Supporting Information

Molecular Dynamics Simulation of Photo-induced
 Free Radical Polymerization

Author: Haochen Xie*, Saurabh Basu, Edward C. DeMeter

Address: Department of Manufacturing and Industrial Engineering, The Pennsylvania State University, University Park, PA 16801, United States

1. Probability density function for bonding lengths

Figure S1. The probability density function of the bond lengths between bead 1 and 2 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S2. The probability density function of the bond lengths between bead 2 and 3 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S3. The probability density function of the bond lengths between bead 3 and 4 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S4. The probability density function of the bond lengths between bead 4 and 5 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S5. The probability density function of the bond lengths between bead 5 and 6 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S6. The probability density function of the bond lengths between bead 6 and 7 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S7. The probability density function of the bond lengths between bead 7 and 8 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S8. The probability density function of the bond lengths between bead 8 and 9 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S9. The probability density function of the bond lengths between bead 9 and 10 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S10. The probability density function of the bond lengths between bead 10 and 11 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S11. The probability density function of the bond lengths between bead 11 and 12 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S12. The probability density function of the bond lengths between bead 12 and 13 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S13. The probability density function of the bond lengths between bead 13 and 14 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S14. The probability density function of the bond lengths between bead 14 and 15 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S15. The probability density function of the bond lengths between bead 15 and 16 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S16. The probability density function of the bond lengths between bead 16 and 17 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S17. The probability density function of the bond lengths between bead 1(or 17) and 1(or
17) obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

2. Probability density function for angles

Figure S18. The probability density function of the angle between bead 1,2 and 3 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S19. The probability density function of the angle between bead 2, 3 and 4 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S20. The probability density function of the angle between bead 3, 4 and 5 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S21. The probability density function of the angle between bead 4, 5 and 6 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S22. The probability density function of the angle between bead 5, 6 and 7 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S23. The probability density function of the angle between bead 6, 7 and 8 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S24. The probability density function of the angle between bead 7, 8 and 9 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S25. The probability density function of the angle between bead 8, 9 and 10 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S26. The probability density function of the angle between bead 9, 10 and 11 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S27. The probability density function of the angle between bead 10, 11 and 12 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S28. The probability density function of the angle between bead 11, 12 and 13 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S29. The probability density function of the angle between bead 12, 13 and 14 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S30. The probability density function of the angle between bead 13, 14 and 15 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S31. The probability density function of the angle between bead 14, 15 and 16 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S32. The probability density function of the angle between bead 15, 16 and 17 obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S33. The probability density function of the angle between bead 1(or 17), 1(or 17) and 1(or 17) obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

Figure S34. The probability density function of the angle between bead 1(or 17), 1(or 17) and 2(or 16) obtained from the coarse-grained (CG) model and the full-atomic (FA) model.

