
perpendicular to~αk+1, we can safely discard pk+1.

Lastly, note that ε̃(m, n) in Eq. (S11) is merely the Fourier transform of the star-convex shape,
but not the entire material in an Lx × Ly region. The permittivity distribution in the entire region
can be viewed as a superposition of a background permittivity ε0 and a star-convex shape with
the permittivity ε1 − ε0. Thus the Fourier transform of the entire permittivity distribution is the
Fourier transforms of both components:

ε(m, n) =

{
ε1−ε0
Lx Ly

ε̃(m, n) + ε0, if m = n = 0;
ε1−ε0
Lx Ly

ε̃(m, n), Otherwise.
(S14)

Once ε(m, n) for all m and n are obtained, we can assemble the permittivity matrix [[ε]] and
compute its derivative d[[ε]] using the same formula (S9) and (S10) presented earlier.

2. AN EXAMPLE OF EIGENVECTOR DISCONTINUITY

Figure 2 in the main text provides an exemplar meta-atom structure in which repeated eigenvalues
(and thus repeated propagation constants) exist. Here we use a simple mathematical example to
show that when repeated eigenvalues emerge, the eigenvector derivatives become undefined.

Consider the following 2× 2 matrix with a parameter p:

A(p) =

1 p

p 1

 . (S15)
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When p 6= 0, its eigenvectors form a constant matrix.

X =

−√2
2

√
2

2√
2

2

√
2

2

 . (S16)

In fact, when p 6= 0, this eigenvector matrix is unique up to a scale. When p becomes zero,
repeated eigenvalues emerge (both are 1). However, while X is still a valid eigenvector matrix
of A(0), it is not unique anymore. In fact, any 2× 2 orthonormal matrix is a valid eigenvector
matrix of A(0). For example, the standard eigen-decomposition solver (e.g., in Matlab) gives

X(0) =

1 0

0 1

 . (S17)

Therefore, in the presence of repeated eigenvalues, the non-uniqueness of eigenvectors causes the
eigenvector derivatives undefined—in this case, an infinitesimal deviation from p = 0, can cause
the eigenvectors to change from Eq. (S17) to Eq. (S16), discontinuously.

Remark. In this simple example, the discontinuity can be fixed by examining the limit of
the X derivative as p approaches 0, because in this case the derivative of X at p 6= 0 is well-
defined. However, the situations encountered in many photonic design tasks can be much more
challenging. For example, in Fig. 2 of the main text, not only are the eigenvalues (i.e., effective
indices) repeated, their derivatives with respect to the parameter are also repeated (e.g, see mode
0 and mode 1 in Fig. 2-c). In those cases, the derivative of X is not well-defined any more. If
up to the n-th order derivatives of the eigenvalues are repeated, one has to rely on the n + 1-th
order derivative of X to resolve the discontinuity. This is a rather expensive, if not impossible,
computational process.

3. DERIVATION OF EQUATIONS (5)

Here we present the derivation of Eqs. (5) in the main text. Starting from Eqs. (3), we first rewrite
them as

RL = RR =

[
I−

(
A−1XB

)2
]−1

A−1
(

XBA−1XA− B
)

=

[
I−

(
A−1XB

)2
]−1 (

A−1XBA−1XA−A−1B
)

=
(

I−D2
1

)−1
(D1D2 −D3) ,

(S18)

and

TLR = TRL =
(

A− XBA−1XB
)−1

X
(

A− BA−1B
)

=

[
I−

(
A−1XB

)2
]−1

A−1XA
[
I− (A−1B)2

]
=

[
I−

(
A−1XB

)2
]−1 (

A−1XA−A−1XBA−1B
)

=
(

I−D2
1

)−1
(D2 −D1D3) .

(S19)

In the above two expressions, the three matrix notations are defined as

D1 := A−1XB, D2 := A−1XA, and D3 := A−1B. (S20)

To reach the expressions in Eqs. (6) of the main text, we first rewrite the expressions of A and B in
Eqs. (4) as the following forms:

A = W−1(W0 + WV−1W0) and

B = W−1(W0 −WV−1W0).
(S21)
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Notice that T, defined as T := ΩQ−1 in Sec. 3.B of the main text, has the equality relation
T = WV−1. This is because, as introduced in Sec. 2, V is related to W through V = QWΛ−1, and
thus we have

V = QWΛ−1 = QΩ−1ΩWΛ−1 = QΩ−1W = T−1W, (S22)

where the third equality uses the fact that W is the eigenvector matrix of Ω. Substituting
T = WV−1 into Eq. (S21) and then in Eq. (S20) yields the expressions in Eqs. (6) of the main text.

4. DERIVATIVE OF MATRIX EXPONENTIAL

Provided the matrix Ω and its derivative Ω′ with respect to a design parameter, we compute
the derivative of the matrix exponential ejΩL/k0 through another the matrix exponential ejGL/k0 ,
where G is defined in Eq. (10) in the main text, and we repeat it here for convenience:

G =

Ω Ω′

0 Ω

 .

To compute this matrix exponential efficiently (and avoid eigenvalue decomposition), we tailor
the scaling and squaring method [3] to leverage the particular matrix structure of G. We refer
to [3] for the details of scaling and squaring method. To present how we tailor it for efficient
computation, we outline its major steps here:

1. Compute an integer s to scale the matrix jGL/k0. Let G̃ denote the scaled version: G̃ =
1
2s jGL/k0.

2. Compute two matrix polynomials, D(G̃) and N(G̃). The specific forms of these polynomials
are determined by the scaling and squaring method.

3. Compute A = D−1(G̃)N(G̃). The matrix inverse here is computed through matrix factor-
ization.

4. Repeatedly square matrix A for s times, resulting in B = A2s
. B is a close approximation of

ejGL/k0 .

We notice that the matrix G has a specific structure—its lower-left block matrix is always a zero
matrix, and its two diagonal block matrices are the same. This structure is preserved in G̃ as well
as in its matrix polynomials. We leverage this structure for accelerating the computation in two
aspects.

First, in the computation of a matrix polynomial (step 2), we need to compute some matrix pow-
ers G̃n for some integers n. Typically, G̃n is expressed recursively as G̃G̃n−1, and each recursion
requires a multiplication of two N × N matrices, where N is the size of G̃. In our computation,
both G̃ and G̃n−1 have the aforementioned block structure, and they can be represented as

G̃ =

M1 N1

0 M1

 and G̃n−1 =

M2 N2

0 M2

 . (S23)

Their product is

G̃G̃n−1 =

M1M2 M1N2 + N1M2

0 M1M2

 , (S24)

which involves three matrix multiplications of size N
2 ×

N
2 . This is significantly faster than

computing a multiplication of two N × N matrices.
Secondly, the two matrix polynomials D(G̃) and N(G̃) also have the same block structure,

represented as

D(G̃) =

U1 V1

0 U1

 and N(G̃) =

U2 V2

0 U2

 . (S25)

Then, then the matrix product D−1(G̃)N(G̃) (in step 3) can be expressed as

D−1(G̃)N(G̃) =

U−1
1 U2 U−1

1 V2 −
(

U−1
1 V1

) (
U−1

1 U2

)
0 U−1

1 U2

 ,
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Fig. S1. Using meta-atom height as an additional parameter to control phrases. Here, we re-
fine the meta-atom optimization reported in Fig. 6 by including another degree of freedom, the
meta-atom’s height. We start with the optimization results in Fig. 6, in which all meta-atoms
have the same height. We then choose the 11 meta-atoms that have the largest optimization
residual, and refine them by optimizing their in-plane parameters and their heights. (a) The
cross-sectional shape designs of all meta-atoms after the refinement. (b) The resulting heights
of the meta-atoms. (c) For x-polarized incident light, we show the phase difference between
each pair of inversely designed phase change and the target. And similar visualization for y-
polarized light is shown in (d). In comparison to Fig. 6-c and -d, the residuals are much smaller.

which involves only the matrix inverse (factorization) of the N
2 ×

N
2 matrix U1 and a few matrix

multiplications of size N
2 ×

N
2 . This is also much faster than computing D−1(G̃)N(G̃) directly.

5. META-ATOM HEIGHT AS ANOTHER OPTIMIZATION PARAMETER

While most of the current fabrication techniques require all meta-atoms on a metasurface to have
the same height, advanced fabrication techniques (such as 3D printing) have no such a restriction,
allowing each meta-atom to have its own height. The change of meta-atom’s height does not alter
the optical modes; it will only change the mode’s propagation phase. As a result, only the matrix
X in Eq. (4a) is affected, and its derivative with respect to the height L is constant, namely,

dX = j
Λ
k0

X. (S26)

Nevertheless, we can include meta-atom’s heights as another degree of freedom to further
improve its performance. Here we revisit the numerical study that controls the phases for both x-
and y-polarized light (reported in Fig. 6). Initially, all meta-atoms has the height L = 2µm. After
our optimization in Fig. 6, we choose the meta-atoms that have relative large residuals (i.e., those
corresponding to light-blue and green blocks in Fig. 6-c and -d). We then refine those meta-atoms
by optimizing three parameters (two in-plane parameters as in Fig. 6 as well as the height L). As
shown in Fig. S1, the performance of those meta-atoms are further improved.
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Fig. S2. Scalability. Here we use a simple photonic waveguide to examine the scalability of
our method. The waveguide is made of silicon surrounded by SiO2. In our numerical analysis,
the waveguide is split into N sections, each of which is described by 5 individual parameters.
In total, the entire structure is specified by 5N parameters. If the scattering matrix derivative
is computed using a straightforward sequential implementation, our method scales linearly as
the number of section N increases (see blue curve). Here the y-axis indicates the time cost for
computing all 5N derivatives on our workstation (whose hardware configuration is described
in Section 4.1) When computed in parallel, our method scales sublinearly with respect to N.

6. SCALABILITY

An on-chip device such as the waveguide often has a cross-sectional shape varying along the
propagation direction. To numerically analyze such a device, its structure is split into a series of
sections, each of which is described by a scattering matrix, and the scattering matrix of the entire
device can be computed using the Redheffer star product to combine the scattering matrices of all
sections. Our method for computing the scattering matrix derivatives scales linearly with respect
to the number of sections, as demonstrated in Fig. S2. Further, our proposed method can also be
implemented as a parallel algorithm, as the scattering matrix of each section can be computed
independently. If executed in parallel, our method has a much lower complexity, sublinear to the
number of sections.

The source code of a C++ implementation of our proposed method can be downloaded from
our GitHub repository.
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