
Superwalking Droplets and
Generalised Pilot-Wave Dynamics

Rahil Valani

Academic Advisors:
Dr. Anja Slim

Assoc. Prof. Tapio Simula
Prof. Kristian Helmerson

A thesis submitted for the degree of
Doctor of Philosophy
at Monash University

School of Physics & Astronomy

November 2020



ii

© Rahil N. Valani, 2020



Abstract

On vertically vibrating a bath of liquid, a droplet of the same liquid can be made to
bounce and walk on the liquid surface. This walking droplet, also known as a walker,
locally generates slowly decaying waves on each bounce. It then interacts with these
waves on subsequent bounces to propel itself giving rise to a self-propelled droplet-wave
entity. Such walkers have been shown to mimic several peculiar behaviours that were
previously thought to be exclusive to the quantum realm. In this thesis, I present
the discovery of a new class of walking droplets, coined superwalkers, that emerge
when the bath of liquid is simultaneously driven at two frequencies. We investigate the
characteristics of solitary superwalkers in experiments and show that superwalkers can
be more than double the size and can walk at more than triple the speeds of typical
single-frequency driven walkers. We also present results of interactions of multiple
superwalkers and show that their interactions give rise to novel multi-droplet behaviours.
We then formulate a theoretical model for superwalkers by deriving a new form of the
wave field generated by a superwalker and couple it to the existing theoretical models
for walkers. By performing numerical simulations using this model, we can explain
the experimentally observed characteristics of small- to moderate-size superwalkers.
We also numerically explore a novel behaviour of superwalkers, stop-and-go motion
(SGM), that emerges when the two driving frequencies are slightly detuned.

We then move on to explore the dynamics of two identical walking droplets using
a theoretical stroboscopic model in a generalised pilot-wave framework. We capture
the experimentally observed two-droplet states as well as uncover a rich array of
more exotic dynamics. We explore these rich behaviours and the bifurcations between
different two-droplet states through analytic and numerical linear stability analyses and
through fully nonlinear numerical simulation. We also numerically study two-droplet
pair correlations that arise when two identical droplets are launched toward each other
at an angle. Finally, using the stroboscopic model with different forms of the wave field,
we explore the chaotic nature and the statistical behaviour of the unsteady dynamics
of a single droplet that arises for small inertia and large wave forcing.
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Chapter 1

Introduction

We find many examples in nature where animate entities consume energy from the
environment and convert it into directed motion. These include many living organisms,
including humans, who consume energy from food and self-propel by exhibiting various
modes of locomotion from walking to flying. Self-propulsion is also ubiquitous in
the microscopic world of bacteria, cells, algae and other micro-organisms. A novel
inanimate system that also exhibits self-propulsion is walking droplets discovered by
Yves Couder and colleagues in 2005. In this system, a droplet-wave entity self-propels on
the free surface of a vertically vibrating bath of liquid. Intriguingly, such a macroscopic
self-propelled droplet-wave entity has been shown to mimic several peculiar features
that were previously thought to be exclusive to the quantum realm.

1.1 Bouncing and walking droplets

In 1831, Michael Faraday observed that a liquid container subjected to vertical vi-
brations gives rise to beautiful patterns of standing waves on the free surface of the
liquid [1]. These standing waves, now known as Faraday waves, either oscillate at
the same frequency as the driving (harmonic Faraday waves) or at half the driving
frequency (subharmonic Faraday waves) [2]. Moreover, these standing waves are a
result of an instability, now known as the Faraday instability, that occurs above a
certain threshold of the amplitude of vertical vibrations. More than 100 years later,
Jearl Walker demonstrated that in such a system, droplets of the same liquid can be
made to bounce and float on the liquid surface for several minutes when these standing
waves are present [3]. More recently in 2005, Yves Couder and colleagues showed that
even for low amplitudes of vibrations below the Faraday instability threshold, where
the surface of the liquid bath is flat, a droplet of the same liquid can be made to bounce
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Figure 1.1 : System of walking droplets. Vertically vibrating a bath of liquid at high
driving acceleration amplitudes gives rise to Faraday waves (top left panel). At low
driving accelerations below the Faraday instability, a droplet can bounce indefinitely
on the liquid surface (bottom left panel). At intermediate driving accelerations below
the Faraday instability, the steady bouncing state becomes unstable to a walking state
giving rise to a self-propelled droplet-wave entity called walker (middle left panel and
right panels).

indefinitely on the liquid surface [4]. This happens because as the air film separating
the droplet and the liquid bath gets squeezed upon the droplet’s impact, there is not
enough time for this air film to drain completely before the droplet lifts off, resulting
in a steady bouncing state [4].

For certain size droplets, this steady bouncing state becomes unstable to a walking
state as the amplitude of the vibration increases [5]. This walking droplet, also known
as a walker, locally excites damped subharmonic Faraday waves on each bounce. The
walker then interacts with these waves on subsequent bounces such that each impact
of the walker is on a sloped liquid interface (see figure 1.1). This results in the wave
imparting horizontal momentum to the droplet and giving rise to a self-propelled
droplet-wave entity on the liquid surface. The decay time of the Faraday waves excited
by the walker is inversely proportional to the proximity to the Faraday threshold.
Hence, below but close to the Faraday instability threshold, the waves generated by the
walker on each impact decay very slowly in time. This gives rise to path memory in the
system where the walker’s dynamics is influenced not only by the wave it generated on
its most recent bounce, but also by waves it generated in the distant past resulting in
non-Markovian dynamics.



1.2 Interactions of multiple droplets 3

Parallel walkers Promenading pair of walkers Orbiting pair of walkers

1 mm

Figure 1.2 : Interactions of multiple walkers. Top panel: Two (or more) walkers
interact with each other primarily through their underlying wave fields. Bottom panel:
Schematic showing typical dynamic bound states of two walkers: parallel walkers,
promenading pair of walkers and orbiting pair of walkers.

1.2 Interactions of multiple droplets

Multiple bouncing and walking droplets can interact in two different ways: (i) via direct
droplet-droplet contact interactions or (ii) via interactions mediated by the underlying
wave field. Most interactions of droplets are mediated by the underlying wave field
and result in rich static and dynamical behaviours. Two bouncing droplets can remain
bound at discrete distances apart with no horizontal motion. The discrete separations
between them are proportional to the Faraday wavelength, the wavelength of the waves
generated by the droplet [6]. When three such droplets bind to each other, they can
either form a linear or a triangular configuration. Adding more droplets results in them
self-organising into more intricate crystal-like structures [7] including Archimedean
lattices [8].

Two walking droplets can also form various dynamical states where the walkers
perform intricate dances while remaining bound to each other (see figure 1.2). Since
for typical walkers, the bouncing frequency is half the driving frequency, two walkers
can either have in-phase or out-of-phase interactions. For in-phase interactions, the
two droplets impact the bath simultaneously, while in out-of-phase interactions, one
droplet is at the peak bouncing height when the other droplet impacts the bath [6]. A
common bound state observed for walkers is a parallel walking pair where two identical
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droplets walk side by side on parallel trajectories [6]. In this state the separation
can take a discrete set of values. Promenading pairs are also ubiquitous where the
droplets oscillate towards and away from each other while parallel walking [6, 9, 10].
Another common bound state is an orbiting pair of walkers where two droplets orbit
each other at various discrete distances apart [6, 10]. When two droplets are identical,
they orbit symmetrically around their common centre of rotation, while the orbits of
two mismatched droplets typically results into the larger droplet orbiting around a
centre of rotation closer to the smaller droplet. Such mismatched orbiting droplets also
display a variety of exotic orbits including oscillating and epicycloidal orbits [11]. Two
mismatched droplets can also form a ratcheting pair where one droplet walks behind
another at a constant low velocity compared to a typical isolated walker. Here the
walking direction of the ratcheting pair can be reversed by varying the amplitude of the
driving acceleration [12, 13]. In a confined annular cavity, multiple identical walkers
have also been reported to form droplet trains where droplets walk one behind another
such that the walking speed of the train is larger than a single walker [14]. Aggregates
of many mismatched droplets exhibit slow spontaneous translation and rotation of the
whole cluster [12].

1.3 Hydrodynamic quantum analogues

Very close to but below the Faraday instability threshold, the droplet is strongly
influenced by the long-lived Faraday waves it lays down along its trajectory. In this
high memory regime, the walker has been shown to mimic several peculiar quantum-like
behaviours. We briefly review these hydrodynamic quantum analogues in this section.

On confining a walker in a circular cavity whose diameter is a few times the
Faraday wavelength, the walker exhibits circular trajectories inside the cavity at low
driving amplitudes below the Faraday threshold i.e., low memory. As the memory
is increased, the droplet transitions to epicycloidal trajectories. In the high memory
regime which is just below the Faraday threshold, the droplet’s trajectory inside the
cavity becomes chaotic. In this regime, a coherent wave-like structure emerges in
the probability distribution of the droplet’s position [15–20]. This is analogous to
quantum corrals experiments, where an electron confined in a corral of iron atoms
has a wave-like pattern in the probability density with the characteristic wavelength
as the de Broglie wavelength of the trapped electron [21]. The walker exhibits a
similar wave-like structure with the Faraday wavelength playing the role of the de
Broglie wavelength. Similarly, confining a walker in an elliptical corral and introducing
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localised inhomogenities in the form of submerged wells can lead to resonant projection
effects in the walker’s statistics similar to a quantum mirage [22]. Wave-like statistics
emerge in these closed systems when (i) the decay time of the waves generated by the
droplet is longer than the time required for the droplet to cross its domain so that
the droplet can continually navigate its self-excited wave field, and (ii) the droplet’s
dynamics is chaotic and it switches intermittently between different unstable periodic
orbits [15, 22]. Recently, such wave-like statistics have also been reported in an open
system where the walker has been shown to exhibit a hydrodynamic analogue of Friedel
oscillations [23]. Friedel oscillations are the statistical signature of an impurity on
a metal surface, spatially decaying wave-like modulations in the probability density
function of the surrounding electron sea [24, 25]. In the hydrodynamic analogue, a
walker interacting with a submerged well displays a statistical signature in the vicinity
of the well that is strikingly similar to Friedel oscillations.

Walkers confined in potentials with a central force have been shown to give rise
to quantised orbits [26–28, 20, 29–33]. Encapsulating ferrofluids within the walker
and applying a magnetic field that varies radially, the walker can be confined in
a two-dimensional harmonic potential. A discrete set of orbits are observed such
as circles, ovals, lemniscates and trefoils [26]. Perrard et al. [26] showed that the
dynamic constraint imposed on the walker by its guiding wave field results in a double
quantisation in the mean energy and angular momentum of the orbiting states. This
results in quantum-like eigenstates emerging from memory-mediated interactions in
the walker system.

A walker on the surface of a bath that is rotating about a vertical axis exhibits
circular trajectories in the low memory regime. Here the orbital radius decreases
monotonically with increase in rotation speed. Intriguingly, at high memory, certain
orbital radii become unstable resulting in a quantisation in the radius of the inertial
orbits of walkers similar to Landau levels of electrons [34]. Moreover, it has been shown
that as the memory is increased progressively, the orbital states become unstable,
giving way to wobbling orbital motions and then more complex periodic or aperiodic
trajectories. In the high memory limit, irregular chaotic trajectories emerge as the
walker drifts between unstable orbits resulting in multimodal statistics in the radius of
curvature of the droplet’s trajectory [35–37]. In the limit where the rotation rate of the
bath tends to zero, these orbiting states of a walker, known as spin states, are unstable
in experiments but they can be stabilised in simulations where parameters are not
restricted to the experimental values [38–40]. By investigating a pair of walkers on this
rotating experimental setup, it was found that the orbital radii of a pair of orbiting
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droplets increases or decreases based on whether the pair is rotating in the same or
opposite sense to the bath rotation, hinting at an analogy with Zeeman splitting of
atomic energy levels [41].

A walker interacting with a submerged barrier typically gets reflected from the
barrier [42, 43]. Eddi et al. [44] showed that occasionally, the interactions of the
droplet-wave entity with the barrier can lead to droplet tunnelling across the barrier.
The tunnelling probability decreases exponentially with the barrier width and increases
as the Faraday threshold is approached [44–46]. Thus, the complex interaction of the
walker with its underlying wave field results in unpredictable tunnelling of the droplet.

Walkers passing through slit geometries can give rise to diffraction patterns. Couder
and Fort [47] directed walkers one at a time through their single and double slit
geometries. In their single-slit study, by directing 125 walkers, one at a time towards
the slit and quantifying the diffraction angle in the far field, they found a diffraction
pattern similar to single photon diffraction experiments. Moreover, they also examined
a hydrodynamic analogue of the double-slit experiment with photons or electrons. They
observed a wave-like pattern in the histogram of the deflection angle of walkers that is
similar to the interference pattern one would get if a monochromatic wave of Faraday
wavelength diffracted through the double slit. They proposed that while the walker
passes through one slit or the other, its guiding wave passes through both and the walker
effectively feels the second slit by virtue of its underlying wave. These results were
later contested by Andersen et al. [48] who observed no clear diffraction or interference
patterns in such experiments. Pucci et al. [49] revisited these experiments with a
more refined experimental setup and reported that the system behaviour is strongly
dependent on the vibration forcing. They observed three dominant central peaks in
the histogram of the deflection angle but were unable to recover the Fraunhofer-like
dependence of the number of peaks on the slit width as reported by Couder and Fort
[47]. Although they concluded that quantum-like diffraction is not possible with slits
of the form considered in their setup because the system behaviour is dominated by
walker–wall interactions, they noted walkers may exhibit diffraction in the absence of
boundaries, like in the Kapitza-Dirac effect. Moreover, they noted that in the quantum
double-slit experiments, there is a significant disparity in scales between the slit width
and the de Broglie wavelength. They pointed out that achieving the same scaling is
not currently feasible in experiments with walkers and suggested that such geometries
can be explored in simulations of walker which may yield interesting results. Walker
diffraction through single and double slit has also been recently revisited by Ellegaard
[50], who undertook a comprehensive exploration of parameter space and reported
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observation consistent with Pucci et al. [49]. Moreover, they also found rich diffraction
patterns in the double-slit arrangement.

Thus, the walkers have been shown to mimic several quantum-like behaviours
such as diffraction through slit geometries, tunnelling across submerged barriers, level
splitting and quantisation in rotating frames and harmonic potential, and wave-like
statistics in confined and open geometries. We refer the reader to Bush [51] and
Bush and Oza [52] for a detailed review of hydrodynamic quantum analogues. It is
remarkable that a macroscopic wave-particle entity in the form of a walker is able to
exhibit several peculiar features that were once though to be exclusive to the quantum
realm.

1.4 Thesis overview

This thesis is organised into two parts. Part I, comprising of Chapters 3, 4 and 5,
presents an experimental and numerical study of a new class of walking droplets, coined
superwalkers, that emerge when a liquid bath is driven at two frequencies. Part II,
comprising of Chapters 6, 7 and 8, focuses on the analytical and numerical study of
the rich dynamics of a single droplet and a pair of identical droplets in a generalised
pilot-wave framework.

In Chapter 2, we provide the necessary theoretical framework that underpins
numerical results of this thesis. We provide details of existing theoretical models for
the vertical dynamics, the horizontal dynamics and the underlying wave field of the
walking droplets. We highlight the intermediate complexity models of walkers that will
be adapted in Chapter 4 to model superwalkers. We also provide details of the coarse
grained stroboscopic models that provide the theoretical framework for the results
presented in Part II of the thesis.

Part I - Superwalking droplets (Chapters 3 to 5)

In Chapter 3, we present experimental results of a new class of walking droplets,
superwalkers, that emerge when a liquid bath is driven simultaneously at a frequency
and half that frequency. We show that superwalkers can be more than double the size
and can walk at more than triple the speeds of typical single-frequency driven walkers.
We also present results of interactions of multiple superwalkers and show that their
interactions give rise to novel multi-droplet behaviours.

In Chapter 4, we adapt the previously established theoretical models of single-
frequency driven walkers (presented in Chapter 2) to two-frequency driven superwalkers.
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We derive a new form of the wave field for a superwalker and couple it to the existing
vertical and horizontal dynamics models of walkers. Using the new theoretical model
of superwalkers, we can explain the emergence of superwalkers and rationalise the
experimentally observed characteristics of small- to moderate-size superwalkers.

In Chapter 5, we explore a novel behaviour of superwalking droplets, coined stop-
and-go motion, that emerges when the two driving frequencies are slightly detuned. We
explore this motion using the theoretical model of superwalkers developed in Chapter
4 and uncover various types of stop-and-go dynamics.

Part II - Generalised pilot-wave dynamics (Chapters 6 to 8)

In Chapter 6, we explore the dynamics of two identical walking droplets using a
stroboscopic model for walkers. We encounter a remarkably rich range of behaviours
as a function of the two system parameters, the ratio of inertia to drag and the ratio
of wave forcing to drag. We capture the two-droplet bound states that have been
observed in experiments such as parallel walkers, promenading pairs and orbiting pairs.
Moreover, we also uncover a rich array of more exotic dynamics such as regularly and
chaotically switching walkers, wandering walkers and intriguing closed-loop trajectories.
We explore these rich behaviours and the bifurcations between them through analytic
and numerical linear stability analyses and through fully nonlinear numerical simulation.

In Chapter 7, we present a numerical study of two-droplet pair correlations for
identical walking droplets. Two walking droplets are launched towards each other at
an angle with different initial path differences. We quantify the likelihood of such
droplets pairing up in a two-droplet bound state by measuring the probability of finding
the droplets in a bound state at late times. We find anomalous correlations where
the droplets may become correlated for certain initial path differences and remain
uncorrelated for others, while in other cases, the droplets may never produce bound
states.

In Chapter 8, we explore the unsteady dynamics of a single walking droplet that
arises in the parameter space regime of small inertia and large wave forcing. The steady
walking motion of a droplet becomes unstable and a variety of unsteady motions are
realised such as random walk-like motion, oscillating walker and self-trapped oscillations
of the droplet. We explore the chaotic nature of these unsteady motions as well as
their statistical behaviour.

Finally, we provide conclusions in Chapter 9 and discuss potential future directions
of the work presented in this thesis.
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Chapter 2

Theoretical Framework

In this chapter, we will review various theoretical models to describe bouncing and
walking droplets. These range from phenomenological stroboscopic models that only
capture the horizontal dynamics to sophisticated models that resolve the vertical
and horizontal dynamics and the detailed evolution of the surface waves created by
the walker. Intermediate complexity models that resolve the vertical and horizontal
dynamics but assume a predetermined form for the standing wave created by the droplet
have been widely used. The intermediate complexity models and the stroboscopic
models will be described in detail as we adapt these models for many of the results
presented in the later chapters of the thesis.

2.1 Setup of the system

Consider a droplet of mass m and radius R bouncing on a bath of liquid of density
ρ, kinematic viscosity ν and surface tension σ. The bath is vibrating vertically with
acceleration γ(t) = Γfg sin(Ωt). Here Ω = 2πf is the angular frequency, Γf is the
acceleration amplitude of the driving relative to gravity g. This configuration is shown
schematically in figure 2.1. The system is described in the oscillating frame of the bath
by horizontal coordinates x = (x, y) and vertical coordinate z, with z = 0 chosen to
coincide with the undeformed surface of the bath. In this frame, the centre of mass of
the droplet is located at a horizontal position xd and the south pole of the droplet at
a vertical position zd such that zd = 0 would represent initiation of contact with the
undeformed surface of the bath. The free surface elevation of the liquid filling the bath
is at z = h(x, t).
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(a) (b)

Propulsive Force

Normal Force

Effective gravity

Drag Force

Figure 2.1 : (a) Schematic of the system consisting of a bath of liquid vibrated vertically
with acceleration γ(t), and a droplet of the same liquid walking horizontally at velocity
ẋd and located at vertical position zd relative to the free surface of the liquid at rest.
Panel (b) shows the vertical and horizontal forces acting on the droplet in the oscillating
frame of the bath. In the vertical direction, the droplet experiences an effective gravity,
−m[g + γ(t)], and a normal force, FN(t), during contact. In the horizontal direction,
the droplet experiences a propulsive force, −FN (t)∇h(xd, t), during contact due to the
slope of the wave field and a lumped drag force composed of momentum loss during
contact, −Dmomẋd, and air drag, −Dairẋd.

2.2 Vertical dynamics

When the driving acceleration amplitude Γf of the bath exceeds the bouncing threshold,
a droplet can bounce indefinitely on the free surface of the bath [6]. A variety of models
have been developed for the vertical bouncing motion of the droplet. Moláček and
Bush [57] modelled the vertical bouncing dynamics of the droplet using various spring
models, inspired by the investigations of Gilet and Bush [58], Okumura et al. [59] and
Moláček and Bush [60]. In this model, the vertical equation of motion of the droplet
in the comoving frame of the bath is given by

mz̈d = −m[g + γ(t)] + FN(t), (2.1)

where the first term on the right hand side is the effective gravitational force on the
droplet in the bath’s frame of reference. The second term on the right hand side is
the normal force imparted to the droplet during contact with the liquid surface (see
figure 2.1(b)). To model the contact interaction, Moláček and Bush [57] developed
three different models: (i) a simple linear spring model, (ii) an improved linear spring
model and (iii) a logarithmic spring model. In the simple linear spring model, this
normal force is calculated by modelling the interaction with the bath as a linear spring
and damper according to,

FN(t) = H(−z̄d)
(
−ksz̄d − b ˙̄zd

)
. (2.2)
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Here H(·) is the Heaviside step function and, z̄d = zd − h(xd, t), is the height of
the droplet’s south pole above the free surface of the liquid. The constants ks and
b are the spring constant and damping force coefficient, respectively. The values of
these parameters are not derived from the model and they were obtained by fitting to
experimental data on the coefficient of restitution and the contact time of the droplet
with the bath [57]. By examining the reaction force more closely in the above model,
Moláček and Bush [57] noted that towards the end of contact the reaction force acting
on the droplet pulls it towards the bath, an unphysical effect if the dynamics of the
intervening air is neglected. Hence, they developed the following improved linear spring
model that ensures that the reaction force is always non-negative:

FN(t) = H(−z̄d) max
(
−ksz̄d − b ˙̄zd, 0

)
. (2.3)

They also developed a nonlinear logarithmic spring model that fit their experimental
data better. This logarithmic spring model gives the following equation for the vertical
dynamics:1 + C3

ln2
∣∣∣C1R

z̄d

∣∣∣
mz̈d + 4

3
πνρRC2

ln2
∣∣∣C1R

z̄d

∣∣∣ ˙̄zd + 2πσ
ln
∣∣∣C1R

z̄d

∣∣∣ z̄d = −m[g + γ(t)], (2.4)

when the droplet is in contact with the bath. While in air, the vertical dynamics of
the droplet is governed by mz̈d = −m[g + γ(t)]. The typical values of the parameters
C1, C2 and C3 for walkers are C1 = 2, C2 = 12.5 (for 20 cSt viscosity silicone oil) and
C3 = 1.4. It is not completely clear whether this model is more accurate than the linear
spring models and hence the linear spring models are often used for simplicity [61].

Other models solve for the free-surface evolution of the waves created by the droplet
and include the droplet’s impact through a pressure field on the interface [62, 43, 63].
Blanchette [64] modelled the bouncing dynamics of a droplet using a linear spring
model similar to Moláček and Bush [57] and derived an expression for the contact
force between the droplet and the underlying wave field. A more complete model for
the vertical dynamics was developed by Galeano-Rios et al. [65] where they model
the impact of a droplet on the surface of a fluid bath by coupling the free-surface
Navier-Stokes equations to the motion of a hydrophobic sphere through dynamic
adjustment of the contact area and matching velocities. Their approach allows them
to eliminate fitting parameters from their model for the vertical dynamics.
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Figure 2.2 : Bouncing modes plot. (a) The vertical dynamics of the droplet as a
function of time can be described by plotting the evolution of the vertical position of
the south pole of the droplet (red dot), the vertical position of the bath (black dot)
and the height of the wave directly beneath the centre of the droplet, all in the lab
frame. Different periodic bouncing mode plots obtained using this method are shown
in panels (b)-(d) while an aperiodic bouncing mode plot is shown in panel (e). In these
panels, the grey region represents times at which there is contact between the droplet
and the underlying wave field.

2.2.1 Notation for vertical bouncing modes

The vertical motion of the bouncing droplet is known to be complex and to show
various periodic and chaotic behaviours. Similar behaviour is also observed when a
ball bounces on an oscillating solid surface [66, 67]. To describe the periodic vertical
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dynamics concisely, the notation (m,n) has been widely used [58, 57], where the droplet
impacts the surface n times during m oscillations of the bath.

Figure 2.2 describes the method of obtaining bouncing modes plots that will be
used in this thesis along with a schematic of some common bouncing modes shown
in panels (b)-(e) of that figure. For walking droplets, one of the most commonly
observed bouncing modes is (2, 1), with the droplets leaping over every second peak in
the bath’s motion. After Moláček and Bush [57], we distinguish two different styles
of (2, 1) walking with a high-bouncing, short-contact mode denoted by (2, 1)H and
a low-bouncing, long-contact mode denoted by (2, 1)L. Another commonly observed
mode is (2, 2), in which the droplets no longer are able to leap over intermediate peaks,
and contact the bath twice, typically a high bounce and a low bounce, every two
up-and-down cycles of the bath. Note that experimentally it is difficult to distinguish
between a (2, 1)L and a (2, 2) mode (see figures 2.2(c) and (d), and also figures 7 and 8
of Galeano-Rios et al. [68]). Other less commonly observed modes include (4, 2), (4, 3)
and (4, 4) [69]. Finally, bouncing modes with no discernible periodicity or those with
periodic contact but aperiodic modulation of the peak bouncing heights are common.
We refer to these as chaotic modes.

2.3 Droplet deformations

Droplet deformations are typically insignificant for smaller walking droplets [57] but
may play a significant role for larger walking droplets and even larger superwalking
droplets that will be considered in this thesis. The decay rate and the frequency of small
oscillations of a droplet’s deformations can be adequately described by linear theory
and have been considered in several classic papers [70–74]. The natural frequency of
infinitesimal oscillations of an inviscid droplet is given by

ω =
√
Nωσ

ρR3 , (2.5)

where, Nω = n(n− 1)(n+ 2), with the integer n indicating the mode of deformation [70,
71]. The n = 2 mode corresponding to ellipsoidal deformations (see figure 2.3(a)) is
found to decay the slowest with decay rate 3.8ν/R2 [73, 57]. The dashed curve in
figure 2.3(b) shows the frequency of the dominant n = 2 ellipsoidal oscillations of
droplets using equation (2.5) as a function of their radii for typical silicone oil used
in experiments with walking droplets. The solid curve in figure 2.3(b) shows the
corresponding result corrected for viscosity (after figure 1 of [74]).
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      ellipsoidal deformations

(b)(a)

Figure 2.3 : (a) A schematic showing the droplet deformations in the n = 2 ellipsoidal
mode. Here R is the radius of the undeformed droplet while Rv is the radius of the
droplet along a vertical line passing through the droplet’s centre. (b) Frequency of
infinitesimal ellipsoidal oscillations of droplets, finternal = ω/2π, as a function of their
undeformed radius R for inviscid droplets (dashed curve) and ν = 20 cSt viscosity
droplets (solid curve with circles). The density, ρ = 950 kg/m3, and surface tension,
σ = 20.6 mN/m, are chosen as the typical values for silicone oil used in experiments
with walking droplets.

Deformation of droplets has been modelled using several linear spring models [75–
77, 64]. We here consider the droplet deformation models of Blanchette [75] and Gilet
et al. [76]. In the model of Blanchette [75], the vertical radius (see figure 2.3(a)) of the
droplet Rv is modelled as a linear spring whose evolution is governed by

mR̈v + cdṘv +mω2(Rv −R) = −FN(t), (2.6)

where cd = 3.8mν/R2 is the effective damping coefficient of the droplet deformations.
For the dominant ellipsoidal mode n = 2, we get Nω = 8 if the droplet deformation
amplitude is assumed to be small, but Nω = 5.84 is more appropriate for intermediate
amplitudes [78] and will be used in this thesis. The model of Gilet et al. [76] also
reduces to an identical equation for droplet deformations after some algebra and is
given by

c3mR̈v + c5mν

R2 Ṙv + c4σ(Rv −R) = −c6FN(t), (2.7)

where the parameters c3 = 0.1, c4 = 10, c5 = 3.3 and c6 = 1. To implement both
of these droplet deformation models, we can couple them with the vertical dynamics
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(a) (b) (c)

Figure 2.4 : Faraday waves. Vibrating a bath of liquid vertically results in the (a)
initially flat surface of the liquid becoming unstable to (b) standing Faraday waves
when the driving acceleration amplitude exceeds the Faraday threshold ΓF . Panels (b)
and (c) show the side view and the top view of a typical Faraday wave pattern.

equation of a bouncing droplet. Once the above droplet deformation models are coupled
with the vertical dynamics equation in (2.1), the criteria for contact changes from
z̄d ≤ 0 to z̄d +R −Rv ≤ 0.

2.4 Wave field of a walker

2.4.1 Faraday waves

When a bath of liquid is vibrated vertically, the free surface of the liquid becomes
unstable to standing Faraday waves when the driving acceleration amplitude exceeds
the Faraday threshold ΓF (see figure 2.4). This was first demonstrated by Michael
Faraday [1] in 1831 where he also noted that the frequency of these standing waves
is subharmonic and they oscillate at half the driving frequency. Matthiessen [79]
performed further experiments and reported Faraday waves that oscillate at the same
frequency as that of the driving. This discrepancy led Lord Rayleigh [80, 81] to
conduct further experiments and he confirmed Faraday’s observations. The discrepancy
between Faraday and Rayleigh’s observations, and Matthiessen’s observations was
explained mathematically by Benjamin et al. [2]. Benjamin et al. [2] theoretically
investigated the problem using a linearised inviscid potential flow model with surface
tension. They showed that the response of the planar free surface of the fluid under
vertical vibrations is governed by the Mathieu equation, which can give rise to either
harmonic or subharmonic oscillations. Hence, they concluded that depending on the
parameters, the Faraday waves may be of harmonic or subharmonic nature. Kumar
and Tuckerman [82] reconsidered the linear stability problem theoretically by including
the effects of viscosity and found good agreement in the harmonic and subharmonic
instability tongues between their theoretical predictions and experiments.
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Faraday waves have also been observed when the bath is driven at two frequencies
simultaneously. Two frequency forcing results in novel Faraday wave patterns such
as quasi-periodic waves patterns, in addition to the regular crystalline patterns such
as lines, squares and hexagons that are also observed for single frequency driving.
Moreover, it was shown that two frequency driving with frequencies f and f/2 typically
results in either subharmonic (f/4) or harmonic (f/2) Faraday waves depending on the
relative amplitudes of the two frequencies and the phase difference between them [83].

2.4.2 Damped Faraday waves generated by a walker

Each bounce of a walking droplet generates a fast outwardly propagating wave and
leaves behind a localised, slowly decaying Faraday standing wave [84]. As the walker
propels horizontally, it keeps laying down these localised Faraday waves on each bounce
and the total wave field results from the linear superposition of the individual waves
generated along the trajectory. Thus the free surface z = h(x, t) can be approximated
as the linear superposition of all the individual waves generated by the droplet on its
previous bounces [84, 85]

h(x, t) = ∑
n hn(x, t) ,

where hn(x, t) is the wave field generated by the nth bounce at location xn and time
tn. Various different models of the wave form have been developed to describe a single
impact of a walker [84, 85, 62, 86]. Eddi et al. [84] proposed the following form for the
wave field generated by a walker on each impact

h(E)
n (x, t) = A(E)√

|x − xn|
cos(kF |x − xn| + ψ) exp

[
−t− tn

τd

]
exp

[
−|x − xn|

δ

]
.

This equation describes a wave that has a sinusoidal spatial dependence to account
for spatial oscillations at Faraday wavenumber kF = 2π/λF , with λF being the Faraday
wavelength, and a free phase parameter ψ. The localised nature of the wave field is
captured through an exponential spatial decay with length scale δ. The wave also decays
exponentially in time with decay constant τd ∝ (1 − Γf/ΓF )−1 inversely proportional
to the proximity to the Faraday threshold. The values of δ and τd are obtained from
experiments. The wave amplitude A(E) is effectively a free parameter since this wave
model does not account for the forcing from the droplet. This wave form is singular at
the point of impact and thus although the model captures the qualitative structure
of the walker’s wave field, it cannot be used to rationalise the bouncing-to-walking
transition.
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Figure 2.5 : Comparison of the wave field generated by a single instantaneous impact
of a walker at Γ80 = 3.8 with ΓF = 4.15 using three different models: (i) Eddi et al. [84]
model (blue dashed curve) with parameters τ = 10TF and δ = 1.6λF , (ii) Moláček and
Bush [85] model (red dashed dotted curve) and (iii) Tadrist et al. [86] model (purple
dotted curve).

An improved form of the wave field and one of the most commonly used is that of
Moláček and Bush [85], given by

h(M)
n (x, t) = A(M)

√
t− tn

cos
(

Ωt
2

)
J0(kF |x − xn|) exp

[
− t− tn
TF Me

]
, (2.8)

where Me = Td/TF (1−Γf/ΓF ) is the memory parameter that determines the proximity
to the Faraday threshold with ΓF being the dimensionless acceleration amplitude at the
Faraday threshold. In this expression, Td = 1/νek

2
F is the time constant for wave decay

and νe is the effective kinematic viscosity. This model describes a wave with the shape
of a Bessel function of the first kind, J0, that oscillates at the subharmonic frequency
f/2 and decays exponentially in time with a decay constant inversely proportional
to the memory parameter. In their model, Moláček and Bush [85] allow for a finite
contact time with the wave field. Hence, the location xn and the time tn of the droplet’s
impact are approximated respectively by

xn =
∫ tc

n

ti
n

xd(t′)FN(t′) dt′
/∫ tc

n

ti
n

FN(t′) dt′, tn =
∫ tc

n

ti
n

t′FN(t′) dt′
/∫ tc

n

ti
n

FN(t′) dt′, (2.9)

where tin and tcn are the time of initiation and completion of the nth impact. The
equation for the wave amplitude coefficient A(M) is

A(M) =
√

2νe

π

k3
F

3σk2
F + ρg

∫ tc
n

ti
n

sin
(

Ωt′
2

)
FN(t′) dt′.
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A detailed theoretical study of the waves generated by a single bounce of a walker
was undertaken by Tadrist et al. [86]. They derived the following improved wave form
for the wave generated by an instantaneous impact of a walker of force strength F0 at
location xn and time tn,

h(T )
n (x, t) = A

(T )
0√
t− tn

cos
(

Ωt
2 + θ+

F

)
J0(kF |x − xn|) exp

[
− (t− tn)
TF Me(T ) − TF |x − xn|2

8πD(t− tn)

]
.

(2.10)
In this expression, the memory parameter is given by Me(T ) = −1/2πδ+

F with δ+
F

the decay rate of the longest-lived Faraday wave. This improved form of the wave
field has two new additions: (i) the phase shift θ+

F of the Faraday waves relative to the
driving signal and (ii) an exponential spatial decay with diffusive spreading (with a
diffusion coefficient D). Note that similar additions can also be obtained following the
derivation of Moláček and Bush [85] by including higher-order terms in their decay
rate expansions. The amplitude coefficient A(T )

0 takes the form,

A
(T )
0 =

√
2π

Ω5D

2k2
F

πρ
B+

F (tn)F0,

where B+
F (tn) is a function that prescribes the amplitude based on the instant of impact

tn and is given by

B+
F (tn) = −2 cos(Ωtn/2 + θ−

F )
(δ+

F − δ−
F )[cos(Ωtn + θ+

F + θ−
F ) + cos(θ+

F − θ−
F )] − 2 sin(θ+

F − θ−
F ) ,

where θ−
F and δ−

F are the phase shift and decay rate respectively of a companion
short-lived Faraday wave. The reader is referred to Tadrist et al. [86] for further details
on these parameters. A comparison of the three different forms of the wave fields
presented is shown in figure 2.5.

Milewski et al. [62] introduced a more complete description of the waves generated
by a walker by introducing a quasi-potential, weakly viscous wave model. This model is
able to capture many more subtle features of the walker system, such as the travelling
wave fronts reported by Eddi et al. [84], but neglected in the earlier standing wave
models, and it captures the Doppler effect in the wave field reported by Eddi et al. [84].
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2.5 Horizontal dynamics

When the driving acceleration amplitude Γf exceeds the walking threshold, the pure
vertical bouncing state becomes unstable and a walking droplet emerges. The most
widely used model to describe the horizontal dynamics of the walking droplet is that of
Moláček and Bush [85] where the horizontal equation of motion takes on the following
form:

mẍd = − [Dmom(t) +Dair] ẋd − FN(t)∇h(xd, t). (2.11)

The term in parentheses on the right hand side is the total instantaneous drag force,
composed of momentum loss during contact, Dmom(t) = C

√
ρR/σFN(t), and an air

drag of the form Dair = 6πRµa. Here µa is the dynamic viscosity of air and C is
the contact drag coefficient. The parameter C is not determined theoretically and is
obtained by doing a best fit of the experimental results of walkers. The final term on
the right hand side is the horizontal component of the contact force arising from the
slope of the underlying wave field during contact. The slope of the interface is assumed
to be small |∇h| << 1 and hence the horizontal contact force can be approximated
as −FN(t)∇h(xd, t). We note that such an approximation loses accuracy when the
contact time of the drop becomes comparable to the Faraday period because the slope
of the interface will change significantly during contact. Coupling this equation of
horizontal dynamics in (2.11) with the vertical dynamics through the normal force
FN (t) and the underlying wave field h(x, t) as described in previous sections, we obtain
a complete model that describes the bouncing and walking dynamics of the droplet.

A more sophisticated model for horizontal dynamics that provides a more accurate
modelling of the walking droplet was developed by Galeano-Rios et al. [68]. They
coupled the vertical dynamics model of Galeano-Rios et al. [65] with the free surface
wave evolution model of Milewski et al. [62] to obtain a walking droplet model free of
any impact parametrisation. Using their model they were able to accurately reproduce
experimental observations of bouncing modes, impact phases and time-dependent wave
field topography for bouncing and walking droplets.

2.6 Stroboscopic models

The models described in previous sections give an accurate description of the system at
the time scale of a single bounce and capture both the horizontal and vertical dynamics
of a walker. However, in application of walking droplets to hydrodynamic quantum
analogues, mainly the horizontal motion of walkers over a long time is of primary
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interest. Hence, further reduced stroboscopic models have been developed that average
over the periodic vertical motion and only describe the horizontal dynamics.

The first stroboscopic model of the horizontal motion of a walker was developed by
Protière et al. [6] where they described the horizontal motion in one dimension of a
single walker using the following equation:

mẍd = F b sin
(

2πẋd

V ϕ
F

)
− fvẋd. (2.12)

The left hand side represents the inertia of the droplet and on the right hand side
are all the forces acting on the droplet during contact. The first term on the right hand
side is the force during contact with the inclined surface of the wave with coefficient
F b ∼ mgΓf(Aw/λF )(τ/TF ). Here Aw is the wave amplitude, τ is the contact time
between the drop and the bath and V ϕ

F is the phase velocity of waves. The second term
represents the dissipation that was assumed to arise from the shear drag generated by
the thin air layer created during impact. This scales as fV ∼ (µas/hF )(τ/TF ) where
µa is the viscosity of air, s is the contact area and hF is the thickness of the air layer
between the droplet and the bath. Using this model they were able to capture a key
feature of the system which is the bouncing-to-walking transition. By seeking a steady
walking solution of equation (2.12), they showed a supercritical pitchfork bifurcation
in the walking velocity VW which transitions from VW = 0 to

VW/V
ϕ

F = ±(
√

6/2π)
√

(F b − F b
c )/F b,

when F b becomes larger than a threshold value F b
c = fV (V ϕ

F /2π). However, this model
does not take into account the waves generated from all the previous bounces of the
droplet and hence it is unable to capture the intricate dynamics that is dependent on
the memory of the walkers that is critical for many hydrodynamic quantum analogous.
A similar approach was taken by Shirokoff [87] for description of walkers in confined
geometries.

An improved version of this trajectory equation was developed by Oza et al. [88]
by averaging over the vertical dynamics in the model of Moláček and Bush [85] and
assuming a periodic (2, 1)H bouncing mode with a constant impact phase for the walker.
This was rationalised on the grounds that the time scale of horizontal motion is much
greater than the time scale of the vertical motion and thus the walker can be viewed
as a continuous moving source of standing waves. By averaging equation (2.11) over
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the bouncing period TF for a droplet in a (2, 1)H mode, they obtained

mẍd = −Dẋd −mg∇h(xd, t), (2.13)

with
h(x, t) = A

TF

∫ t

−∞
J0(kF |x − xd(s)|)e−(t−s)/TF Me ds. (2.14)

Here the averaged drag coefficient is D = Cmg
√
ρR/σ+ 6πµaR(1 +TFρagR/24µa),

where µa and ρa are the dynamic viscosity and density of air, and C is the non-
dimensional drag coefficient. The amplitude coefficient is given by

A =
√

νe

2πTF

kFR

3k2
FR

2 +Bo

k2
FR

σ
mgTF sin(Φ),

where Bo = ρgR2/σ is the Bond number, sin(Φ) is the impact phase and νe is the
effective kinematic viscosity. We refer the reader to Oza et al. [88] for explicit equations
for these parameters. Substituting equation (2.14) into equation (2.13) we obtain the
following trajectory equation:

mẍd +Dẋd = F

TF

∫ t

−∞
J1(kF |xd(t) − xd(s)|) xd(t) − xd(s)

|xd(t) − xd(s)|e
−(t−s)/TF Me ds,

where F = mgAkF . We non-dimensionalise this equation by choosing 1/kF and TF Me
as the length and time scales respectively, giving us non-dimensional variables x′ = kF x
and t′ = t/TF Me. Substituting this in the above equation and dropping primes we get

κẍd + ẋd = β
∫ t

−∞
J1(|xd(t) − xd(s)|) xd(t) − xd(s)

|xd(t) − xd(s)|e
−(t−s) ds, (2.15)

where κ = m/DTF Me and β = FkFTF Me2/D are the non-dimensional mass and the
non-dimensional memory coefficient respectively. This model can accurately predict
the bouncing-to-walking transition and the dependence of the free walking speed on
memory. It also provides a theoretical rationale for several single walker behaviours
that were reported in experiments such as the stability of circular orbits in a rotating
frame or a simple harmonic potential [28, 20, 31, 35–37].

This model was further improved by adding spatial damping to the wave field as it
may play a crucial role in the dynamics of multiple interacting walkers and interactions
of a walker with boundaries [89]. Moreover, although the assumption of a constant
impact phase has proven to be sufficient for describing the motion of a single droplet, it
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has limitations when describing the interactions of multiple drops where modulations of
the vertical dynamics are known to arise. To account for these variations in the impact
phase, Oza et al. [89] and Arbelaiz et al. [10] improved the above stroboscopic model by
determining the dependence of the impact phase parameter on the forcing acceleration
through an empirical fit to the experimental results. Recently, Couchman et al. [61]
developed a more complete variable phase stroboscopic model to obtain a robust
horizontal trajectory equation for a walking droplet that accounts for modulations in
the drop’s vertical dynamics that may arise when it interacts with boundaries or other
droplets.

All the above stroboscopic models approximate the complex wave field generated
by a droplet on each bounce by a standing wave. This was improved by Durey and
Milewski [63] who developed a discrete-time model where the droplet’s motion is
still averaged over the vertical dynamics and the droplet impacts are assumed to be
instantaneous, but they couple the droplet’s dynamics to the more complete wave model
of Milewski et al. [62] to accurately capture the droplet’s wave field. Using their model
they were able to reproduce the dynamics of single and multiple droplets observed
in experiments as well as various hydrodynamic quantum analogues [63, 32, 17]. We
also refer the reader to the work of Turton et al. [90] which provides a review of the
theoretical modelling of walking droplets.



Part I

Superwalking Droplets





Chapter 3

From walkers to superwalkers

In this chapter, we present experimental results of a new class of walking droplets,
coined superwalkers, that emerge when a bath of silicone oil is driven at two driving
frequencies. Superwalkers may be more than double the size of the largest walkers,
may travel at more than triple the speed of the fastest ones, and enable a plethora of
novel multi-droplet behaviours.

This chapter is based on the following published paper:

R. N. Valani, A. C. Slim and T. Simula, Superwalking Droplets, Physical Review
Letters 123 024503 (2019).

3.1 Introduction

Walkers emerge when a bath of silicone oil is driven by a single frequency sinusoidal
wave with acceleration Γfg sin(Ωt), where Γf is the dimensionless amplitude of the
driving acceleration and Ω = 2πf is the angular frequency with f being the driving
frequency. For a commonly studied system of silicone oil with 20 cSt viscosity and
f = 80 Hz, droplet radii of 0.3 mm to 0.5 mm and walking speeds of up to 15 mm/s
have been observed [85, 69]. We have discovered a new class of walking droplets, which
we coin superwalkers, that emerge when the fluid bath is driven simultaneously at a
frequency f and the subharmonic frequency f/2 with a phase difference ∆ϕ according
to the acceleration

γ(t) = Γfg sin(Ωt) + Γf/2g sin(Ωt/2 + ∆ϕ). (3.1)

https://doi.org/10.1103/PhysRevLett.123.024503
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Figure 3.1 : Comparison of a walker (top), a normal superwalker (middle) and a jumbo
superwalker (bottom). Superwalkers emerge when the bath is driven at two frequencies
f and f/2 with a phase difference ∆ϕ. They may be significantly larger than walkers
and may move significantly faster. Left panels show top views of typical droplets and
their wave fields, and side views of the same droplets. Right panels show the bath
motion (solid curve) and the typical bouncing motion of the droplets.

In the commonly studied system noted above, superwalkers can be significantly larger
than walkers with radii up to 1.4 mm and they can walk at up to 50 mm/s. The largest
superwalkers undergo significant internal deformation and barely lift off from the
surface of the bath. We call these jumbo superwalkers. The key differences between a
walker and the two kinds of superwalkers are summarised in the schematic of figure 3.1.
Fundamental differences between walkers and superwalkers are also evident in their
inter-droplet interactions. Due to their large inertia, superwalkers may easily overcome
the wave barrier that typically prevents contact interactions between walking droplets,
enabling superwalkers to form a variety of novel stationary and dynamic bound states.
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Figure 3.2 : Schematic of the experimental setup. A bath of silicone oil is mounted on
a subwoofer speaker cone. The bath is driven vertically with acceleration prescribed in
equation (3.1). Millimetre size droplets of the same oil can be created using a needle
or a syringe.

3.2 Details of the experiment

The experiments were performed using a circular bath of diameter 18 cm filled to a
height of approximately 8 mm of nominal viscosity 20 cSt and density 950 kg/m3 at
25◦C. A schematic of the experimental setup is shown in figure 3.2. The bath had a
circular aluminium base of diameter 218 mm and thickness 6 mm with a 3D-printed
annular ring adhesively bonded to it to form the vertical wall. The bath was mounted
on a subwoofer speaker cone (UM12-22 12" Ultimax DVC Subwoofer 2 ohms Per Coil)
that was placed on an optical breadboard. The quality of uniaxial vibrations and
levelling of the bath were investigated using accelerometers and by observing uniform
generation of Faraday waves [91]. We verified that the subwoofer acceleration axis
was vertical with horizontal vibrations about 5% of the vertical vibrations. That the
remaining, unavoidable horizontal vibrations do not affect our conclusions is described
in Appendix A.

The speaker cone was driven simultaneously at frequencies f and f/2 via two
independent voice coils at a prescribed phase shift. Superwalkers were observed for
driving frequencies in the range 50 Hz ≲ f ≲ 100 Hz. For our detailed investigation, we
used f = 80 Hz. The two voice coils were driven by connecting them to an amplifier
(Crown XLS1002 Drivecore, 1100 W), which in turn was connected to a computer
running the audio editing software Audacity to generate the driving signals. The
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acceleration of the bath was measured using two horizontally mounted, diametrically
opposed accelerometers (MPU6050 Module 3 Axis Gyroscope + accelerometer) on the
annular ring. These accelerometers were connected to the same computer using an
Arduino UNO microcontroller. For each accelerometer, the dimensionless acceleration
amplitudes Γ40 and Γ80 and the phase shift ∆ϕ were extracted using nonlinear least
square fitting of the measured accelerometer signal to equation (3.1). A Fourier
transform of the signals was also used to verify that there was no significant power at
spurious frequencies. The measured peak acceleration amplitude decayed over time,
presumably due to the Ohmic heating of the copper in the voice coils. For collecting
several data sets at the same acceleration, a feedback loop was used to adjust the
amplitude of the input signal based on the measured amplitude using the past 2 seconds
of accelerometer readings. Adjustments to the input signal were made approximately
every 10 seconds, much quicker than the time scale of decay of approximately 1 − 2
minutes. This was sufficient to maintain the accelerations within ±0.05 g. The measured
phase difference ∆ϕ from the accelerometer differed from the input phase difference
by a constant value, presumably due to damping inherent to this periodically driven
oscillator. The uncertainty in the measured phase difference of approximately ±3◦

was calculated as the difference between the phase readings of the two diametrically
opposed accelerometers. We found that the speaker heated up over time, raising the
temperature of the silicone oil. This altered its viscosity and decreased the Faraday
threshold. Therefore, the temperature of the oil was measured using a thermocouple
and it was kept in the range 21-23◦C by limiting the time of each experimental run to
approximately 20 minutes. This limited the variability in the Faraday threshold to
within approximately 0.1 g, which is comparable to the uncertainty permitted in the
feedback loop.

Small droplets with radius less than 0.8 mm were created by swiftly extracting a
needle from the oil bath while larger droplets with radius greater than 0.8 mm were
created using a syringe with needles of different diameters. The droplet’s horizontal
motion was recorded from above using a Nikon D90 DSLR camera in burst mode
at 4 frames per second. Typically 4-8 images were taken of a droplet walking in a
straight line, which were then used to determine the size and the speed of the droplet.
High speed videos of the droplets were taken using Chronos 1.4 high-speed camera in
order to determine the bouncing mode of a single droplet and visualise many droplet
dynamics at a typical frame rate of 4000 frames per second. A Phantom VEO 640
high-speed camera was used to visualise the large internal deformations of a jumbo
superwalker. An LED panel placed above the camera provided sufficient illumination
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for the overhead images while another LED source illuminated the droplets from the
side for the videos taken using the high-speed camera. The size of a droplet was
measured from the overhead images using a Hough circle transform implemented in
MATLAB and was taken as the average value from the overhead burst sequence. The
speed was calculated as the total distance that the centre of the droplet travelled
divided by the duration of the burst sequence.

The superwalkers were not affected significantly by the ambient air currents, pre-
sumably due to their large inertia. Nevertheless, the experiments were performed under
a shroud to protect the smaller droplets from spurious drifting due to air currents. To
verify that this was sufficient, we performed controlled experiments with an enclosed
system as described in Appendix A. Performing the remaining experiments without
the enclosure permitted easier droplet manipulation.

We measured the Faraday threshold for single-frequency forcing at 80 Hz as ΓF80 ≈
4.2 and for single-frequency forcing at 40 Hz as ΓF40 ≈ 1.3. We observed that for a
fixed moderate value of Γ40, as Γ80 is increased progressively, circular concentric waves
start forming at the edges of the bath with their radial extent increasing as Faraday
threshold ΓF80 is approached from below. This results in the superwalkers becoming
frequently confined to walking along the edges of the bath. Such waves did not form
with single-frequency forcing either for 40 Hz or 80 Hz.

3.3 Bouncing modes notation for superwalkers

To describe the vertical dynamics of superwalkers, we extend the notation described for
walkers in Section 2.2.1 to two-frequency driving. We denote the bouncing behaviour
of droplets driven by two frequencies using the generic notation (l,m,n) indicating that
the droplet impacts the surface n times during m oscillation periods of the bath at
frequency f , which equals l oscillation periods of the bath at frequency f/2.

For small- to moderate-size superwalkers, the most common bouncing mode we
observe is the (1, 2, 1)H mode, with the droplets leaping over every second peak in the
bath’s motion. As described in Section 2.2.1 we distinguish two different styles of (1, 2, 1)
bouncing with a high-bouncing, short-contact mode denoted by (1, 2, 1)H and a low-
bouncing, long-contact mode denoted by (1, 2, 1)L. For large superwalkers we observe
the (1, 2, 2) mode, in which the droplets are no longer able to leap over intermediate
peaks, and contact the bath twice, typically a high bounce and a low bounce, every two
up-and-down cycles of the bath. We note that very large superwalkers hardly lift off
from the liquid surface and hence it is experimentally difficult to distinguish between



32 From walkers to superwalkers
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Figure 3.3 : Speed-size characteristics of solitary superwalkers. (a) Walking speed
u as a function of droplet radius R for fixed values Γ80 = 3.8 and ∆ϕ = 130◦, and
two different values of Γ40, specifically Γ40 = 0 (blue markers) and Γ40 = 0.6 (black
markers). The size and speed error bars for each data point represent the standard
deviation of the values for a single droplet calculated from the given droplet’s burst
sequence of images. For larger superwalkers, the error in the size is greater because
internal deformation of the droplet causes appreciable variations in its radius. The
spread of data provides an indication of the uncertainty in the acceleration amplitudes
of the bath. The theoretical prediction from the stroboscopic model of Oza et al. [88]
is shown as solid black curve. Three different bouncing behaviours are indicated for
superwalkers: chaotic, (1,2,1)H and (1,2,2). Vertical slice-time plots of droplets are
shown for (b) chaotic, (c) (1,2,1)H and (d) (1,2,2) bouncing modes corresponding to the
black markers at the radii indicated. These spatiotemporal images are generated by
juxtaposing vertical sections one pixel wide passing through the droplet’s centre. Panels
(e) and (f) show the two extremes of the shape deformations of a jumbo superwalker.

the (1, 2, 1)L and (1, 2, 2) bouncing mode. Even for walkers, it has been difficult to
experimentally distinguish between a (2, 1)L and a (2, 2) mode (see figures 7 and 8 of
Galeano-Rios et al. [68]). Bouncing modes with no discernible periodicity or those with
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periodic contact but aperiodic modulation of the peak bouncing heights are common
for smaller droplets. We refer to these as chaotic modes.

3.4 Dynamics of solitary superwalkers

This section provides experimental results on the horizontal and vertical dynamics of
solitary superwalkers. We investigate the effect of varying the peak driving accelerations
Γf and Γf/2, phase difference ∆ϕ and droplet radius R on the droplet’s dynamics.

3.4.1 Effect of varying the droplet radius

The relationship between speed and size of solitary superwalkers is shown in figure 3.3.
Figure 3.3(a) shows the speed of a droplet u as a function of its radius R for fixed
values of Γ80 and ∆ϕ and two different values of Γ40 = 0 and 0.6, illustrating the
significant size and speed increase possible for two-frequency driven superwalkers.
Three prominent types of walking are observed for two-frequency driving and are
identified in figure 3.3(a).

The smallest droplets, which are walkers for single-frequency driving, become
chaotic superwalkers upon adding the subharmonic driving signal. These droplets
bounce aperiodically, see figure 3.3(b), and walk unsteadily with significant fluctuations
in their walking speed. Similar irregular walking dynamics for two-frequency forcing at
80 Hz and 64 Hz has been observed previously [92].

Much larger droplets that would not be able to walk at single-frequency driving can
now walk with two-frequency driving. Like walkers, they move at a constant speed u

in straight line trajectories with typically greater speeds than the fastest walkers. Two
different bouncing modes are observed for such superwalkers. Small- to moderate-sized
superwalkers that lie on the ascending branch of the speed-size curve in figure 3.3(a)
bounce in a (1,2,1)H mode where they impact the bath once every two up-and-down
motions of the bath (see figure 3.3(c)) and their speed increases almost linearly with
increasing size of the droplet.

Large superwalkers that lie on the descending branch bounce in a (1,2,2) mode
(see figure 3.3(d)). In contrast to the (1,2,1)H superwalkers, the speed of (1,2,2)
superwalkers decreases with increasing droplet size. We attribute this behaviour to the
increased drag due to the prolonged contact time between the droplet and the bath.
Superwalkers with radius R ≳ 0.9 mm undergo significant internal deformation and
do not seem to lift off from the surface. We refer to these as jumbo superwalkers (see
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(a) (b)

Figure 3.4 : Speed-Size characteristics of solitary superwalkers at a fixed phase difference
∆ϕ = 130◦ and different acceleration amplitudes Γ80 and Γ40. (a) Speed as a function
of radius for fixed Γ80 = 3.8 and four different value of Γ40 = 0, 0.3, 0.6, and 1. The
black curve is the prediction from the stroboscopic model for single-frequency walkers.
(b) Speed as a function of radius for fixed Γ40 = 1 and Γ80 = 2.6, 3, and 3.8. The size
and speed error bars for each data point represent the standard deviation of the values
for a single droplet calculated from the given droplet’s burst sequence of images. For
larger superwalkers, the error in the size is greater because internal deformation of
the droplet causes appreciable variations in its radius. The spread of data provides an
indication of the uncertainty in the acceleration amplitudes of the bath.

figures 3.3(e) and (f), and also Supplemental Video S1 of [53]). The frequency of the
elliptical shape vibrations (see figure 2.3) of the jumbo superwalkers is close to their
bouncing frequency [71, 74]. Intriguingly, we find that jumbo superwalkers cannot
simply bounce without walking.

The solid curve in figure 3.3(a) is the predicted speed-size relationship for a (2, 1)H

walker with single-frequency driving using the stroboscopic model (see equation (2.15)).
For this model, we set the adjustable parameters of the impact phase parameter and
the non-dimensional drag coefficient as sin(Φ) = 0.2 and C = 0.17 respectively. For the
accelerations, we use only the Γ80 value and the ΓF80 Faraday threshold value. All other
parameters are specified from the experimental conditions. Surprisingly, this curve
accurately captures the speed of (1,2,1)H superwalkers, despite not having explicit
dependence on the value of Γ40 (we refer the reader to Chapter 4 where an explanation
is provided). Since the stroboscopic model is only valid for walkers bouncing in a (2,1)H

mode, we do not expect it to be applicable for modelling the (1,2,2) superwalkers.
Figure 3.4(a) provides an extension of the results presented in figure 3.3(a) at

additional different values of Γ40. For (1,2,1)H superwalkers on the ascending branch
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Bouncing Superwalking
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Figure 3.5 : Walking speed u as a function of the phase difference ∆ϕ is shown at
fixed driving acceleration amplitudes Γ80 = 3.8 and Γ40 = 0.6 for droplets of radii (a)
R = 0.54 ± 0.03 mm, (b) R = 0.60 ± 0.02 mm and (c) R = 0.83 ± 0.03 mm. A (1,2,2)
bouncing mode is shown as black filled circles, a (1,2,1)H bouncing mode is shown as
black filled triangles, transition between (1,2,1)H and (1,2,2) is shown as grey squares
and chaotic bouncing is shown as black asterisks. The data to the right of the vertical
dashed line is repeated.

we find that despite the presence of Γ40 being essential to the existence of these
superwalkers, its magnitude only marginally affects their speed. This is consistent with
the observations for (2, 1) walkers, for which the walking speed is only weakly dependent
on the driving amplitude at higher accelerations above the walking threshold [85].
Moreover, we find that as Γ40 increases, larger droplets that coalesce at either single
frequency driving (Γ40 = 0) or at low Γ40 are now able to superwalk at high Γ40. To
complement figure 3.4(a), figure 3.4(b) shows the speed of solitary superwalkers as a
function of its radius for fixed Γ40 and ∆ϕ and three different values of Γ80. We find
that increasing Γ80 results in an increased speed for steadily walking superwalkers.

3.4.2 Effect of varying the phase difference

The value of the phase difference ∆ϕ between the two driving signals crucially affects
the behaviour of droplets. Figure 3.5 shows data for the speed of a droplet u as a
function of the phase difference ∆ϕ for fixed Γ80 and Γ40 and three different radii of
R = 0.54 mm, R = 0.60 mm and R = 0.83 mm. We find that superwalkers only exist
for a limited range of phase difference and outside this range they either coalesce (open
markers) or bounce without walking. In the bouncing region, the smaller R = 0.54 mm
droplet bounces chaotically while the larger R = 0.60 mm and R = 0.83 mm droplets
bounce in a (1,2,2) mode. Inside the superwalking region, the droplet may bounce in a
(1,2,1)H or a (1,2,2) mode. Near the peak walking speed in the superwalking region,
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Figure 3.6 : Different behaviours occurring in the (Γ80,Γ40) parameter space for a fixed
phase difference ∆ϕ = 130◦ and three different droplet radii: (a) R = 0.6 ± 0.05 mm,
(b) R = 0.8 ± 0.05 mm, and (c) R = 1.0 ± 0.05 mm. (d) Speed as a function of Γ40 for
droplet radii R = 0.45 mm, R = 0.63 mm, R = 0.77 mm and R = 1.16 mm. (e) Speed
as a function of Γ80 for droplet radii R = 0.70 mm, R = 0.83 mm and R = 0.98 mm.

both R = 0.54 mm and R = 0.60 mm droplets bounce in a (1,2,1)H mode while the
R = 0.83 mm droplet always bounces in a (1,2,2) mode in the superwalking region.
The maximum speed occurs in the vicinity of ∆ϕ ≈ 140◦, a value that does not appear
to vary significantly with Γ80, Γ40, or droplet radius R.

3.4.3 Effect of varying the acceleration amplitudes

Figures 3.6(a-c) show the different regimes observed in the (Γ80,Γ40) parameter space
for a fixed phase difference ∆ϕ = 130◦ and three different droplet radii. Parametrically
forcing a bath of liquid simultaneously at two different frequencies f and f/2 may result
in a Faraday instability with either f/2 or f/4 waves depending on the amplitudes
of the two frequencies and the phase difference ∆ϕ between them [83]. We find that
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driving the bath at 80 Hz and 40 Hz delays the onset of 20 Hz Faraday waves when
the driving acceleration Γ80 is large. The onset of the 40 Hz Faraday waves is not
significantly affected. For large Γ40 and Γ80, both 40 Hz and 20 Hz Faraday waves
appear to be excited simultaneously. Below the Faraday threshold, we find coalescing
(C), bouncing (B), and superwalking (SW) regions with the extent of each region
dependent on droplet size. For a relatively small droplet, figure 3.6(a), the extent of
the bouncing and superwalking regions is large. The bouncing region progressively
decreases with an increase in droplet size (see figures 3.6(a)-(c)). For a larger droplet,
figure 3.6(c), the bouncing region disappears and the droplet may either coalesce or
walk. For even larger droplets, the superwalking region also vanishes. We also find
that just above the 80 Hz-driving Faraday threshold, unlike walkers, superwalkers still
walk steadily with their motion guided by the globally excited nonlinear Faraday waves.
In the parameter regime where global Faraday waves are not excited, droplets always
appear to trigger decaying 40 Hz Faraday waves, as illustrated by the similarity in
wavelengths in figure 3.1. In Chapter 4 we will derive an expression for the wave field
of a superwalker and show that the dominant contribution is indeed from the 40 Hz
waves.

Figure 3.6(d-e) provides further insight into the relationship between the walking
speed and the peak acceleration amplitudes Γ40 and Γ80 for different-sized droplets.
In figure 3.6(d) the walking speed as a function of Γ40 is shown for four different
sized droplets. The smallest droplet (R = 0.45 mm) is a (2,1)H walker for single-
frequency driving. Adding the subharmonic frequency barely impacts its speed up
to a threshold Γ40 value, beyond which the walking speed drops precipitously and
the droplet switches to a chaotic mode. A slightly larger droplet of R = 0.63 mm
is a bouncer for a single-frequency driving and remains so for small Γ40. Beyond a
threshold Γ40 value, the droplet begins to walk and does so with increasing speed before
plateauing for moderately large Γ40. A medium-sized droplet of R = 0.77 mm exhibits
similar behaviour but its speed continues to increase with Γ40. The largest droplet of
R = 1.16 mm coalesces at low Γ40 and directly begins to superwalk beyond a threshold
value of Γ40 with its speed increasing almost linearly with Γ40 and reaching a maximum
speed of approximately 50 mm/s. Figure 3.6(e) shows the speed as a function of Γ80

for three different droplet radii. The trend for all three droplet sizes is similar with
the speed increasing with Γ80. We note that the largest droplet, a jumbo superwalker,
only exists in the superwalking regime and coalesces at lower Γ80.
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Figure 3.7 : Vertical motion of a fixed point on the droplet (red curve) and the
bath motion (blue curve) as a function of time (in milliseconds) showing the different
bouncing modes for different phase differences ∆ϕ at Γ80 = 3 and Γ40 = 0.8 for a
droplet of radius R = 0.60 ± 0.01 mm. The contact interval is indicated by the shaded
regions.

3.5 Contact with the underlying wave field

The details of the contact between the droplet and the underlying wave field are
crucially important for the droplet dynamics. However, for large droplets that barely
lift off the fluid surface and undergo significant internal deformations, it becomes
exceedingly difficult to quantify the nature and duration of the contact. Moreover,
due to the imaging limitation of our experiments, we were only able to do qualitative
analysis of the bouncing motion from the high speed videos and use that to estimate
the contact time. Figure 3.7 shows the droplet’s vertical motion (red curve) and the
bath motion (blue curve) at different phase differences ∆ϕ for a fixed droplet size
and at fixed values of Γ80 and Γ40. The vertical motion of the bath (blue curve) was
obtained by tracking the motion of a fixed point on the edge of the bath. The droplet’s
vertical position (red curve) was obtained by tracking a fixed bright spot on the droplet.
Since the droplet deforms significantly during contact, this method does not capture
the vertical trajectory well during contact which is indicated by the shaded region. The
contact region was determined by visual inspection of the sequence of images from the
high speed videos. Moreover, since the imaging plane in the high speed videos was not
aligned with droplet’s vertical motion, the vertical co-ordinate is not a representative of
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Figure 3.8 : Total contact time (TC) relative to the Faraday period (TF ) for different
sized droplets. The contact time was calculated by visual inspection of the high speed
videos of superwalkers. Filled circles represent (1,2,1)H superwalkers while empty circles
represent (1,2,2) superwalkers. Here the other parameters were fixed to Γ80 = 3.8,
Γ40 = 0.6 and ∆ϕ = 130◦.

the vertical scale of the droplet’s motion. From the qualitative bouncing modes shown
in figure 3.7 we identify that for a droplet in the (1,2,1)H mode, it stays in contact with
the bath for the entire upward motion of the larger peak in the bath motion. Moreover,
for the droplet in the (1,2,2) mode we see two contacts per bouncing period. We also
that the (1,2,2) mode shown for ∆ϕ = 0◦, has the two contact regions in one bouncing
period very close to each other. Hence, it is not clear where such a mode is truly a
(1,2,2) mode or a (1,2,1)L mode.

By calculating the contact time through visual inspection of high speed videos for
different sized droplets, we can obtain an approximation of the contact time with the
bath as a function of the droplet size as shown in figure 3.8. Note the large vertical error
bars that take into account the large uncertainty in our visual inspection method. For
droplets with radius R ≳ 0.9 mm, our imaging resolution was insufficient to determine
their contact time but they appeared to be in contact for the entire bouncing period.
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Figure 3.9 : Tightly bound states of superwalking droplets. (a) Doublet, (b) Triplet and
(c) Quadruplet states of superwalking droplets with symmetric droplet configurations
where the aggregate follows a straight line trajectory. For videos, see Supplemental
Videos S2, S3 and S4 of [53].

3.6 Interactions of multiple superwalkers

Like walkers, multiple superwalkers can interact with each other through their un-
derlying wave field. Moreover, due to their large inertia, superwalkers can also have
direct droplet-droplet interactions with other superwalkers. These interactions lead
to a variety of novel stationary and dynamic configurations, a selection of which are
illustrated in figures 3.9 – 3.13 (for videos see Supplemental Material of [53]). We note
that for walkers, since their typical bouncing frequency is half the driving frequency,
two walkers can have either in-phase or out-of-phase interactions. Conversely, for
superwalkers, the typical bouncing frequency is same as the overall driving frequency,
and hence we only observe in-phase interactions for superwalkers.

Two superwalkers can bind into a tight pair in which the droplets are separated
only by a very thin air layer (see figure 3.9(a)). If the droplets have different size then
they traverse a circular path, while a pair of identical droplets traverses a straight path.
Similar states exist for staggered three-droplet and four-droplet configurations where
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Figure 3.10 : Chasing pair of superwalkers. (a) Top view and (b) side view of a typical
pair of chasers with mismatched droplets. (c) Chasers with three droplets where the
leading large droplet drags behind two smaller droplets in a staggered configuration.
(d) Less common chasing pair where both droplets are similar in size. (d) Chasers with
three droplets where the leading large droplet drags two smaller droplets in a collinear
configuration. For videos, see Supplemental Videos S5 and S6 of [53].

if the droplet configurations are symmetric then the group traverses a straight line
trajectory (see figures 3.9(b) and (c)), while asymmetric droplet configurations lead
to circular trajectories. These states are typically observed at relatively low driving
acceleration or low memory.

We have observed another type of bound pair called chasers (see figure 3.10), which
have previously been found numerically for identical droplets with single-frequency
driving [63, 55] and experimentally in an effectively one-dimensional confined annular
geometry [14]. Here we observe chasers in free space where two droplets walk one behind
the other at a constant speed. For droplets of differing size, the larger droplet leads
and drags the smaller one in its wake (see figures 3.10(a) and (b)). Chasing pairs of
superwalkers are robust and ubiquitous at high memory, and the larger the size disparity
between the two droplets, the more stably bound they are. Particularly disparate
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Figure 3.11 : Promenading pair of superwalkers. In this bound state, supewalkers
can walk side by side on parallel trajectories with sideways oscillations where droplets
bounce off each other at their closest approach. For a video, see Supplemental Video
S7 of [53].

pairs can survive collisions with other droplets and even with the bath’s walls. Less
commonly, we have observed chasers with similar droplet size (see figure 3.10(d)) and
aggregates consisting of three chasing droplets either in a staggered (see figure 3.10(c))
or a collinear configuration (see figure 3.10(e)). We note that chasing pairs are different
from ratcheting pairs of walkers reported by Eddi et al. [12] and Galeano-Rios et al.
[13]. Ratcheting motion typically occurs below the walking threshold and the pair
travels slowly, while we find that chasers only appear at high memory and are an order
of magnitude faster. We also observe ratcheting pairs with superwalkers at very low
memory.

Two superwalkers can form a state reminiscent of promenading pairs of walkers,
where the droplets walk in parallel with sideways oscillations [9, 10, 55]. Promenading
pairs of walkers remain physically separated at all times due to the wave barrier formed
as they approach one another. In contrast, promenading pairs of superwalkers undergo
droplet-droplet collisions, bouncing off one another as shown in figure 3.11. The centre
of mass of identical promenading superwalkers follows a straight path while that of
even slightly mismatched superwalkers tends to follow a circular trajectory.

Two superwalkers may also form loosely bound orbiting pairs (see figure 3.12(a))
similar to walkers [6, 89, 11] where two droplets orbit about their common centre
of rotation. A novel feature for orbiting superwalkers is that we have occasionally
observed intermittent reversals of the orbiting direction for mismatched droplets. We
also observe tightly bound orbiting pairs of mismatched superwalkers. With an extreme
size imbalance, giant droplets that would coalesce with the bath in isolation can persist
if accompanied by a smaller orbiting satellite droplet, see figure 3.12(b). More exotic
orbiting superwalkers have also been observed such as orbits with three superwalkers
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Figure 3.12 : Orbiting superwalkers. (a) Loosely bound orbiting pair of superwalkers
where the two droplets rotate about their common centre of rotation. (b) Tightly bound
orbiting pair where a relatively small satellite droplet orbits around a giant droplet (for
a video, see Supplemental Video S8 of [53]). (c) Orbit with three superwalkers where a
big and a small droplet orbit a central medium-sized wobbling droplet. For panels (a)
and (c), snapshots of the droplets at different locations in the orbit are shown.

where a big and a small droplet orbit around a central medium-sized wobbling droplet
(see figure 3.12(c)).

When many superwalkers are present, the inter-droplet interactions favour crys-
talline droplet configurations for relatively low driving accelerations. If the value of Γ40

is progressively increased while keeping Γ80 fixed, see figure 3.13, the crystal initially
begins to jiggle. Similar jiggling of a droplet crystal has been observed for single
frequency driving on decreasing the frequency or increasing the number of droplets [93].
Increasing Γ40 further results into disintegration of the droplet crystal but droplets
may still remain bounded in two- and three-droplet configurations. Ultimately, at
highest Γ40, the droplets begin to superwalk at high speed, bouncing off each other
elastically like billiard balls. The observed dynamics are reminiscent of solid-liquid-gas
phase transitions with the forcing amplitude acting as a temperature parameter. This
behaviour is robust with respect to interchanging the roles of Γ40 and Γ80, and are
associated with crossing the phase boundary between bouncing (B) and superwalking
(SW).
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Figure 3.13 : Interactions of many superwalkers. Many superwalkers self-organise into
(a) a tightly bound crystal-like configuration at low memory. (b) As the memory is
progressively increased the aggregate starts to jiggle. (c) Further increase in memory
leads to disintegration of the aggregate but droplets may still remain bound in two-
and three-droplet configurations. (d) At the highest memory, the droplets begin
to superwalk at high speed, bouncing off each other elastically like billiard balls.
Bottom panel shows many superwalkers interacting at high memory. For a video, see
Supplemental Video S9 of [53].

3.7 Bubble-droplets

Large two-component bubble-droplets, which are partly liquid and partly air, may be
created with ease using a syringe filled with silicone oil and containing an air bubble.
When such a bubble-droplet is placed on the liquid bath driven at two frequencies as
prescribed in this chapter, we get two qualitatively different types of dynamics. If the
proportion of air is appreciable, then the bubble-droplet bounces with an additional
pendulum motion, tumbling back and forth (see figure 3.14(a)). If the air only occupies
a small proportion of the droplet, then the bubble-droplet walks much like a superwalker
but at a reduced speed with respect to an air-free droplet (see Fig. 3.14(b)). Such bubble
superwalkers form bound states similar to air-free superwalkers (see figures 3.14(c) and
(d)). The bubble-droplets open up a new parameter space to explore in the system of
walking droplet. By controlling the amount of air (or liquid) in the droplet, the inertia
of the droplet can be reduced while keeping the droplet size fixed allowing for bigger
droplets that move slowly compared to air-free superwalkers.
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Figure 3.14 : Bubble-droplets that are partly filled with silicone oil and partly air. (a)
If the bubble-droplet is dominated by air, it tumbles back and forth and undergoes
pendulum-like motion (for a video, see Supplemental Video S11 of [53]). (b) Bubble-
superwalker: A bubble-droplet that is mostly filled with silicone oil with a small amount
of air walks much like a superwalker but at a reduced speed compared to the air-free
droplet. Multiple bubble-superwalkers form bound states akin to regular superwalkers
such as (c) tightly bound superwalking pairs and (d) chasing pairs.

3.8 Conclusion

We have introduced a new class of walking droplets, coined superwalkers, enabled by
adding a subharmonic driving signal to a periodically driven walking-droplet system.
We found that these superwalkers can be more than twice the size and walk at more
than triple the speed of typical single-frequency driven walkers. The superwalking
behaviour of a given sized droplet varies as the acceleration amplitudes Γ80 and Γ40

and the phase difference ∆ϕ between the two driving frequencies are varied. The
variation in the superwalking behaviour with the acceleration amplitudes is expected as
it controls the decay time of damped Faraday waves generated by the droplet, however
the sensitivity of the superwalking behaviour to the phase difference ∆ϕ is intriguing.
Interactions of multiple superwalkers give rise to novel static and dynamic multi-droplet
bound states as well as emergent many droplet behaviours. This introductory study
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of superwalkers uncovers a wealth of new phenomena that need to be studied in
more detail both experimentally and numerically. As a first step, in the next chapter,
we start by developing a theoretical model for superwalking droplets. Using this
model, we attempt to uncover the underlying mechanism resulting in the superwalking
phenomenon and build a foundation on which further studies of superwalkers can take
place.



Chapter 4

Emergence of superwalking
droplets: a numerical approach

In this chapter, we extend the previously established theoretical models for walkers
driven by a single frequency to superwalkers driven by two frequencies in order to
understand the emergence of superwalking behaviour. We explore the vertical and hori-
zontal dynamics of superwalkers and show that driving the bath at two frequencies with
an appropriate phase difference raises every second peak and lowers the intermediate
peaks in the vertical periodic motion of the fluid surface. This allows large droplets that
could otherwise not walk to leap over the intermediate peaks, resulting in superwalking
droplets whose vertical dynamics is qualitatively similar to normal walkers. We find
that the droplet’s vertical and horizontal dynamics are strongly influenced by the
relative height difference between successive peaks of the bath motion, a parameter
that is controlled by the phase difference. Comparison of our simulated superwalkers
with the experimental results presented in Chapter 3 shows good agreement for small-
to moderate-sized superwalkers.

This chapter is based on the following published paper:

R. N. Valani, J. Dring, T. Simula and A. C. Slim, Emergence of superwalking droplets,
Journal of Fluid Mechanics 906, A3 (2021).

4.1 Introduction

In Chapter 3, we described characteristics of superwalkers observed in experiments when
a bath of silicone oil is driven with two frequencies f = 80 Hz and f/2 = 40 Hz and a

https://doi.org/10.1017/jfm.2020.742
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relative phase difference ∆ϕ. It was found that superwalkers can be significantly larger
than walkers with radii up to 1.4 mm and walking speeds up to 50 mm/s. Intriguingly,
the walking speed and the vertical dynamics of superwalkers are strongly dependent on
the phase difference ∆ϕ, with peak superwalking speed occurring near ∆ϕ = 140◦, while
near ∆ϕ = 45◦ they only bounce or may even coalesce. Moreover, for a fixed phase
difference, smaller superwalkers typically behave very similarly to walkers, with their
speed increasing with their size and impacting the surface once every two up-and-down
cycles of the bath. Conversely, the speed of larger superwalkers decreases with size.
These large superwalkers appear to impact the bath twice every two up-and-down cycles
of the bath and have prolonged contact with the bath, with the largest ones hardly
lifting from the surface. Using sophisticated numerical simulations, Galeano-Rios et al.
[68] were able to replicate superwalking behaviour for a single droplet of moderate
radius R = 0.68 mm, and reported a good match in the superwalking speed between
their simulation and our experimental results presented in Chapter 3. Although our
experimental study in Chapter 3 and the simulations of Galeano-Rios et al. [68] describe
the characteristics of superwalkers, an understanding of the mechanism that enables
superwalking is still lacking. In this chapter, our aim is to understand this underlying
mechanism by adapting the theoretical models used for walkers driven with a single
frequency, to superwalkers driven with two frequencies.

4.2 Theoretical setup

To simulate superwalkers, we couple previously established models of vertical and
horizontal dynamics of Moláček and Bush [57, 85] along with a new model for the
wave field of a superwalker to understand and rationalise superwalking. As shown
schematically in figure 2.1 and described in Section 2.1, consider the setup of a droplet
of mass m and radius R bouncing on a bath of liquid of density ρ, kinematic viscosity
ν and surface tension σ. The bath is driven vertically at two frequencies f and f/2
with acceleration γ(t) = Γfg sin(Ωt) + Γf/2g sin(Ωt/2 + ∆ϕ). Here Γf and Γf/2 are
dimensionless accelerations amplitudes and Ω = 2πf is the angular frequency. We
simulate the vertical droplet dynamics using the improved linear spring model of
Moláček and Bush [57] as described in equations (2.1) and (2.3) adapted for two-
frequency driving. To describe the horizontal dynamics of the walking droplet, we use
the model of Moláček and Bush [85] for which the horizontal equation of motion is
given by equation (2.11).
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4.3 Waves excited under two-frequency driving

To form a complete model to simulate superwalkers, the vertical and horizontal
dynamics equations (2.3) and (2.11), need to be coupled to the free surface deformation
h(x, t) created by the droplet’s impact. This free surface z = h(x, t) is calculated as
the linear superposition of all the individual waves generated by the droplet on its
previous bounces

h(x, t) = ∑
n hn(x, t) ,

where hn(x, t) is the wave field generated by the nth bounce at location xn and time tn.
The individual waves generated by the droplet on each bounce are localised, damped
standing Faraday waves. Various different models of the wave field have been developed
for walkers [84, 85, 62, 86] and they are described in section 2.4.2. To derive the form
of the surface waves generated by a single impact of a droplet on a bath driven at two
frequencies f and f/2, we closely follow the approach of Tadrist et al. [86] who derived
the wave form for single impact of a droplet under single frequency driving as given in
equation (2.10).

We consider an incompressible, Newtonian liquid in a bath that is infinitely large
in horizontal extent and infinitely deep. The bath is subjected to periodic vertical
vibrations that result in a modulation of the effective gravity in the frame of the bath
g∗(t) = g[1 + Γf sin(Ωt) + Γf/2 sin(Ωt/2 + ∆ϕ)]. For notational clarity, we will refer to
specific frequencies f = Ω/2π = 80 Hz and f/2 = 40 Hz, but the derivation is general.
The evolution of the liquid is governed by the incompressible Navier-Stokes equations,

∇ · v = 0 and ∂v
∂t

+ (v · ∇)v = −1
ρ

∇P − g∗(t)k̂ + ν∇2v,

where v(r, t) is the velocity field, P (r, t) is the pressure field relative to atmospheric
pressure, r = (x, y, z) is the position vector, k̂ is a unit vector in the z direction, ρ is
the density and ν is the kinematic viscosity. We consider small perturbations from the
stationary equilibrium state v = 0, P = −ρg∗(t)z and h = 0. We linearise the above
equations about this equilibrium state with pressure perturbation p(r, t) and velocity
perturbation v(r, t) resulting in the following linearised equation:

∂v
∂t

− ν∇2v = −1
ρ

∇p. (4.1)
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Due to the incompressibility of the liquid, the pressure perturbation p satisfies

∇2p = 0. (4.2)

Assuming that the liquid is only weakly perturbed, the absence of tangential stress
at the free surface combined with the incompressibility condition gives the following
equation for the vertical component of the liquid velocity vz at z = 0:

∂2vz

∂z2 (x, y, 0, t) =
(
∂2

∂x2 + ∂2

∂y2

)
vz(x, y, 0, t). (4.3)

The pressure boundary condition requires

p(x, y, 0, t) = 2νρ∂vz

∂z
(x, y, 0, t)−σ

(
∂2

∂x2 + ∂2

∂y2

)
h(x, y, t)+ρg∗(t)h(x, y, t)+P ext(x, y, t),

and the kinematic boundary condition implies

∂h

∂t
= vz(x, y, 0, t), (4.4)

where h(x, y, t) is the free surface perturbation, σ is the coefficient of surface tension,
P ext(x, y, t) is the pressure exerted by the droplet on the free surface through the
intervening air layer and n̂ is the unit normal out of the liquid. Assuming that the
pressure distribution imparted by the droplet during contact is uniform in the contact
region we get

P ext(x, y, t) = P ext(t) = FN(t)/πw2, (4.5)

where w is the effective radius of the contact area and FN(t) is the normal force as
described in equation (2.3). Since the bath has infinite horizontal extent, we can
simplify the equations using the Fourier transform defined as follows for an arbitrary
variable X(x, y, τ):

Xk(τ) =
∫ ∞

0

∫ ∞

0
X(x, y, τ) exp[−i(kxx+ kyy)] dx dy,

where k = (kx, ky) is the horizontal wave vector with k = |k|. Applying the Fourier
transform to equation (4.2) we get

∂2pk

∂z2 (z, t) = k2pk(z, t).
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The solution of this equation is given by pk(z, t) = pk(0, t) ekz with the boundary
conditions pk(−∞, t) = 0 and

pk(0, t) = 2νρ∂vz,k

∂z
(0, t) + [ρg∗(t) + σk2]hk(t) + P ext

k (t).

Applying the Fourier transform to the linearized Navier-Stokes equation (4.1) we get,
(
∂

∂t
− ν

∂2

∂z2 + νk2
)
vz,k(z, t) = −

(
2ν ∂vz,k

∂z
(0, t) +

[
g∗(t) + σ

ρ
k2
]
hk(t)

)
k ekz

− k

ρ
P ext

k (t) ekz, (4.6)

with boundary conditions

∂hk

∂t
(t) = vz,k(0, t) and ∂2vz,k

∂z2 (0, t) = −k2vz,k(0, t), (4.7)

obtained from equations (4.4) and (4.3) respectively. For the remainder of the derivation,
we will use dimensionless time τ = Ωt/2 for ease of comparison with the equations of
Tadrist et al. [86], and will revert back to the dimensional time t in the final expressions.
Using this non-dimensional time we make the following change of variables as done in
Tadrist et al. [86],

wk = 2
Ωvz,k, Πk = 4k

Ω2ρ
P ext

k , γk = 4νk2

Ω and ω2
k = 4(gk + (σ/ρ)k3)

Ω2 .

Using this new notation equations (4.6) and (4.7) become,
(
∂

∂τ
− γk

2k2
∂2

∂z2 + γk

2

)
wk(z, τ) =

−
(
γk

k

∂wk

∂z
(0, τ) +

[
4Γfgk

Ω2 sin(2τ) + 4Γf/2gk
Ω2 sin(τ + ∆ϕ) + ω2

k

]
hk(τ)

)
ekz

− Πk(τ) ekz, (4.8)

and
∂hk

∂τ
(τ) = wk(0, τ) and ∂2wk

∂z2 (0, τ) = −k2wk(0, τ). (4.9)

Now the Laplace transform is defined as follows:

Xk,s =
∫ ∞

0
Xk(τ) e−sτ dτ.
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Taking Laplace Transform of equations (4.8) and (4.9) results in
(
s− γk

2k2
∂2

∂z2 + γk

2

)
wk,s(z) =

−
(
γk

k

∂wk,s

∂z
(0) + ω2

khk,s + 2Γfgk
iΩ2 (hk,s−2i − hk,s+2i) + 2Γf/2gk

iΩ2 (hk,s−iei∆ϕ − hk,s+ie−i∆ϕ)
)

ekz

− Πk,s ekz,

and
shk,s = wk,s(0) and ∂2wk,s

∂z2 (0) = −k2wk,s(0).

Following Tadrist et al. [86], the solution to this differential equation can be expressed
as,

wk,s = [−γke
√

1+2s/γkkz + (s+ γk) ekz]hk,s,

provided that hk,s satisfies

fk(s)hk,s + 2Γ80gk
iΩ2 (hk,s−2i − hk,s+2i) + 2Γ40gk

iΩ2 (hk,s−iei∆ϕ − hk,s+ie−i∆ϕ) + Πk,s = 0,
(4.10)

for the transformed free surface hk,s. Furthermore,

fk(s) = (s+ γk)2 − γ
3/2
k

√
γk + 2s+ ω2

k.

This function and all its derivatives obey fk(z) = fk(z) where the overline denotes
complex conjugation. The last term of equation (4.10) describes the transformed
pressure distribution from droplet’s impact Πk,s = (4k/Ω2ρ)P ext

k,s . Using the definition
of the Fourier Transform and the assumption of uniform pressure distribution during
contact with wk ≪ 1 we get, P ext

k,s = P ext(s)
∫ w

0 J0(kr)r dr ≈ FN(s)/2π with r =
√
x2 + y2. Hence we obtain

Πk,s = 2k
πΩ2ρ

FN(s), (4.11)

where P ext(s) and FN (s) are the Laplace transforms of P ext(τ) and FN (τ) respectively.
We note that equation (4.10) reduces to equation (2.2) of Tadrist et al. [86] on setting
Γ40 = 0, with the caveat that our driving is a sine function while Tadrist et al. [86] use
a cosine. We have chosen a sine function for driving for the sake of consistency with
the experiments results presented in the Chapter 3.
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We first consider Faraday waves in the absence of external pressure perturbations,
which reduces equation (4.10) to

fk(s)hk,s + 2Γ80gk
iΩ2 (hk,s−2i − hk,s+2i) + 2Γ40gk

iΩ2 (hk,s−iei∆ϕ − hk,s+ie−i∆ϕ) = 0. (4.12)

Due to the periodic driving of the system, a Floquet ansatz is appropriate in the
time domain. The form we assume and its corresponding Laplace transform are given
by [94]

hk(τ) =
∞∑

l=−∞
h

(l)
k eilτ eδkτ and hk,s =

∞∑
l=−∞

h
(l)
k

s− il − δk

. (4.13)

Here δk is a complex perturbation whose real part vanishes when the Faraday instability
threshold is reached. Substituting this form into (4.12), we obtain

∞∑
l=−∞

h
(l)
k

[
fk(s)

s− il − δk

− iΓ80βk

(
1

s− i(l + 2) − δk

− 1
s− i(l − 2) − δk

)

− iΓ40βk

(
1

s− i(l + 1) − δk

ei∆ϕ − 1
s− i(l − 1) − δk

e−i∆ϕ

)]
= 0,

with βk = 2gk/Ω2. Using the Heaviside cover-up method [95] yields an infinite
dimensional linear system Ah = 0 coupling the Floquet components together [82, 96,
94, 86]. Here A is the pentadiagonal matrix

A =



. . . . . . . . . ... ... ... . . .

. . . fk(−2i + δk) Υk αk 0 0 . . .

. . . Υk fk(−1i + δk) Υk αk 0 . . .

. . . αk Υk fk(δk) Υk αk . . .

. . . 0 αk Υk fk(1i + δk) Υk
. . .

. . . 0 0 αk Υk fk(2i + δk) . . .

. . .
... ... ... . . . . . . . . .



,

with αk = iΓ80βk and Υk = iΓ40βke−i∆ϕ, and h is a vector of the Floquet components
h

(l)
k . To obtain non-trivial solutions of this linear system requires

det(A) = 0. (4.14)
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(a)

(b) (c)

(d) (e)

Figure 4.1 : Properties of two-frequency, damped Faraday waves. (a) Decay rate
Re(δk) as a function of wavenumber k for Γ80 = 3.8, Γ40 = 0.6 and ∆ϕ = 130◦ using a
21-mode truncation corresponding to |l| ≤ 10 (solid black curve). The blue and red
dotted curves show the decay rate of the slowly decaying wave using the two-mode
approximation Re(δ+

k20) in the blue Faraday window and the two-mode approximation
Re(δ+

k40) in the red Faraday window respectively. The grey dashed curves are second-
order approximations to these decay rates at the peak values in each Faraday window.
Panels (b) and (c) show the dispersion relation Im(δk) in the two Faraday windows. In
(d) and (e), the magnitude of the amplitudes h(l)

kF 40 and h
(l)
kF 20 of the different modes

l are shown at the most unstable wavenumbers in each Faraday window using the
21-mode truncation, with the dominant modes coloured. These correspond to the
eigenvectors of Ah = 0 with eigenvalue 0. Note that these amplitudes only yield
information about the relative values of each mode.
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4.3.1 Decay rate of damped Faraday waves

Solving equation (4.14) for fixed Γ80, Γ40 and ∆ϕ, we obtain δk as a function of
the wavenumber k. Below the Faraday instability threshold, this corresponds to a
decay rate for the waves Re(δk) and a dispersion relation Im(δk). Results for typical
parameter values of superwalkers are shown in figure 4.1. Figure 4.1(a) shows the
numerically converged Re(δk) as a function of k (solid curves). We see two different
Faraday windows, one in which the waves are locked at Im(δk) = 1/2 (the blue-shaded
region in figures 4.1(a) and (b)) and one in which waves are locked at Im(δk) = 0 (the
red-shaded region in figures 4.1(a) and (c)). In each of these windows, we see two
different branches for the decay rate Re(δk), an upper branch corresponding to a slowly
decaying wave and a lower branch corresponding to a more rapidly decaying wave.

To obtain analytical forms of these results, we truncate the infinite dimensional
matrix equation to a few dominant modes. For the Im(δk) = 0 (red) Faraday window
in figure 4.1(a), we find that the dominant contribution to the amplitude is from the
two modes with l = ±1 (see figure 4.1(e)) corresponding to a frequency of ±40 Hz.
Denoting the decay rate in this Faraday window by Re(δk40) and using this two-mode
approximation, equation (4.14) reduces to

fk(−i + Re(δk40))fk(i + Re(δk40)) − |αk|2 = 0.

We can obtain a good approximation to this decay rate by following an approach
similar to Section 2.2.2 of Tadrist et al. [86] and expanding the function fk(±i+Re(δk40))
to second order in the small decay rate Re(δk40) to get

Re(δ±
k40) = − bk(i)

2ak(i)

1 ∓

√√√√1 − 4ak(i)ck(i, αk)
b2

k(i)

 , (4.15)

where the functions

ak(u) = ḟk(u)ḟk(−u) + 1
2 f̈k(u)fk(−u) + 1

2 f̈k(−u)fk(u),
bk(u) = ḟk(u)fk(−u) + ḟk(−u)fk(u),

ck(u, Z) = fk(u)fk(−u) − |Z|2.

Here Re(δ+
k40) and Re(δ−

k40) correspond to the decay rates of the slowly and quickly
decaying wave respectively. This approximation for the slowly decaying wave Re(δ+

k40)
is shown as a red, dotted curve in figure 4.1(a). We can further approximate this decay
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rate near the most unstable wavenumber kF 40 by

Re(δ+
k40) ≈ Re(δ+

F 40) −D40(k − kF 40)2, (4.16)

where Re(δ+
F 40) = limk→kF 40 Re(δ+

k40) and D40 = −1
2d2Re(δ+

k40)/dk2|k=kF 40 is the diffu-
sion coefficient, both of which can be calculated from equation (4.15). This approxima-
tion of Re(δ+

k40) is shown as a grey, dashed curve in figure 4.1(a).
We follow a similar approach to obtain an analytical expression for the decay rate in

the Im(δk) = 1/2 (blue) Faraday window in figure 4.1(a). In this window, the dominant
contribution is from the l = −1 and 0 modes (see figure 4.1(d)), corresponding to
frequencies ±20 Hz. Using this two-mode approximation and denoting the decay rate
by Re(δk20), equation (4.14) reduces to

fk(−i/2 + Re(δk20))fk(i/2 + Re(δk20)) − |Υk|2 = 0.

A good approximation for this decay rate is obtained by expanding the function
fk(±i/2 + Re(δk20)) to second order, giving us

Re(δ±
k20) = − bk(i/2)

2ak(i/2)

1 ∓

√√√√1 − 4ak(i/2)ck(i/2,Υk)
b2

k(i/2)

 , (4.17)

where Re(δ+
k20) and Re(δ−

k20) correspond to the decay rates of the slowly and quickly
decaying wave respectively. We can further approximate Re(δ+

k20) near the most
unstable wavenumber kF 20 by

Re(δ+
k20) ≈ Re(δ+

F 20) −D20(k − kF 20)2, (4.18)

where Re(δ+
F 20) = limk→kF 20 Re(δ+

k20) and D20 = −1
2d2Re(δ+

k20)/dk2|k=kF 20 is the dif-
fusion coefficient corresponding to this Faraday window. These approximations of
Re(δ+

k20) from equations (4.17) and (4.18) are shown in figure 4.1(a) as a blue dotted
and a grey dashed curve respectively.

4.3.2 Faraday instability thresholds

When Re(δk) > 0 for any wavenumber k, growing Faraday waves are predicted. For
two-frequency driving at f and f/2, either f/2 Faraday waves or f/4 Faraday waves can
emerge depending on the relative strength of the acceleration amplitudes and the phase
difference [? 53]. The marginal stability curves representing the acceleration amplitudes
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(a) (b)

Figure 4.2 : Faraday threshold curves for two-frequency driving. (a) Comparison of
the Faraday threshold curves for ∆ϕ = 130◦ obtained using 21 modes (solid yellow
curves) and using the two-mode approximations (dotted curves) together with the
experimental results (circles) presented in figure 3.6. For the latter, empty circles
indicate that flat liquid surfaces were observed while filled circles indicate that Faraday
waves were observed. (b) Faraday thresholds for different values of the phase difference
∆ϕ using a 21-mode calculation.

at onset of Faraday waves, ΓF 80 and ΓF 40, can be found by setting Re(δk) = 0 when
solving equation (4.14). From figure 4.1(a), we see two Faraday windows where Re(δk)
can potentially cross zero corresponding to either the f/2 instability of frequency 40 Hz
or the f/4 instability of frequency 20 Hz. Figure 4.2(a) shows the comparison of the
numerically converged marginal stability curve obtained using a 21-mode truncation
(yellow solid curve) and the two-mode approximation for the 20 Hz (blue dashed curve)
and 40 Hz (red dashed curve) Faraday waves, with the experimental results from
Chapter 4 (circles). Figure 4.2(b) shows the numerically converged marginal stability
curves at different phase differences ∆ϕ. We note that changes in ∆ϕ cause appreciable
changes in the 20 Hz Faraday threshold.

4.3.3 Amplitude and phase shift of damped Faraday waves

In figures 4.1(d) and (e), the relative amplitudes of the Floquet modes are shown for
the slowest decaying modes in the 20 Hz and 40 Hz Faraday windows respectively. We
now turn to calculating these amplitudes for our reduced-mode approximations and
use these to obtain expressions for the wave profile generated by a single bounce of a
droplet.
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Using the two-mode approximation for the 40 Hz window, we can write the Floquet
ansatz in equation (4.13) as

hk(τ) ≈
(
h

(−1)
k e−iτ + h

(1)
k eiτ

)
eδkτ , (4.19)

and the infinite dimensional linear system Ah = 0 reduces to a 2 × 2 matrix system
A2h2 = 0. Since the determinant of the matrix A2 is zero, we obtain the amplitudes
h2 from the null space vector, which gives h(−1)

k = c ξ±
40 with ξ±

40 = i
√
αk/fk(−i + δ±

k40)
and h

(1)
k = h

(−1)
k , where c is a free parameter. Substituting this solution into equation

(4.19) and using Im(δ±
k40) = 0 in this window, we obtain the wave forms

h±
k40(τ) = c

[
ξ±

40e−iτ + ξ
±
40eiτ

]
eRe(δ±

k40)τ .

Thus, the total wave field in this Faraday window can be represented as

hk40(τ) = ζ+
40 eRe(δ+

k40)τ cos(τ + θ+
k40) + ζ−

40 eRe(δ−
k40)τ cos(τ + θ−

k40), (4.20)

where
θ±

k40 = arctan
(

−Im(ξ±
40)

Re(ξ±
40)

)
. (4.21)

and ζ±
40 = 2c|ξ±

40|. These equations (4.21) and (4.20) are equivalent to equations (2.47)
and (2.48) of Tadrist et al. [86]. Similar to Section 2.3 of Tadrist et al. [86], we now
continue by modelling the temporal profile of a droplet’s impact by a delta function.
The corresponding pressure and force exerted by the droplet on the liquid is then

Πk(τ) = (2k/πΩ2ρ)FN(τ) = δ(τ − τi)vk. (4.22)

By integrating the time domain version of equation (4.10) across the delta kick, we
find that vk corresponds to negative change of velocity of hk following impact. If the
surface is perfectly flat and at rest before the impact, the wave profile is axisymmetric
i.e. hk(τ) = hk(τ). Using the initial conditions as τ −→ τi that hk = 0 and ∂hk

∂τ
= −vk

we get ζ±
40 = vkα

±
40, where

α±
40 = −2 cos(τi + θ∓

k40) e−Re(δ±
k40)τi

(Re(δ±
k40) − Re(δ∓

k40))(cos(2τi + θ±
k40 + θ∓

k40) + cos(θ±
k40 − θ∓

k40)) − 2 sin(θ±
k40 − θ∓

k40)
.

Taking a similar approach, we can obtain an equation for the wave field by using the
two-mode approximation in the 20 Hz Faraday window. The two-mode approximation
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of equation (4.13) gives

h±
k20(τ) = (h(−1)

k e−iτ/2 + h
(0)
k eiτ/2)eRe(δ±

k20)τ .

Solving for the null space of the matrix equation we get h(−1)
k = cξ±

20 with ξ±
20 =

i
√

Υk/fk(−i/2 + Re(δ±
k20)) and h

(0)
k = h

(−1)
k , where c is a free parameter. For this we

obtain the amplitudes

h±
k20(τ) = c(ξ±

20e−iτ/2 + ξ
±
20eiτ/2)eRe(δ±

k20)τ .

Hence, we can express the total wave field for this Faraday window as

hk20(τ) = ζ+
20 eRe(δ+

k20)τ cos(τ/2 + θ+
k20) + ζ−

20 eRe(δ−
k20)τ cos(τ/2 + θ−

k20), (4.23)

where
θ±

k20 = arctan
(

−Im(ξ±
20)

Re(ξ±
20)

)
. (4.24)

Using the same initial conditions as for 40 Hz waves we get ζ±
20 = vkα

±
20, where

α±
20 = −2 cos(τi/2 + θ∓

k20) e−Re(δ±
k20)τi

(Re(δ±
k20) − Re(δ∓

k20))(cos(τi + θ±
k20 + θ∓

k20) + cos(θ±
k20 − θ∓

k20)) − 2 sin(θ±
k20 − θ∓

k20)
.

4.3.4 Wave field of a superwalker

For late times after the impact, τ ≫ τi, and when the acceleration amplitudes are
close to their respective Faraday thresholds, Γ80 ≲ ΓF 80 and Γ40 ≲ ΓF 40, the wave field
is dominated by the slowly decaying Faraday waves from both the 40 Hz and 20 Hz
modes. Hence, we can approximate the final wave field generated by the impact of the
droplet as

hk(τ) = α+
40vk eRe(δ+

k40)τ cos(τ + θ+
k40) + α+

20vk eRe(δ+
k20)τ cos(τ/2 + θ+

k20).

Transforming back to the spatial domain with an inverse Fourier transform yields

h(x, y, τ) = 1
2π

∫ ∞

0

∫ ∞

0
hk(τ) exp[i(kxx+ kyy)] dkx dky .
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Since the wave profile is radially symmetric, the above inverse Fourier transform reduces
to an inverse Hankel transform,

h(x, y, τ) =
∫ ∞

0
hk(τ)J0(kr)k dk.

Hence the wave profile in the real space is given by

h(x, y, τ) =
∫ ∞

0
B+

k40vkeRe(δ+
k40)(τ−τi) cos(τ + θ+

k40)J0(kr)k dk

+
∫ ∞

0
B+

k20vkeRe(δ+
k20)(τ−τi) cos(τ/2 + θ+

k20)J0(kr)k dk,

where B+
k40 = α+

40eRe(δ+
k40)τi and B+

k20 = α+
20eRe(δ+

k20)τi . Using the second order expan-
sion for Re(δ+

k40) and Re(δ+
k20) in equations (4.16) and (4.18), we get the following

approximation to the above integral in the limit τ −→ ∞ (for details see Appendix C of
[86])

h(x, y, τ) = Ã
(0)
40 (τi)

cos(τ + θ+
F 40)√

τ − τi

J0(kF 40|x − xi|) exp
[
− τ − τi

2πMe40
− |x − xi|2

4D40(τ − τi)

]

+ Ã
(0)
20 (τi)

cos(τ/2 + θ+
F 20)√

τ − τi

J0(kF 20|x − xi|) exp
[
− τ − τi

2πMe20
− |x − xi|2

4D20(τ − τi)

]
,

where xi is the location of the impact and the memory parameters Me40 and Me20 are
given by Me40 = −1/2πRe(δ+

F 40) and Me20 = −1/2πRe(δ+
F 20). Furthermore,

Ã
(0)
40 = kF 40

√
π

D40
vkB

+
F 40(τi) and Ã

(0)
20 = kF 20

√
π

D20
vkB

+
F 20(τi).

To include a finite contact time, we follow the suggestion in Tadrist et al. [86] of using
Duhamel’s principle and the approach used in Appendix A.4 of Moláček and Bush
[85], and integrate the impulse response with a time varying impact signal Πk(τ). This
results in replacing the amplitude coefficients Ã(0)

40 and Ã
(0)
20 by

Ã40 = kF 40

√
π

D40

∫ τc
n

τ i
n

B+
F 40(τ ′)Πk(τ ′) dτ ′,

Ã20 = kF 20

√
π

D20

∫ τc
n

τ i
n

B+
F 20(τ ′)Πk(τ ′) dτ ′.

We change the dimensionless time τ back to dimensional time t and replace Πk(t) by
(2k/πΩ2ρ)FN(t) using equation (4.11). We also replace the initial contact time ti and
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location of contact xi by their weighted average values tn and xn as given in equation
(2.9), and replace the dimensionless amplitudes Ã40 and Ã20 by A40 =

√
2/ΩÃ40 and

A20 =
√

2/ΩÃ20 giving us

A40 =
√

2π
Ω3D40

k2
F 40
πρ

∫ tc
n

ti
n

B+
F 40(t′)FN(t′) dt′,

A20 =
√

2π
Ω3D20

k2
F 20
πρ

∫ tc
n

ti
n

B+
F 20(t′)FN(t′) dt′, (4.25)

and results in the wave field equation,

h(SW)
n (x, t) = A40

cos(Ωt/2 + θ+
F 40)√

t− tn
J0(kF 40|x − xn|) exp

[
− t− tn
TF Me40

− TF |x − xn|2

8πD40(t− tn)

]

+A20
cos(Ωt/4 + θ+

F 20)√
t− tn

J0(kF 20|x − xn|) exp
[
− t− tn
TF Me20

− TF |x − xn|2

8πD20(t− tn)

]
.

(4.26)

The interpretation of equation (4.26) is that a droplet bouncing under the prescribed
two-frequency driving excites two dominant waves at wavenumbers kF 40 and kF 20,
corresponding to frequencies of 40 Hz and 20 Hz. These waves decay in time at
rates Re(δ+

F 40) and Re(δ+
F 20), which determine the corresponding memory parameters

Me40 = −1/2πRe(δ+
F 40) and Me20 = −1/2πRe(δ+

F 20). The waves also spread diffusively
with diffusion coefficients D40 and D20 and have phase shifts θ+

F 40 and θ+
F 20.

4.3.5 Comparison of a superwalker and a walker wave field

Comparing the superwalker wave field in equation (4.26) to that of a walker derived
by Tadrist et al. [86] and presented in equation (2.10) leads to two key observations:
(i) both models have a wave at frequency f/2 = 40 Hz. We note that Tadrist et al. [86]
derived equation (2.10) by considering a cosine form of driving while we have considered
a sine form of driving to be consistent with our experiments. This results in a constant
shift of π/4 in the phase shift θ+

F in equation (2.10) which has been taken into account
when comparing results. (ii) An additional wave of frequency f/4 = 20 Hz appears in
the wave field of a superwalker. However, in the region of (Γ80,Γ40) parameter space
where superwalking is realised, typically the amplitude of the 40 Hz wave, A40, is 4 to 8
times that of the 20 Hz wave, A20. Thus in general, our new two-frequency wave model
is not appreciably different from the single-frequency model of Tadrist et al. [86]. This
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(a) (b)

(c) (d)

(e)

(f)

Figure 4.3 : Comparison of the wave fields generated by an instantaneous impact at
x = 0 and at time ti = 0.22TF for typical superwalker parameter values. The wave
fields from the Moláček and Bush [85] model (green dashed-dotted curve), Tadrist et al.
[86] model (maroon dotted curve) and the superwalker model of this work (blue solid
curve) are shown at times (a) t1 = ti +0.23TF , (b) t2 = ti +0.57TF , (c) t3 = ti +0.76TF

and (d) t4 = ti + 1.00TF . The evolution of the absolute wave height h at x = 0 from
an impact at ti (vertical red dashed line) is shown in (e) and the relative wave height
∆h/h(T )

∗ with respect to the Tadrist et al. [86] model is shown in (f). Here h(T )
∗ is the

wave field from Tadrist et al. [86] model in (2.10) excluding the cosine term to avoid
singularities in ∆h/h(T )

∗ , and ∆h = h(SW ) − h(T ) or h(M) − h(T ). The parameters are
Γ80 = 3.8, Γ40 = 0.6 and ∆ϕ = 130◦.

is illustrated further in figure 4.3 where the wave fields predicted using the models
of Moláček and Bush [85] in equation (2.8), Tadrist et al. [86] in equation (2.10) and
the superwalker wave field in equation (4.26) are shown for an instantaneous impact
at time 0.22TF , corresponding to the typical impact phase for superwalkers, with an
appreciable Γf/2 component. The waves from our new two-frequency model (4.26)
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and the single-frequency [86] model (2.10) are quantitatively similar (figures 4.3(a)
and (c-e)), except near times when the overall wave field is quite flat and is changing
rapidly (figure 4.3(b)). The comparison with the single-frequency [85] model appears
poorer, however the difference is primarily in the far-field and arises from the absence
of diffusive spatial decay in this model. In the near-field region of primary interest for
walking, all three models are quantitatively similar with a maximum relative error of
around 20% as shown in figures 4.3(e) and (f). Moreover, as shown in figure 4.3(f), the
relative height difference at the impact location between the waves of Moláček and
Bush [85] model and Tadrist et al. [86] model is sinusoidal due to the added phase shift
of θ+

F ≈ −4◦ in the Tadrist et al. [86] model for the chosen parameters in figure 4.3,
and the relative height difference at the impact location between the superwalker wave
and that of Tadrist et al. [86] reveals the added 20 Hz wave in the superwalker wave
field. Overall these results suggest that the wave fields observed for two-frequency and
single-frequency driving remain very similar, an observation that we made qualitatively
from experimental images of superwalkers’ wave field in Chapter 3. We present results
using our new two-frequency model, but note that results using either the Moláček and
Bush [85] model or the Tadrist et al. [86] model are comparable; we provide details in
Section 4.5.4.

4.4 Numerical method and parameter values

As observed in experiments, solitary superwalkers walk at a constant speed in straight
line trajectories. Hence to simulate a superwalker, we proceed by restricting the domain
of horizontal motion to the x direction only. To solve this system numerically, we
discretise equations (2.1) and (2.11) using the Leap-frog method [97], a modified version
of the Euler method where the new horizontal and vertical positions are calculated
using the old velocities and then the new velocities are calculated using the new
positions. Converting the second order differential equation for the vertical dynamics
in equation (2.1) into a system of two first order ordinary differential equations and
discretising using the Leap-frog method we get,

zd(ti+1) = zd(ti) + ∆t vd(ti),

and
vd(ti+1) = vd(ti) + ∆t

m
[−m(g + γ(ti+1)) + FN(ti+1)] ,
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where vd(t) = żd(t), and

FN(ti+1) = H(−z̄d(ti+1)) max (−kz̄d(ti+1) − bv̄d(ti), 0) .

Here z̄d(ti+1) = zd(ti+1) − h(xd(ti+1), ti+1) and v̄d(ti) = vd(ti) − ∂h
∂t

(xd(ti+1), ti+1).
The total wave height beneath the droplet h(xd(ti+1), ti+1) is calculated by keeping the
waves from the last 100 impacts of the droplet and discarding the earlier ones, which
have typically decayed to below 10−5 of their initial amplitude. Similarly, the second
order equation (2.11) governing the horizontal dynamics takes the following form,

xd(ti+1) = xd(ti) + ∆t ud(ti),

and

ud(ti+1) = ud(ti) + ∆t
m

[
−Dtot(ti+1)ud(ti) − FN(ti+1)

∂h

∂x
(xd(ti+1), ti+1)

]
,

where ud(t) = ẋd(t) and Dtot(t) = Dmom(t) + Dair. The simulations were performed
with a fixed time step of ∆t = TF/100 and initialised with xd = 0 mm, ud = 1 mm/s,
vd = 0 mm/s and six different equally spaced vertical positions zd = (0, 2, 4, 6, 8, 10)R.
Multiple initial conditions were used so that different modes existing at the same
parameter values are likely to be captured.

The physical parameters were fixed to match our experiments in Chapter 3: ρ =
950 kg/m3, ν = 20 cSt, σ = 20.6 mN/m and f = 80 Hz. There are three adjustable
parameters in the model: the spring constant of the bath ks, the damping coefficient
of the bath b and the dimensionless contact drag coefficient C. The dimensionless
parameters corresponding to ks and b are K = ks/mω

2
d and B = b/mωd, where

ωd =
√
σ/ρR3 is the droplet’s characteristic internal vibration frequency [57]. For

walkers, appropriate values were determined by fitting to experimental data [57, 85] and
typical values are K = 0.59 and B = 0.48 [61], and C = 0.17 [85]. For superwalkers,
we also set C = 0.17, but adjust K and B to best fit the available experimental data.
The details of this fit are described in Appendix B. We use both constant values of
K = 0.70 and B = 0.60, as well as allowing the parameter K to vary with droplet
radius R according to

K = 1.06
√

Bo + 0.37 (4.27)

with a fixed B = 0.60, where Bo = ρgR2/σ is the Bond number of the droplet. We
refer the reader to Appendix B for more details on how this relationship was obtained.
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We note that these values give a good match with the our experiments; however,
the qualitative behaviour of the results remains unchanged for a range of K and B

values. The vertical bouncing dynamics are crucially important for the existence and
characteristics of superwalkers. To describe the vertical dynamics of superwalkers, we
use the bouncing modes notation introduced in Section 3.3. Moreover, to distinguish
the two different styles of (1, 2, 1) bouncing, (1, 2, 1)H and (1, 2, 1)L, we use the method
prescribed in Galeano-Rios et al. [68] and classify the droplets that have two peaks in
the normal force during contact as (1, 2, 1)L while those that have only one peak as
(1, 2, 1)H.

4.5 Emergence of superwalking

To illustrate the emergence of superwalking and its relationship with normal walking,
we begin by describing the dynamics of a relatively small normal walker with the
bath driven at a single frequency of f = 80 Hz and acceleration amplitude Γ80 = 3.8
(compared to a Faraday threshold ΓF 80 = 4.15). This results in a normal walker that
is bouncing in a (2, 1)H mode (see figure 4.4(a)). The (2, 1) bouncing mode is crucial
for walking as the droplet is bouncing at the same frequency as the frequency of the
subharmonic Faraday waves that emerge beyond the Faraday instability threshold.
Thus the droplet’s bouncing is in resonance with the damped Faraday waves it generates
and with which it interacts. For slightly larger droplets (see figure 4.4(b)), the same
(2, 1)H bouncing mode is maintained but the height of the bounces are reduced, while for
larger droplets still, the bounces reduce in height to such an extent that the droplet can
no longer leap over the second peak in the bath’s motion. For the chosen parameters,
this results in the droplet transitioning to a chaotic bouncing mode and no longer
walking (figure 4.4(c)).

In contrast, figure 4.4(d) shows the vertical dynamics of the same-sized droplet
as in figure 4.4(c) with the addition of the subharmonic frequency f/2 = 40 Hz and
amplitude Γ40 = 0.6 (compared to a Faraday threshold ΓF 40 = 1.22) at a phase
difference of ∆ϕ = 130◦. This additional subharmonic driving raises every second peak
and lowers the intermediate peaks in both the bath’s and the waves’ motion. This
allows the bigger droplet to clear every second peak in the bath’s motion and settle in
a (1, 2, 1)H bouncing mode, effectively identical to the (2, 1)H mode for a walker, and
results in the emergence of a superwalker. This jump from a walker to a superwalker
is shown schematically on the speed-size curve in figure 4.4(e).
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Figure 4.4 : Emergence of a superwalker. Panels (a)-(c): Vertical dynamics of a
walker of radius (a) R = 0.36 mm and (b) R = 0.40 mm bouncing in a (2, 1)H mode,
and a bigger non-walking droplet of radius (c) R = 0.54 mm bouncing in a chaotic
mode. Here the bath is driven at a single frequency of f = 80 Hz with acceleration
amplitude Γ80 = 3.8. Panel (d): Vertical dynamics of a superwalker of radius R =
0.54 mm bouncing in a (1, 2, 1)H mode. Here the bath is driven at f = 80 Hz and
f/2 = 40 Hz with phase difference ∆ϕ = 130◦ and acceleration amplitudes Γ80 = 3.8
and Γ40 = 0.6. In panels (a)-(d), the solid black curves indicate the bath motion,
B(t) = −(Γfg/Ω2) sin(Ωt) − (4Γf/2g/Ω2) sin(Ωt/2 + ∆ϕ), the coloured curves represent
the motion of the south pole of the droplet, zd(t) + B(t), and the filled blue regions
illustrate the motion of the liquid surface, h(xd, t) + B(t), all in the lab frame. The
grey regions indicate times at which the droplet is in contact with the bath. Panel (e)
shows a schematic of the speed-size characteristics for the droplets in panels (a)-(d).
Here the values of the parameters K and B are both fixed to 0.70 and 0.60 respectively.

4.5.1 Importance of the phase difference

The phase difference between the two driving frequencies controls the relative height
of the two peaks in one full cycle of the periodic bath motion, equivalently two up-and-
down cycles, and it is therefore a crucial parameter for the emergence of superwalking.
Figure 4.5(a) shows the walking speed u as a function of the phase difference ∆ϕ for a
fixed-sized droplet that is too large to walk with single-frequency driving (the largest
droplet shown in figure 4.4). The different vertical modes at different ∆ϕ are shown in
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(a) (b)

Figure 4.5 : Effect of phase difference on superwalking behaviour. (a) Walking speed u
as a function of the phase difference ∆ϕ for a superwalker of radius R = 0.54 mm with
Γ80 = 3.8 and Γ40 = 0.6. The solid curve represents results from numerical simulations
with colours indicating different bouncing modes: (1, 2, 1)L in green, (1, 2, 1)H in blue,
and chaotic in purple. The experimental results from figure 3.5(a) are shown by
points, with the style of marker indicating the bouncing modes: (1, 2, 2) are red circles,
(1, 2, 1)H are blue triangles, transition between a (1, 2, 1)H and a (1, 2, 2) mode are
grey squares, and chaotic are purple asterisks. The dashed curve indicates the height
difference ∆B between consecutive peaks in one period of the bath motion. The data
to the right of the vertical dotted line is repeated. Panel (b) shows bouncing modes
obtained for different values of ∆ϕ from panel (a). In this panel, the grey regions
indicate times at which the droplet is in contact with the bath. The parameters K
and B are fixed to 0.70 and 0.60 respectively.

figure 4.5(b). Depending on the phase difference, the droplet either bounces without
walking or it superwalks. In the bouncing regime, 20◦ ≲ ∆ϕ ≲ 90◦, the droplet’s
vertical dynamics appear chaotic. This can be attributed to the height difference
∆B between successive peaks in the bath’s motion being small (see dashed curve in
figure 4.5(a)) and hence the droplet behaves similarly to the single frequency case (see
figure 4.4(c)). Conversely, regions of high superwalking speed are associated with a
large height difference ∆B between the two peaks in the bath’s motion and a droplet
can easily settle in a (1, 2, 1) bouncing mode.

The predicted speeds from the numerical simulations agree well with experiments.
The chaotic mode in the bouncing regime and the (1, 2, 1)H bouncing mode in the
superwalking regime are also observed at parameter values comparable to those in
experiments. The numerically observed (1, 2, 1)L superwalkers were not reported in
experiments, instead (1, 2, 2) modes were observed at the corresponding parameter
values. However, as noted in Section 3.3, it is difficult to distinguish between a (1, 2, 1)L

and a (1, 2, 2) mode experimentally. Hence, it is not clear whether all the (1, 2, 2)
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superwalkers we reported in experiments are truly (1, 2, 2) superwalkers or if some may
in fact be (1, 2, 1)L superwalkers.

4.5.2 Speed-size characteristics of superwalking droplets

In the size range for which walkers exist, their walking speed typically increases with
their size [85]. For superwalkers, we observed two trends in experimental results
presented in Chapter 3: an ascending branch for smaller superwalkers where the speed
increases with size, followed by a descending branch for larger superwalkers where the
speed decreases with size. Figure 4.6 shows the speed-size characteristics of simulated
superwalkers at Γ80 = 3.8 and ∆ϕ = 130◦ for a range of Γ40 values.

We begin by focusing on the comparison for the ascending branch. Figure 4.6 shows
simulated speeds for constant K = 0.70 and B = 0.60 (grey curves) as used in the
simulations shown in figures 4.4 and 4.5, and K linearly increasing function of droplet
radius as in equation (4.27) with a fixed B = 0.60 (coloured curves). We refer the
reader to Appendix B for details on this linear relationship. Both the superwalking
speed and the bouncing mode are captured well for both combinations for small- to
moderate-sized superwalkers, and this is generally true for a broad range of K and B

values (see Appendix B). By allowing K to vary linearly with the droplet radius R
(coloured curve), we obtain a better fit for droplets on the ascending branch at relatively
high Γ40 values (see figure 4.6(e)). Focusing on the vertical dynamics for this fit when
Γ40 = 0.6 (see figure 4.6(a)), we find that superwalkers on this branch universally
impact the bath once every two up and down cycles of the bath’s motion. For the
smallest superwalkers, the amplitude of the bounces is chaotic. As the droplet size
increases, there is a transition to a (2, 4, 2) mode in a narrow region near R = 0.51 mm.
Beyond this, the droplets bounce in a (1, 2, 1)H mode for the remainder of the ascending
branch. This agrees well with our experimental results where chaotic and (1, 2, 1)H

bouncing modes were also observed on the ascending branch.
Simulations of larger droplets that lie on the descending branch in experiments

reveal that the model is unable to capture the larger superwalkers. We have explored
different constant values of K and B as well as varying K and B as a function of
R but were unable to obtain a better fit to the experimental superwalking speeds
on this branch than the relatively poor fits shown in figure 4.6. However, we note
that the bouncing modes predicted from simulations on the descending branch are
comparable with experimental observations. For the curves shown, the superwalkers
on the descending branch bounce typically bounces in a (1, 2, 1)L mode. Although only
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Figure 4.6 : Speed-size characteristics of superwalkers at Γ80 = 3.8 and ∆ϕ = 130◦. (a)
Comparison of the speed-size characteristics at Γ40 = 0.6 of droplets from numerical
simulations (solid curves) with the experimental results from figures 3.3 and 3.4 (black
circles with empty circles indicating coalescence) and the stroboscopic model of Oza
et al. [88] (dashed curve) presented in equation (2.15) with same parameter values as
used in figure 3.3. The black horizontal bars indicate where different bouncing modes
in experiments were observed. Panel (c), (d) and (e) show the speed-size characteristics
at Γ40 = 0, Γ40 = 0.3 and Γ40 = 1 respectively. In each panel the grey curve is for fixed
parameter values of K = 0.70 and B = 0.60, and multicoloured curve represents when
K is varied as a linear function of the droplet radius R according to equation (4.27)
with a fixed B = 0.60. The colours on this curve represent a chaotic bouncing mode in
purple, (2, 4, 2) mode in yellow, (1, 2, 1)H mode in blue, (1, 2, 1)L mode in green and
(1, 2, 2) mode in red. Termination of the solid curves indicate coalescence. The typical
bouncing modes from panel (a) at different droplet radii are shown in panel (b). In this
panel, the grey regions indicate times at which the droplet is in contact with the bath.
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the (1, 2, 2) mode was reported in experiments, as previously mentioned, (1, 2, 1)L and
(1, 2, 2) are similar and have been difficult to distinguish in experiments.

4.5.3 Dynamics in the acceleration amplitudes parameter space

By fixing the phase difference ∆ϕ and the droplet radius R, we can explore the
vertical and horizontal dynamics of a droplet in the parameter space formed by the two
acceleration amplitudes Γ80 and Γ40. We choose a droplet radius of R = 0.60 mm and a
phase difference of ∆ϕ = 130◦ to compare the results from numerical simulations with
our experiments. Figure 4.7(a) shows the region of parameter space where bouncing
(lighter shades) and superwalking (darker shades) are observed as well as the bouncing
modes (different colours) observed in those regions. Regions of bouncing (empty
circles) and superwalking (filled circles) that were identified in our experiments are
also shown. We find an excellent agreement in the transition boundary from bouncing
to superwalking. Moreover, we identify that the superwalking region is dominated by
the (1, 2, 1) bouncing mode with a (1, 2, 1)L mode when Γ40 is small and a (1, 2, 1)H

mode when Γ40 is large. In contrast, the bouncing mode is nearly independent of Γ80

at a fixed Γ40 except at relatively high Γ80 values.
To understand how the superwalking speed u changes as a function of Γ40, we show

a slice of the (Γ80,Γ40) parameter space at Γ80 = 3.8 in figure 4.7(b) with corresponding
bouncing modes in figure 4.7(c). We find that the walking speed is initially zero for all
Γ40 ≲ 0.3 before increasing rapidly with Γ40 to a peak value near Γ40 = 0.7 and then
marginally decreasing. This illustrates the rather abrupt rise in walking speed that
occurs once the asymmetry between the heights of succeeding peaks in the bath’s and
waves’ motion is sufficient. Comparison of this numerically simulated walking speed
u versus acceleration amplitude Γ40 curve with that obtained from our experiments
for a droplet radius of R = (0.63 ± 0.03) mm, shows good agreement highlighting the
success of the present model for small- to moderate-sized superwalkers.

4.5.4 Comparison of different droplet models

Our current model works well for small- to moderate-sized droplets but does not
capture the superwalking behaviour of large droplets. In an attempt to capture the
large superwalkers, we have explored superwalkers using alternative models for the
vertical dynamics, the wave field generated, and adding droplet deformations to the
model presented in this chapter. Comparison of these models with the model presented
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Figure 4.7 : Superwalking behaviour in the (Γ80,Γ40) parameter space. (a) Bouncing
modes shown as different colours for a droplet of radius R = 0.60 mm in the (Γ80,Γ40)
parameter space with multiple colours at the same (Γ80,Γ40) values indicating multiple
bouncing modes that were observed at the same (Γ80,Γ40) values. The lighter shade of
each colour indicates bouncing and the darker shade is where superwalking is observed
with walking speed indicated by dotted constant speed contours in mm/s. The markers
indicate bouncing (empty circles) and superwalking (filled circles) for a droplet of
radius R = (0.60 ± 0.05) mm from our experimental results presented in figure 3.6.
(b) A vertical slice of the parameter space in panel (a) (solid line) showing walking
speed u as a function of Γ40 at a fixed Γ80 = 3.8. The solid curve is the result from
simulations with colours indicating bouncing modes and the filled black markers are
the experimental walking speeds for a droplet of radius R = (0.63 ± 0.03) mm. The
grey shaded region indicates the jump in walking speed for this droplet when Γ40 is
appreciable. The different bouncing modes at different Γ40 values are shown in panel
(c) with the grey regions in this panel indicating contact with the bath. The phase
difference is fixed to ∆ϕ = 130◦. The parameters K and B are fixed to 0.70 and 0.60
respectively.

in this paper and the experimental results for a typical speed-size curve of superwalkers
is presented in figure 4.8.
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Alternative vertical spring models Alternative wave field models Added droplet deformations

(a) (c) (e)
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Figure 4.8 : Comparison of the speed-size characteristics of different models at Γ80 = 3.8,
Γ40 = 0.6 and ∆ϕ = 130◦. In each panel, the black circles are experimental results,
grey curves are the results from figure 4.6(a) using the model presented in this paper
and the coloured curves are results from different models stated below with the colour
indicating bouncing modes using the same conventions as in figure 4.6. Termination of
the solid curves indicate coalescence. Results of using two alternative vertical spring
models, a simple linear spring model and the logarithmic spring model of Moláček and
Bush [57], are shown in (a) and (b), respectively. Results obtained using a wave field
from the model of Moláček and Bush [85] and Tadrist et al. [86] are shown in (c) and
(d), respectively. Results obtained by adding droplet deformation based on Blanchette
[75] and Gilet et al. [76] are shown in (e) and (f), respectively. For the grey curves and
the coloured curves in all panels except (b), the linear spring model was used for the
vertical dynamics with the parameters K defined according to equation (4.27) and a
fixed B = 0.60.

Apart from the linear spring model used in this work, two alternative spring models
for the vertical dynamics of a bouncing droplet were presented by Moláček and Bush
[57]: (i) a simple linear spring model that does not restrict the normal force to be
positive i.e., without the maximum condition in equation (2.3) (see equation (2.2)),
and (ii) a logarithmic spring model, which can be implemented by replacing equation
(2.1) with equation (2.4) when the droplet is in contact with the bath, and using,
mz̈d = −m[g + γ(t)], when the droplet is in the air. We fixed the parameter values
in the logarithmic spring model to C1 = 2, C2 = 12.5 and C3 = 1.4 which are typical
values used for walkers [57]. Coupling these vertical dynamics models with the wave
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field and the horizontal dynamics used in this chapter, we obtain the speed-size curves
presented in figures 4.8(a) and (b). Both these models capture the qualitative features
on the ascending branch but overpredict the walking speeds. Moreover, they do not
capture the superwalking behaviour of larger droplets.

Using the wave field of a walker from the Moláček and Bush [85] model presented
in equation (2.8) and the Tadrist et al. [86] model presented in equation (2.10) in place
of the superwalker wave field that was used in this work, we obtain the speed-size
curves shown in figures 4.8(c) and (d). These curves also show good match with the
experiments on the ascending branch. We note that for a droplet in a (1, 2, 1)H bouncing
mode, the subsequent bounces would occur one Faraday period after the initial impact.
At this time, there is approximately a 10% difference in the amplitudes between the
three models, and a slightly greater difference in the gradients (see figure 4.3). This
would suggest a comparable difference in the walking speeds. However, although in
figure 4.8(c), the peak of the speed-size curve from the wave model of Moláček and
Bush [85] only goes up to approximately 17 mm/s for the present choice of K and
B values, we obtain a better fit to the experimental results by alternate choices of
parameters K and B. Hence by tuning the K and B values and using the wave model
of Moláček and Bush [85], we can obtain good fit to the experimental data which is
comparable to the fit obtained from the superwalker wave model. Speed-size curve
from the wave model of Tadrist et al. [86] is identical to the curve from the superwalker
wave model on the ascending branch. On the descending branch, we see that lower
speeds are obtained from the Tadrist et al. [86] model compared to the superwalker
wave field. This shows that the added 20 Hz waves seems to slightly speed up larger
droplets on the descending branch in (1, 2, 1)L bouncing mode.

Finally, to account for droplet deformations, we couple the droplet deformation
models of Blanchette [75] (see equation (2.6)) and Gilet et al. [76] (see equation (2.7))
presented in Section 2.3 to the theoretical model presented in this chapter. We choose
the parameters for these models as stated in Section 2.3. Coupling these droplet
deformation models to the theoretical model presented in this chapter results in the
speed-size curves shown in figures 4.8(e) and (f). We see that the model of Gilet et al.
[76] seems to have an insignificant effect on the speed-size characteristics with the
curves completely overlapping each other. The model of Blanchette [75] increases the
walking speed of droplets in a small neighbourhood around R = 0.7 mm but the model
is still unable to capture the large superwalkers.
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4.6 Discussion and conclusion

We have studied the dynamics of bouncing droplets on a vibrating liquid bath under
two-frequency driving using the theoretical model of Moláček and Bush [57, 85] and
a new model for the wave field to understand the emergence of superwalkers. We
have shown that two-frequency driving at f and f/2 with an appropriately chosen
phase difference ∆ϕ lifts every second peak and lowers the intermediate peaks in the
bath’s motion. This allows larger droplets to bounce in a resonant (1, 2, 1) mode
where they can efficiently excite damped subharmonic Faraday waves that enable them
to superwalk. We note that superwalking would not be expected for two arbitrary
frequency combinations, as the lowering of every second peak is crucial for them to
remain in a (1, 2, 1) mode. For example, for two frequency driving at f = 80 Hz and
4f/5 = 64 Hz, Sampara and Gilet [92] reported chaotic bouncing modes with irregular
walking at typical speeds of only 5 mm/s.

We have shown that the phase difference ∆ϕ plays a crucial role in the dynamics
of superwalking droplets because it controls the relative amplitudes of two succeeding
peaks in one full cycle of the bath’s motion. Fast superwalking occurs for phase
differences between 130◦ and 180◦ where there is a larger difference between these
amplitudes, while phase differences around 45◦, where the amplitude difference between
succeeding peaks is small, correspond to stationary bouncing or coalescence.

On comparing the speed-size characteristics of simulated superwalkers with the
experimental results, we find excellent agreement on the ascending branch, with
(1, 2, 1)H superwalkers primarily observed. These observations also explain the good
agreement noted in Chapter 3 between superwalking speeds obtained in experiments
and those predicted using the stroboscopic model of Oza et al. [88] (dashed curve in
figure 4.6(a)). The latter is a reduced form of the full Moláček and Bush [57, 85] model
predicated on a (2, 1)H bouncing mode and our two-frequency model would reduce to
essentially the same model for such modes.

The superwalking speed of larger superwalkers is not captured well by the current
model. This suggests that the model does not include the fundamental mechanism that
allows the largest superwalkers to walk, and even exist. Indeed, we noted in Chapter 3
that the largest superwalkers on the descending branch undergo significant internal
deformations [53]. We incorporated deformation of the droplets by modelling them
as a vertical spring following Blanchette [75] and Gilet et al. [76], and find this to
have a limited effect on the speed-size curve. Using the nonlinear logarithmic spring
model of Moláček and Bush [85] for the vertical dynamics resulted in no better success.
Another observation made in Chapter 3 was that larger superwalkers have a prolonged
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contact time with the bath. This prolonged contact time, potentially in combination
with internal deformation, may change the wave field in the vicinity of the droplet and
the long time approximation of the standing wave field in equation (4.26) may break
down. Perhaps a more refined modelling of the system that incorporates the detailed
contact interaction between the droplet and the bath, the wave evolution and droplet
deformations might be required to capture the behaviour of these larger superwalkers.





Chapter 5

Stop-and-go motion (SGM) of
superwalkers

In this chapter, we explore a novel behaviour exhibited by superwalkers that we call
stop-and-go motion (SGM). In this phenomenon, the droplet cycles periodically between
pure bouncing (stop) and superwalking (go) resulting in a new type of locomotion in the
system of walking droplets. We present the experimental observations and investigate
the SGM numerically. Different types of SGM such as back-and-forth, forth-and-forth
and random walk-like motion are observed.

The experimental observation of SGM presented in this chapter is based on the
following published paper:

R. N. Valani, A. C. Slim and T. Simula, Superwalking Droplets, Physical Review
Letters 123 024503 (2019).

5.1 Introduction

Intermittent locomotion where organisms alternate between active propulsion and
passive phases is frequently encountered in the natural world [98–100]. Examples
include unicellular organisms such as ciliates, insect larvae and adults, reptiles, birds
and mammals. Terrestrial organisms that exhibit intermittent locomotion typically
come to a complete stop during the passive phase, but organisms in air or water may
continue to glide forward during the passive phase resulting into a continuous variable
speed motion [98]. Intermittent locomotion has also been identified in inanimate
self-propelled particles such as microswimmers powered by chemical activity where

https://doi.org/10.1103/PhysRevLett.123.024503
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self-interaction of the swimmer with its long-lived chemical wake results in intermittent
locomotion [101]. In this chapter, we show that intermittent locomotion can also
be realised in the system of superwalking droplets when the two driving frequencies
are slightly detuned giving rise to a stop-and-go motion (SGM). We present the
experimental observation and explore this SGM numerically using the theoretical
model for superwalkers established in Chapter 4.

5.2 SGM: experimental observation

At single frequency driving with amplitude Γf and frequency f , a given size walker has
a fixed walking speed. Conversely, for a given size superwalker driven at two frequencies
f and f/2 with fixed acceleration amplitudes Γf and Γf/2, the droplet can have a
range of walking speeds as a function of the phase difference ∆ϕ. Depending on this
∆ϕ, the droplet can either be in the superwalking, pure bouncing or the coalescence
regime. Smaller superwalkers either superwalk or bounce depending on ∆ϕ while larger
superwalkers can coalesce as well for a band of ∆ϕ values (see figure 3.5). By slightly
detuning the two driving frequencies to f and f/2 + ϵ, the driving acceleration of the
bath takes the form

γ(t) = Γfg sin(2πft) + Γf/2+ϵg sin(πft+ ∆ϕ(t)),

where ∆ϕ(t) = 2πϵt, with ϵ being the amount of detuning. For 2ϵ/f ≪ 1, this form
of the driving can be well approximated as driving the bath at frequencies f and f/2
with a slowly varying phase difference ∆ϕ(t).

An interesting dynamical phenomenon is observed in experiments with superwalkers
when the driving frequencies are slightly detuned, for example with f = 80 Hz and
f/2 + ϵ = 39.5 Hz driving (for a video see Supplemental Video S10 of [53]). We observe
that the droplets perform a stop-and-go motion (SGM) in which the droplets walk for
a while, then stop abruptly, then walk again, and so on (see figure 5.1). Such motion
arises because the small value of 2ϵ/f results in a continuously varying phase difference
∆ϕ(t) that causes the droplet to periodically traverse the pure bouncing (stop) and
superwalking (go) regimes in speed versus phase difference space (see figure 3.5). SGM
is typically observed in experiments for small- to moderate-sized superwalkers for which
the colaescence regime in figure 3.5 does not exist or it exists for a narrow range of ∆ϕ
values, so even if a coalescence regime is encountered, coalescence may be avoided if
such a regime is traversed quickly enough.
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Figure 5.1 : Stop-and-go motion (SGM) of superwalking droplets. Left panel: In
experiments with superwalking droplets, if the two driving frequencies f and f/2 are
slightly detuned, then it results in a SGM for small- to moderate- sized superwalkers
where a droplet alternates periodically between pure bouncing (stop) and superwalking
(go) modes of motion. Right panel: Schematic of a position-time graph of a droplet
undergoing SGM.

5.3 Theoretical model

To model the SGM for superwalking droplets, we use the theoretical model for su-
perwalkers developed in Chapter 4. We assume that the detuning ϵ ≪ f/2 which
ensures that the phase difference evolution ∆ϕ(t) is slow so that the evolution can
be approximated as a “quasi-static” process and we can use the theoretical model
developed in Chapter 4 for a constant phase difference. Due to the evolving phase
difference ∆ϕ(t), the decay rates of waves Re(δ+

F 40(t)) and Re(δ+
F 20(t)), the diffusion

coefficients D40(t) and D20(t) and the phase shifts θ+
F 40(t) and θ+

F 20(t) will all vary with
time. Moreover, the prefactors,

Ap
40 =

√
2π

Ω3D40

k2
F 40
πρ

and Ap
20 =

√
2π

Ω3D20

k2
F 20
πρ

,

of the amplitudes of the wave generated by a superwalker presented in equation (4.25)
are now also functions of time. Hence, they are replaced by a weighted average over
the contact duration as follows:
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We numerically simulate superwalkers using the same numerical scheme as described
in Section 4.4. The bath is driven with acceleration

γ(t) = Γfg sin(2πft) + Γf/2g sin(πft+ ∆ϕ(t)),

with a fixed f = 80 Hz, f/2 = 40 Hz, Γf = 3.8, Γf/2 = 0.6 and ∆ϕ(t) = 2πϵt. The
horizontal motion in simulations was restricted to x direction only. The simulations
were performed with a time step of ∆t = TF/100 and initialised with xd = 0 mm,
ud = 1 mm/s, vd = 0 mm/s and three different equally spaced vertical positions
zd = (0, 5, 10)R.

5.4 Emergence of SGM

We start by presenting results for a typical detuning of ϵ = −0.5 Hz and a typical
droplet of radius R = 0.54 mm for which the speed versus phase difference curve was
presented in figure 4.5 and also shown in figure 5.2. We observe a SGM in simulations
for these parameters and the walking speed and bouncing modes for one cycle of the
SGM are shown in figures 5.2(a) and (c) respectively. By comparing in figure 5.2 the
speed for a constant phase difference (coloured curve) with that obtained from an
evolving phase difference (black curve) in the SGM, we see that the ‘stop’ phase in the
SGM occurs in the bouncing regime while the high superwalking speed in the ‘go’ phase
occurs in the superwalking regime. Moreover, the peak speed obtained in one cycle
of the SGM is shifted from the peak that occurs for simulations at a constant phase
difference presumably due to the inertia of the droplet. The time taken to traverse
one cycle of the speed versus phase difference diagram i.e. ∆ϕ = 0◦ to 180◦ is given
by T = 1/2|ϵ| = 1 s. Moreover, for the chosen detuning of ϵ = −0.5 Hz < 0, the phase
differences in figure 5.2(a) are traversed from right to left i.e., from ∆ϕ = 180◦ to
∆ϕ = 0◦. We note that from figure 5.2(b), the bath motion at ∆ϕ = 180◦ is same as
∆ϕ = 0◦ but shifted. Hence for constant phase difference simulations, we get the same
results for ∆ϕ = 0◦ and ∆ϕ = 180◦.

Observing the bouncing modes for one cycle of the SGM we see that the droplet
is continuously trying to adjust to the bouncing modes that are realised at different
phase differences. We find that in the accelerating phase of the SGM the droplet is in
a (1, 2, 1)L bouncing mode while near the peak walking speed in the SGM, the droplet
transitions to a (1, 2, 1)H bouncing mode. Once the droplet enters the bouncing regime,
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Bouncing regime

Superwalking regime

Figure 5.2 : SGM in numerical simulations for a droplet of radius R = 0.54 mm with
detuning ϵ = −0.5 Hz. (a) Walking speed u as a function of the phase difference ∆ϕ
from constant phase difference superwalker simulations from Chapter 4 (coloured curve)
and evolving phase difference SGM simulations (black curve). The different colours
represent the bouncing modes as in figure 4.5. The data from the coloured curve after
the vertical dashed red line is repeated. The bouncing regime (grey region) and the
superwalking regime are also shown. A positive detuning corresponds to traversing the
phase differences from left to right while a negative detuning corresponds to traversal in
the opposite direction. Panel (b) shows the bath motion for different phase difference
∆ϕ. Panel (c) shows the vertical dynamics of the droplet for one cycle of the SGM
with ∆ϕ(t) = 2πϵt. The black solid curve is the bath motion, filled blue region is the
wave motion and the solid blue curve is the motion of the south pole of the droplet.
The coloured background shows the walking speed.

it loses resonance to the (1, 2, 1)H bouncing and transitions to a chaotic bouncing mode
before accelerating again to start the next cycle.
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Random walk-like motion Back-and-forth motion

Forth-and-forth motion No walking

Figure 5.3 : Various types of SGM in the (ϵ, R) parameter space. Four distinct types
of dynamics are observed in the (ϵ, R) parameter space: (i) random walk-like motion
(red circles) where the droplet performs SGM with erratic switches in direction, (ii)
back-and-forth (green squares) SGM where the droplet switches direction after each
cycle, (iii) forth-and-forth (purple triangles) SGM where the droplet moves in the
same direction after each cycle and (iv) No walking (blue triangles) where the droplet
bounces but does not propel horizontally. We also observe that large droplets coalesce
(yellow asterisks).

5.4.1 Parameter space exploration of the SGM

We have simulated droplets in the parameter space formed by the detuning ϵ and the
droplet radius R to explore the SGM. The parameter space plot along with a schematic
of the different behaviours observed is shown in figure 5.3. We observe four qualitatively
different types of dynamics in the (ϵ, R) parameter space: (i) random walk-like SGM,
(ii) back-and-forth SGM, (iii) forth-and-forth SGM and (iv) no walking.

In the random walk-like SGM, the droplet appears to switch chaotically between
forward and backward superwalking after each cycle of the SGM. Moreover, the distance
travelled in each cycle of the SGM varies significantly. A typical trajectory of this
motion is shown in figures 5.4(a) and (b). In back-and-forth SGM, intriguingly, the
droplet switches its walking direction after each cycle of the SGM. A typical trajectory
of this motion is shown in figures 5.4(c) and (d). Conversely, in forth-and-forth SGM,
the droplet maintains the same walking direction after each cycle of the SGM. A typical
trajectory of this motion is shown in figures 5.4(e) and (f). We have observed random
walk-like SGM and back-and-forth SGM frequently in experiments while forth-and-forth
SGM has only been observed occasionally.
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 5.4 : Trajectories showing the three different types of SGM. Position-time and
velocity-time plots for (a,b) random walk-like SGM for R = 0.45 mm and ϵ = −0.2 Hz,
(c,d) back-and-forth SGM for R = 0.55 mm and ϵ = −1 Hz and (e,f) forth-and-forth
SGM for R = 0.6 mm and ϵ = 0.4 Hz.

In the parameter space diagram in figure 5.3 we see that relatively small droplets
cannot walk under this prescribed driving or undergo random walk-like SGM for small
negative detuning. Medium sized droplets show a wide range of stop-and-go behaviour
including back-and-forth and forth-and-forth motion. Large droplets cease to perform
walking and very large droplets coalesce with the bath and cannot even bounce.

5.4.2 Back-and-forth SGM

We have observed back-and-forth SGM in experiments for single and multiple super-
walkers. To understand the emergence of this motion, we analyse the vertical dynamics
and the horizontal force, FH(t) = −FN (t)∇h(xd, t), acting on a droplet for the duration
of one cycle of the back-and-forth motion during which the droplet reverses its walking
direction. Figures 5.5(a) and (b) show respectively the vertical dynamics of the droplet
and the horizontal force FH acting on the droplet during one back-and-forth cycle
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(a)

(b)

(c) (e)

(d)

Bouncing regime

Superwalking regime

(c) (d)

Figure 5.5 : Back-and-forth SGM of a superwalker for R = 0.54 mm and ϵ = −1 Hz.
(a) Vertical dynamics and (b) the horizontal force FH acting on the droplet for one
cycle of the back-and-forth SGM. Frames (c) and (d) show, respectively, snapshots
of the wave field (blue curve) and the location of the south pole of the droplet (red
circle) just when the droplet is about to contact the wave field before and after the
droplet reverses its walking direction. The snapshots are taken at the times indicated
by the vertical dashed lines in panels (a) and (b). Panel (e) shows the speed versus
phase difference for constant phase difference simulations from Chapter 4 and the
evolving phase difference SGM simulations. The different colours represent the different
bouncing modes as in figure 4.5. The data from the coloured curve after the vertical
dashed red line is repeated.

along with the corresponding superwalking speed in figure 5.5(e). We find that at the
start of the cycle at a phase difference ∆ϕ(t) = 180◦, the two peaks in one cycle of
the bath motion are asymmetrical in amplitude with, say, the right peak being the
smaller one and the left peak being the larger one. As the phase difference evolves, the
amplitudes of the two peaks become similar near ∆ϕ(t) = 45◦ after which the peaks
again become asymmetrical in amplitude with the left peak becoming the smaller one
and the right peak becoming the larger one (see figures 5.5(a) and 5.2(b)). During this
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exchange in position of the bigger and smaller peaks, the droplet undergoes a change in
the bouncing phase where it contacts the underlying wave field at the opposite phase
of the oscillation for the next SGM cycle and this results in a kick in the opposite
direction from its direction of motion. Subsequent persistent kicks in the direction
opposite to its walking direction eventually drives the droplet to reverse its walking
direction. Figures 5.5(c) and (d) show, respectively, snapshots of the droplet just when
it contacts the underlying wave field before and after it reverses the walking direction.
As it can be seen that the droplet contacts the underlying waves at opposite phase
resulting in the droplet landing on opposite sides of the peak and the corresponding
horizontal forces acting in opposite directions. This change in the direction of the kicks
is also evident from the evolution of the horizontal force FH in figure 5.5(b).

5.5 Discussion and conclusion

We have observed a new type of intermittent locomotion, SGM, that emerges when a
bath is driven simultaneously at frequencies f and f/2 + ϵ with a small detuning ϵ. In
both experiments and simulations, we observe a SGM where the droplet periodically
traverses the bouncing and the superwalking regimes in the speed versus phase difference
space. This SGM is a complex nonlinear phenomenon with multiple timescales such as
the bouncing time scale of the droplet, the memory time scale associated with decay
of Faraday waves, the longer time scale introduced by the detuning and the inherent
time scale of the droplet dynamics.

By doing numerical simulations in the (ϵ, R) parameter space, we find three different
types of SGM. These include uncorrelated SGM where superwalking direction and
the distance travelled appear to vary chaotically, and correlated SGM, where either
a back-and-forth or a forth-and-forth SGM is observed. In experiments, the random
walk-like motion and the back-and-forth motion has been observed frequently while
the forth-and-forth motion has only been observed occasionally.

Investigating this back-and-forth motion in detail reveals that the switch in the
walking direction that occurs every cycle is due to the droplet changing the bouncing
phase and impacting the underlying oscillating wave field at the opposite phase. This
results in the wave field imparting horizontal force on the droplet in the opposite
direction to its motion, which eventually reverses the direction of motion. We note
that such reversals of motion due to reversal of the bouncing phase have also been
demonstrated in the system of single-frequency driven walkers where a pulse in the



86 Stop-and-go motion (SGM) of superwalkers

driving signal was engineered to change the bouncing phase of the droplet (see figure 1
of [102]). Here we see this behaviour arising as an emergent phenomenon.

The form of the detuning we have considered here results in a phase difference
evolving linearly in time ∆ϕ(t) = 2πϵt, but we can engineer any time-dependent
function ∆ϕ(t) that slowly varies in time, allowing an exploration of the various
different types of locomotion.



Part II

Generalised Pilot-Wave Dynamics





Chapter 6

Pilot-wave dynamics of two
droplets

In this chapter, we take the stroboscopic pilot-wave model of Oza et al. [88] and investi-
gate the dynamics of two interacting identical, in-phase bouncing droplets theoretically
and numerically. A remarkably rich range of behaviours is encountered as a function
of the two system parameters, the ratio of inertia to drag and the ratio of wave forcing
to drag. We explore these rich behaviours and the bifurcations between them through
analytic and numerical linear stability analyses and through fully nonlinear numerical
simulations.

This chapter is based on the following published paper:

R. N. Valani and A. C. Slim, Pilot-wave dynamics of two identical, in-phase bouncing
droplets, Chaos 28, 096114 (2018).

6.1 Introduction

Interactions of multiple, single-frequency driven bouncing and walking droplets are
dominated by their underlying wave fields and result in rich static and dynamical be-
haviours. Multiple bouncing droplets can form bound states where the droplets remain
stationary at discrete distances apart [6] and many bouncing droplets interactions give
rise to various lattice structures [7, 8]. Two walkers can interact to form dynamical
bound states such as parallel walkers [6], promenading pairs that oscillate towards
and away from one-another while parallel walking [6, 9, 10], orbiting pairs [6, 10, 11]
and ratcheting pairs [12, 13]. Theoretical studies on interactions of multiple walkers

https://doi.org/10.1063/1.5032128
https://doi.org/10.1063/1.5032128
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have focused on explaining these particular modes observed in experiments. A study
of the full range of dynamics of the two-droplet system as a function of the different
parameters has been lacking.

In this chapter we take the stroboscopic model of Oza et al. [88] that was described
in Section 2.6 as a theoretical pilot-wave model and explore the behaviours observed
for a simple extension from one walker to two identical, in-phase bouncing and walking
droplets. Although the Oza et al. [88] model is predicated on a (2, 1)H bouncing mode
for single-frequency driven walkers, it was shown in Chapters 3 and 4 that the (1, 2, 1)H

bouncing mode of two-frequency driven superwalkers is effectively similar to the (2, 1)H

bouncing mode for walkers. Hence, we expect this model to potentially capture the
dynamic states of two identical superwalkers as well. However, we note that inertia
dominated superwalkers primarily interact via short range droplet-droplet interactions
which this model fails to capture as it does not incorporate finite size effects of the
droplet. Hence, aspects of the bound states of two superwalkers that are dominated
by droplet-droplet interactions may not be captured. We also note the two simplified
assumptions of the model that may break down for both walkers and superwalkers when
extending this model to two interacting droplets: (i) this model neglects the transient
wave and assumes a zeroth order J0 Bessel function standing wave field generated by
the droplet. This structure of the wave field provides a good approximation in the near-
field (within two Faraday wavelengths) but overpredicts the wave in the far-field (see
figure 2.5 and figure 9 of Milewski et al. [62]). (ii) The model also assumes a constant
impact phase for the droplet. This assumption breaks down for interacting walkers
and thus far this has only been addressed using an empirical fix for the particular
system being considered [89, 10, 61]. For analytical tractability, we use this simple
extension, however, we show that despite the simplifying assumptions of constant
impact phase and the structure of the wave field, we are able to capture two-droplet
states that are observed in experiments including parallel walkers, promenading pairs
and orbiting pairs. Moreover, by exploring the dynamics of two droplets using this
model in a generalised pilot-wave framework i.e. stepping well outside the parameter
regimes accessible in experiments, we also uncover a rich array of more exotic dynamics
such as regularly and chaotically switching walkers, wandering walkers and intriguing
closed-loop trajectories in regions of parameter space where wave forcing and/or inertia
play a significant role.
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6.2 Theoretical formulation

We start by extending the trajectory equation of a single walker developed by Oza et al.
[88] and presented in equation (2.15), to two interacting walkers. The dimensionless
positions of the droplets in the horizontal plane are x1 = (x1, y1) and x2 = (x2, y2).
The horizontal motion is described by the pair of integro-differential equations

κẍi + ẋi = −β ∇h(x, t)|x=xi(t) , (6.1)

for i = 1, 2, where the dimensionless height of the interface

h(x, t) =
∫ t

−∞
J0(|x − x1(s)|)e−(t−s) ds+

∫ t

−∞
J0(|x − x2(s)|)e−(t−s) ds, (6.2)

and dots indicate differentiation with respect to dimensionless time t. The left hand
side of equation (6.1) comprises an inertial term κẍi and an effective drag term ẋi.
The right hand side of the equation captures the forcing of the droplets by the waves
they have generated. Each impact generates a wave modelled as an axisymmetric
Bessel function J0(|x|) centred at the point of impact and decaying exponentially in
time. Since this model takes into account the waves generated from all the previous
impacts, the shape of the interface is calculated through integration of waves generated
from all the previous bounces of both droplets. At each impact, the droplet receives a
horizontal kick proportional to the gradient of the interface at that point.

For the details of the non-dimensionalisation, we refer the reader to Section 2.6.
However, we note that the length scale has been chosen to be the inverse Faraday
wavenumber 1/kF and the time scale has been chosen to be TF Me, where TF is the
Faraday period and Me is the memory parameter which represents the proximity to the
Faraday threshold [88]. In these units, the Faraday wavelength is 2π and the Faraday
period is 1/Me. For the parameter space under consideration, this memory typically
varies in the range 1 ≲ Me ≲ 20. The dimensionless parameters κ and β follow directly
from Section 2.6 and are referred to as the dimensionless mass and the memory force
coefficient respectively. We note that κβ ∼ Me and hence one can obtain curves in
the β-κ parameter space along which memory is constant. The parameters κ and β

may be usefully interpreted as the ratios of inertia to drag and wave forcing to drag
respectively. Thus for small κ, the droplets’ motion responds effectively immediately
to the wave forcing. For large κ, it responds more slowly and a more sustained forcing
is required to modify the motion. In such regimes, the droplets are likely to overshoot
their equilibria and oscillations are expected.
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This model can be extended to two identical out-of-phase bouncing droplets by
appropriately switching the signs of the wave forcing term on the right hand side of
equations (6.1) and (6.2) for the two droplets. Moreover, two droplets of different sizes
can be modelled by using different κ and β for each droplet. This study focus on the
dynamics of two identical, in-phase bouncing droplets.

We numerically integrate equations (6.1) using the Leap-Frog method [97], a
modified version of the Euler method where the new horizontal and vertical positions
of the droplet are calculated using the old velocities and then the new velocities are
calculated using the new positions. The dimensionless time step is fixed to ∆t = 2−6

unless stated otherwise. The details of the numerical method are provided in Appendix
C.

6.3 Parameter space description

We begin with a summary of the rich dynamics observed on varying β and κ. Figure 6.1
shows the behaviour at t = 1000 for droplets initiated at t = 0 as parallel walkers with
noise. Specifically, the initial positions were taken as x1 = (0, 0) and x2 = (D1(β), 0)
and the initial velocities as ẋ1 = (δ1,U1(β) + δ2) and ẋ2 = (δ3,U1(β) + δ4), where
D1(β) and U1(β) are the distance between the two droplets and the velocity of each
droplet in the parallel walking state (described in Section 6.6), and each δi is a random
perturbation uniformly selected between −0.1 and 0.1. For t < 0, the droplets were
assumed to be in the unperturbed parallel walking state. Simulations for κ ≤ 0.225
have been performed using a timestep of ∆t = 2−8 while ∆t = 2−6 was used for all
the other simulations because we find that the changes in the boundaries separating
different behaviours using a smaller timestep is not significant on the scale of the
parameter space plot.

For κ < 1, where drag exceeds inertia, a bifurcation from stationary states (yellow)
to walking states occurs at β = 2, as for a single droplet [88]. For κ > 1, where
inertia exceeds drag, the droplets are stationary for very small wave forcing β, before
starting to oscillate towards and away from one another about fixed positions for β
in a region below and very slightly above 2 (β ≲ 2.1). We term this latter behaviour
inline oscillations (blue). For β > 2, we observe a variety of walking motions. For
κ < 1 and moderate β, the droplets perform a parallel walk at constant velocity.
These states have been observed experimentally and are referred to as parallel walkers
(red) [6]. For larger β, the droplets oscillate, predominantly towards and away from one
another, while walking. These states have also been observed experimentally and have
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Stationary pair Inline oscillations Parallel walkers Oscillating walkers Lopsided walkers Back & forth walkers

Tight orbits

Chaotic switching

Regular switchingDiscrete turns

Wandering walkers

Closed trajectories

Figure 6.1 : Behaviours observed in the β-κ parameter space at t = 1000 from
simulations initiated at t = 0 as parallel walkers with noise. We explore the parameter
space region 0 < κ ≤ 3 and 0 < β ≤ 20 with resolution ∆κ = 0.025 and ∆β = 0.1.
Simulations for κ ≤ 0.225 have been performed using a time step of ∆t = 2−8 while
∆t = 2−6 was used for all the other simulations as the changes in the boundaries
separating the different regions by using a smaller time step are not significant on
this scale. In grey regions the droplets have become unbound. The coloured regions
correspond to the various states depicted in the surrounding trajectory plots. For
oscillating walkers (purple), discrete-turning walkers (green), wandering walkers (cyan),
and closed trajectories (pink), the darker shaded regions have non-switching oscillating
walkers and the lighter regions have regularly switching walkers. The intermediate
shade for oscillating walkers exhibit some form of chaotic switching. We note that the
back-and-forth walkers (beige) may only be transient behaviour as we find that in our
simulations, some of the back-and-forth walkers ultimately either settle into a tight
orbit (olive) or become unbound. The region between the faint dashed white curves
indicates where existing experimental setups may be able to perform experiments (see
also figure 7.3). The solid white curve is the transect along which Arbelaiz et al. [10]
observed oscillating walkers for in-phase bouncing droplets at the closest inter-droplet
distance D1.
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been referred to as promenading pairs [9, 10]. We refer to them as oscillating walkers
(dark purple) to simplify classification. Upon further increasing β, these oscillating
walkers tend to unbind. More intricate oscillating walkers such as regular switching
walkers (light purple) and chaotic switching walkers (intermediate purple) that are
reminiscent of promenading pair of superwalkers (see figure 3.11) are also observed.
Other exotic dynamics such as lopsided walkers (navy blue), back-and-forth walkers
(beige), discrete-turning walkers (green), continuously turning walkers (sky blue) and
closed trajectories (pink) are observed for larger β and κ. These various states are
explored in the next sections: stationary states in Section 6.4, inline oscillations in
Section 6.5, parallel walkers in Section 6.6, oscillating walkers in Section 6.7 and more
exotic, wandering states in Section 6.8. Despite the initial conditions being those of
parallel walkers, we also very occasionally observe the droplets binding into tight orbits
for large β and very small κ. We refer the reader to Oza et al. [89] for more details on
this state.

6.4 Stationary states

We begin by exploring stationary states. Consider two droplets a distance d apart. We
look for equilibrium states of the system such that the droplets remain stationary at
this distance. Substituting x1 = (0, 0) and x2 = (d, 0) into equation (6.1), we obtain
the constraint

J1(d) = 0. (6.3)

We denote the discrete solutions of this equation by d = Dn, where Dn is the nth zero
of the Bessel function J1(·). At these equilibrium distances, the second droplet sits
either at a trough (odd n) or a crest (even n) of the wave field generated by the first
droplet (J′

0(d) = −J1(d) = 0). We will focus on the first four distances D1 ≈ 3.83,
D2 ≈ 7.02, D3 ≈ 10.17 and D4 ≈ 13.32.

6.4.1 Linear stability analysis

To investigate the stability of these stationary states, we consider a general perturba-
tion to the droplets: x1 = (0, 0) + ϵ(x11(t), y11(t)) and x2 = (d, 0) + ϵ(x21(t), y21(t)).
Substituting these forms into equation (6.1) and linearizing the resulting equations, we
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obtain the matrix equation

Ẋ1

Ẏ1

Ẋ2

Ẏ2

 =


Ω O χ O
O Θ O O
χ O Ω O
O O O Θ




X1

Y1

X2

Y2

 , (6.4)

where

Xi =


xi1

ẋi1

Xi1

 , Yi =


yi1

ẏi1

Yi1

 ,
for i = 1, 2:

Ω = 1
2κ


0 2κ 0

β (1 + 2J′
1(d)) −2 −β

2κ 0 −2κ

 ,

χ = 1
κ


0 0 0
0 0 −βJ′

1(d)
0 0 0

 , Θ = 1
2κ


0 2κ 0
β −2 −β
2κ 0 −2κ

 ,

and O is the 3 × 3 matrix of zeroes. Derived variables Xi1 and Yi1 are given by

Xi1 =
∫ t

−∞
xi1(s)e−(t−s) ds, Yi1 =

∫ t

−∞
yi1(s)e−(t−s) ds.

The solutions of equation (6.4) are proportional to eλt, with the complex growth
rates λ given by the eigenvalues of the right-hand-side matrix. The characteristic
polynomial of this matrix factorises in a convenient manner as

det(λI − Θ)2 det(λI − Ω − χ) det(λI − Ω + χ) = 0,

where each of the sub-determinants corresponds to a distinct eigenmode of the system.
Thus,

det(λI − Θ) = λ3 + κ+ 1
κ

λ2 − β − 2
2κ λ,
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Figure 6.2 : Stationary pairs: Linear growth rates of perturbations Re(λ) as a function
of memory parameter β for droplets (a) the first stationary distance d = D1 apart and
(b) the second stationary distance d = D2 apart. Perturbation modes are distinguished
as transverse (red, solid curves), inline (blue, dotted curves) or chasing (yellow, dashed
curves). The vertical lines shows the β values at which the eigenvalues cross Re(λ) = 0.
The dimensionless mass κ = 0.5. (c) Stability diagram in the β-κ parameter space
for the first stationary distance d = D1. Region A is stable to any small perturbation.
Regions B and C are unstable to transverse and inline perturbations respectively.
Region D is unstable to both inline and transverse perturbations while Region E is
also unstable to chasing modes perturbations.

is the characteristic polynomial corresponding to perturbations perpendicular to the
line joining the droplets called the transverse mode,

Fi(λ) := det(λI − Ω + χ) = λ3 + κ+ 1
κ

λ2 − β(2J′
1(d) + 1) − 2

2κ λ− 2J′
1(d)β
κ

, (6.5)

corresponds to inline perturbations of the droplets towards or away from one other
called the inline mode and

det(λI − Ω − χ) = λ3 + κ+ 1
κ

λ2 − β(2J′
1(d) + 1) − 2

2κ λ,

corresponds to inline perturbations of the droplets in the same direction called the
chasing mode.

Figures 6.2(a) and (b) shows the growth rates as a function of the memory force
parameter β for the two smallest stationary distances at a fixed κ = 0.5. For d = D1,
when β < 2, the real parts of all the non-trivial eigenvalues are negative indicating
that the two-droplet system is stable for general small perturbations. When β ≥ 2, an
eigenvalue for each distinct mode becomes positive at different β values. Note that
there are also two zero eigenvalues, which correspond to invariants of the equilibrium
state.
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Transverse perturbations become unstable at β = 2 independent of κ. This bifurca-
tion value is identical to that for a single droplet’s bouncing-to-walking transition [88].
This is not a coincidence: for transverse perturbations, the order-ϵ forcing to each
droplet arises only from the droplet’s own wave field while the contribution from the
other droplet’s wave field is of higher order. Thus the linearised equations for the
two droplets decouple and reduce to those of a single droplet. The eigenvalues of the
transverse mode are purely real. At the onset of instability, parallel walkers emerge
if the droplets are perturbed in the same transverse direction, while orbiting states
emerge if the droplets are perturbed in the opposite transverse direction. The parallel
walking state will be explored in Section 6.6.

For the inline mode, a pair of complex conjugate eigenvalues become unstable at

βi
n =

(1
2 − J′

1(Dn)
(
κ− 1
κ+ 1

))−1
. (6.6)

At the onset of this instability, the droplets oscillate towards and away from one another
with angular frequency

ωn =
√

1
2κ(2 − β(2J′

1(Dn) + 1)).

These oscillations, termed inline oscillations, are discussed in Section 6.5.
For the chasing mode, the eigenvalues are purely real and an eigenvalue becomes

unstable at
βc

n = 2
2J′

1(Dn) + 1 ,

independent of κ. For d = D1, this corresponds to βc
1 ≈ 10.29. In this mode, the

droplets walk one behind another in the same direction at a constant speed. These
chasers are explored briefly in Section 6.9.

Figure 6.2(c) summarises the linear stability of stationary states at d = D1. There
are regions where only the walking or the inline oscillating mode is unstable while the
chasing mode bifurcation only takes place where both inline and transverse modes are
unstable. The bifurcations from stationary states to parallel walking and stationary
states to inline oscillations match with the states observed numerically in figure 6.1.

From figure 6.2(b) it is clear that at d = D2, one eigenvalue for inline perturbations
always has positive real part and therefore any perturbations will drive the system away
from the stationary state. Considering only the eigenvalues corresponding to inline
perturbations for distances D2n given in equation (6.5) and by invoking Descartes’ rule
of sign, we can deduce the existence of one positive root of this cubic equation. Thus
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Figure 6.3 : Inline oscillations: u-d phase plane at κ = 2 and (a) β = 1.5, (b) β = 1.6
and (c) β = 1.75. (a) At β = 1.5, both d = D1 and d = D3 are stable spirals (filled
black circles) while d = D2 is a saddle (black cross). (b) At β=1.6, d = D3 is still a
stable spiral while at d = D1, an unstable spiral (empty black circles) has emerged
with an enclosing limit cycle. (c) At β=1.75, limit cycles exist at both D1 and D3.
The two panels below the phase plane plot shows the distance between the droplets
as a function of time for the thick solid curve trajectories in the phase plane. For
β=1.75, panel (d) shows cross-sections of the wave field (blue curves) generated by the
droplets and droplet positions (grey circles) at different instants over one period of the
limit cycle at D1 and panel (e) shows the fast Fourier transform (FFT) of the distance
between the two droplets indicating that the oscillations are dominated by a single
frequency.

the equilibrium distances D2n are always unstable to inline perturbations, as expected
since one droplet is sitting on the crest of the other’s wave field at these distances and
small perturbations will result in kicks away from the equilibrium.
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6.5 Inline oscillations

In a sliver of parameter space with inertia exceeding drag, κ > 1, and small wave forcing
β ≲ 2.1, inline oscillations are observed with droplets oscillating towards and away
from one another (see figure 6.1). In experiments, inline oscillations have been observed
for walkers [61] and we have also observed them in experiments with superwalkers.
Here we explore the nature of the oscillations using our theoretical model.

The phase space for the one-dimensional inline motion of the droplets is two
dimensional with the velocity u(t) of the first drop and the distance d(t) between
the droplets sufficient to fully describe the system. The evolution of the phase-space
portrait with increasing wave forcing β at fixed κ = 2 is shown in figure 6.3. Note that,
from equation (6.6), the β value at which different distances Dn with n odd become
unstable are a function of κ. For 0 < κ < 1, the cascade of instability goes from
larger to smaller distances as β increases, while for κ > 1 it goes from smaller to larger
distances. For κ = 1, all the distances become unstable at the same value βi

n = 2. For
κ = 2, the onset of inline oscillations occurs at βi

1 = 1.577 for D1 and βi
3 = 1.715 for

D3. Thus at β = 1.5 (see figure 6.3(a)) there are stable spirals at D1 and D3 and a
saddle at the unstable distance D2. If the droplets are perturbed inline when placed
near a distance D1 or D3 apart, the oscillations will decay and the droplets will settle
back into the stationary distance. As the parameter β is increased beyond βi

1, the
stable spiral at D1 undergoes an apparent supercritical Hopf bifurcation and changes
into an unstable spiral with an encompassing limit cycle (see figure 6.3(b)). Now the
droplets either perform limit cycle oscillations corresponding to motion towards and
away from one another around D1 or settle into the second stable distance D3. On
further increasing β beyond βi

3, the stable spiral at D3 also undergoes a supercritical
Hopf bifurcation as shown for β = 1.75 in figure 6.3(c). Eventually, as β is increased
beyond 1.90, the limit cycle at D1 vanishes in an apparent homoclinic bifurcation,
followed by the one at D3 at β = 2.01.

In simulations, inline oscillations are observed with rapidly increasing separation
Dn as β is increased for fixed κ ≳ 1.3. The droplets unbind in these simulations when
β ≈ 2.1. For 1 < κ ≲ 1.3, as β is increased for a fixed κ, the inline oscillations at D1

bifurcate into oscillating walkers before unbinding near β ≈ 2.2.
Figure 6.3(d) shows a representative example of the positions of the droplets along

with cross-sections of their wave field for one cycle of inline oscillations. When the
droplets are at their maximum separation, the wave field gradient ensures a kick towards
each other. As the droplets travel towards each other, they pass their mean distance
and reach a minimum separation with wave field gradient such that the droplets receive
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a kick away from each other. In this way, the droplets oscillate towards and away
from one another. Note that the oscillations are dominated by a single frequency
(see figure 6.3(e)) and a single Fourier mode expansion approximates the oscillations
reasonably well near the bifurcation.

6.6 Parallel walking

For κ < 1 and β > 2, a parallel walking state emerges in which the droplets walk at
constant speed in the direction perpendicular to the line joining them. Parallel walkers
have been observed in experiments with walkers [6]. For superwalkers, although we
do not observe a parallel walking state as described here, we do observe a similar
state where two droplets form a tight pair and walk parallel side by side in a direction
perpendicular to the line joining them (see figure 3.9(a)).

Consider two parallel walking droplets moving at constant speed u and separated
by a distance d. By substituting x1 = (0, ut) and x2 = (d, ut) in equation (6.1), we
arrive at the pair of integral equations

∫ ∞

0

J1(
√
u2z2 + d2)√
u2z2 + d2

e−zdz = 0,

and

u

β
=

√
1 + u2 − 1
u
√

1 + u2
+
∫ ∞

0

uz e−z

√
u2z2 + d2

J1(
√
u2z2 + d2) dz.

These can be solved numerically and have infinitely many solutions u = Un(β),
d = Dn(β) for n ∈ N, which are functions of β but independent of κ. The first four
such solutions are shown in figure 6.4. Note that droplets in the first and third solutions
walk slightly slower than a single droplet while the second and fourth walk slightly
faster.

6.6.1 Linear stability analysis

To understand the stability of this mode, we use an approach similar to that used
by Oza et al. [88] to explore single-droplet walking. The linear stability analysis of
parallel walkers with a varying impact phase based on empirical observations has been
performed by Arbelaiz et al. [10]. Consider a perturbation to the equilibrium solution
x1 = (ϵx11(t)H(t), ut+ ϵy11(t)H(t)) and x2 = (d+ ϵx21(t)H(t), ut+ ϵy21(t)H(t)), with
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the Heaviside step function H(·) included to introduce the perturbation at t = 0.
Substituting this form into equation (6.1), linearising and taking Laplace transforms
of the resulting equations, we obtain the matrix equation

AP W (s)X(s) = X0(s).

Here

X(s) =


X11(s)
Y11(s)
X21(s)
Y21(s)

 = L [x(t)] = L


x11(t)
y11(t)
x21(t)
y21(t)

 ,

X0(s) = (s+ 1)x(0) + ẋ(0),

and
AP W (s) = (κs2 + s)I4 + βK,

with I4 the 4 × 4 identity matrix. Moreover,

K = L


p1(u, 0, t) 0 f 1

0 (u, d, t; d2) −f 0
1 (u, d, t; d)

0 f 1
2 (u, 0, t; 1) −f 0

1 (u, d, t; d) f 1
2 (u, d, t; 1)

f 1
0 (u, d, t; d2) f 0

1 (u, d, t; d) p1(u, 0, t) 0
f 0

1 (u, d, t; d) f 1
2 (u, d, t; 1) 0 f 1

2 (u, 0, t; 1)



−
∫ ∞

0


p1(u,0,z)+f0

0 (u,d,z;d2) −f0
1 (u,d,z;d) 0 0

−f0
1 (u,d,z;d) f1

2 (u,0,z;1)+q2(u,d,z) 0 0
0 0 p1(u,0,z)+f0

0 (u,d,z;d2) f0
1 (u,d,z;d)

0 0 f0
1 (u,d,z;d) f1

2 (u,0,z;1)+q2(u,d,z)

 dz,

with the functions

pm(u, d, z) = m
J1(

√
u2z2 + d2)√
u2z2 + d2

e−z,

qn(u, d, z) = (uz)n

√
u2z2 + d2

(
J1(

√
u2z2 + d2)√
u2z2 + d2

)′

e−z

and fm
n (u, d, z;σ) = pm(u, d, z) + σqn(u, d, z).
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Figure 6.4 : Parallel walkers: First four equilibrium (a) walking speeds u = Un(β) and
(b) separations d = Dn(β) as a function of β corresponding to n = 1 (solid curves), 2
(dashed curves), 3 (dashed-dotted curves) and 4 (dotted curves). Based on the linear
stability analysis, the distances D1(β) and D3(β) are stable while D2(β) and D4(β) are
unstable. The black curve in (a) represents the solution for a single walker. The grey
lines in (b) are the corresponding stationary state equilibrium distances.

The growth rates of this linear stability problem correspond to the poles of X(s).
The functions pn(u, d, z) and qn(u, d, z) decay exponentially as z → ∞, and so all the
functions in the matrix equation above are analytic in the region Re(s) ≥ 0. Hence
finding the growth rates reduces to determining the roots of det(AP W (s)) = 0. This
was done by simultaneously setting the real and imaginary parts of det(AP W (s)) = 0
using a modified secant method [103]. The initial guess for the modified secant method
was scanned in the region −1 < Re(s) ≤ 1 and −3 ≤ Im(s) ≤ 3 in steps of 0.1 and the
perturbation fraction was chosen to be 10−4. We find that the distances D2(β) and
D4(β) are always unstable while D1(β) and D3(β) are stable for a range of β and κ

values. Figures 6.5(a) and (b) show the real and imaginary part of the numerically
calculated poles as β varies for κ = 0.5 for droplets a distance D1(β) apart. The
first mode to become unstable is a complex conjugate pair indicating an oscillatory
mode emerges at the bifurcation. Note that the zero eigenvalue reflects the invariant
properties of the base state.

Figure 6.5(c) shows the stability diagram for parallel walkers in the β-κ parameter
space at a distance D1(β) apart. The state is stable for a large window of β when
κ is small, with the β window reducing as the inertia κ increases. The stable region
corresponds well with the region where parallel walkers are observed in simulations,
suggesting that the bifurcations away from parallel walking are supercritical.
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(a) (b)

(c)

Figure 6.5 : Parallel walkers: (a) Real and (b) Imaginary part of the poles as functions
of β at κ = 0.5 for the first parallel walking solution (D1(β),U1(β)). Red curves show
purely real poles. The black curve indicates the pole (complex conjugate) which first
crosses Re(s) = 0 resulting the bifurcation from parallel walkers to oscillating walkers.
The grey curves indicate other complex conjugate poles. (c) Stability diagram of parallel
walkers in the β-κ parameter space for the first parallel walking solution d = D1(β)
and u = U1(β). The red curve divides the parameter space into an unstable region
(above and to the right) and a stable region. The vertical dashed line corresponds to
κ = 0.5. The grey shading indicates the region where parallel walkers are observed
in figure 6.1 where a reduced time step of ∆t = 2−8 was used for simulations with
κ ≤ 0.225 and ∆t = 2−6 for all the other simulations. It can be seen that the shaded
region nearly coincides with the analytical bifurcation curve (red curve). The blue
dotted curve indicates the bifurcation from stationary states to inline oscillations from
figure 6.2(c).

Note that different modes are the first to become unstable across the two stability
curves shown that meet at κ ≈ 0.23. For κ ≳ 0.23 (lower curve), simulations suggest
the bifurcation results in oscillating walkers as shown in figure 6.1, while for κ ≲ 0.23
back-and-forth walkers are observed just above the bifurcation curve. These often
become unbound in simulations.
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6.7 Oscillating walkers

Parallel walkers bifurcate into oscillating walkers, as observed in the parameter space
plot in figure 6.1. In this mode, the droplets oscillate towards and away from one
another while walking. This state has been observed experimentally for walkers [9, 10]
and for superwalkers (see figure 3.11).

The first mode to appear when parallel walkers bifurcate into oscillating walkers has
symmetric motion of the droplets relative to the trajectory of their centre of mass. In
figure 6.6, we plot the numerically simulated trajectory of such walkers, along with the
underlying wave field, near the bifurcation from parallel walking. When the droplets
are relatively far apart, the wave field of each droplet is discernible. However, when
the droplets approach each other, their combined wave field generates a wave barrier.
Note that the oscillations are primarily in the direction along the line joining the
two droplets, although small oscillations also appears in the walking direction. These
two components of the oscillations are completely out of phase. As β is increased for
fixed κ for these walkers, the amplitude of the oscillations grows until a new, lopsided
oscillating mode appears, as described below in Section 6.7.1.

Oscillating walkers that don’t directly bifurcate from parallel walkers also appear
for β values immediately above the tongue of unbound states at moderately small β
and moderately large κ where inertia is too large for the droplets to be contained by
the relatively weak wave field. These are similar in structure to those bifurcating from
parallel walkers, except that as β increases their amplitude continues to increase, their
inertia is sufficient to overcome the central wave barrier and they begin interchanging
positions, as described below in Section 6.7.2.

6.7.1 Lopsided walkers

At moderately small β, symmetrically oscillating parallel walkers bifurcate to an
asymmetrically oscillating mode as shown in figure 6.7. These asymmetries can be
pronounced as shown, or can be more subtle with standard oscillations that are no
longer perpendicular to the direction of motion. In all cases, the centre of mass of the
two-droplet system now also oscillates. Where these modes are observed, they switch
from an initial symmetrically oscillating state. Except near the β value where this
mode is first observed, this switch is accompanied by an abrupt change in average
direction of walking. This abrupt change in direction is a pre-cursor to discrete-turning
walkers described in Section 6.8.2.
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Figure 6.6 : Oscillating walkers: Droplet locations (curves), walking speed (shading on
the curve in the upper half plane) and wave field elevation (colour maps in the lower
half plane) at the instant of minimum forward velocity (T1), an intermediate time (T2),
the instant of maximum forward velocity (T3) and a final intermediate time (T4) for
β = 3.6 and κ = 0.5. The bottom panel shows the inline (solid curve) and transverse
(dotted curve) velocities of the droplet in the lower half plane.
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Figure 6.7 : Lopsided oscillating walkers: Trajectory for lopsided oscillating walkers
for κ = 0.4 and β = 6.7. The colour bar shows the speed of the droplets at the
given location on the trajectory. In this simulation, the oscillating walker began in a
symmetrically oscillating mode and made an abrupt turn on emergence of asymmetric
oscillations. Circles show the positions of the droplets at a few different instances in
time.

6.7.2 Switching walkers

In a tongue of parameter space in the range 7 ≲ β ≲ 12 and 0.4 ≲ κ ≲ 1.8, switching
walkers are observed. These are symmetrically oscillating walkers whose amplitude is
sufficient to result in the droplets interchanging positions.

Intertwined regions of periodic and chaotic switching are found and shown in
figure 6.8. There are two main types of periodic switching: In the first, the amplitude
of oscillations is constant and switching taking place periodically. In the second,
the amplitude changes periodically in addition to the periodic switching. Typical
trajectories for each type are shown in figures 6.8(a) and (b). In most of the periodic
switching trajectories, the droplets switch after every oscillation although higher-period
switching is also observed.

Switching of droplets also occurs in a chaotic fashion. The chaos can either be just
in the amplitude with regular switching or in both the amplitude and the switching of
the oscillating walkers as shown in figures 6.8(c) and (d) respectively. Figures 6.8(e)
and (f) show the first return map of the maximum distance dk+1 as a function of dk for
the chaotic trajectories shown. The return map is multi-valued when there is chaos in
both amplitude and switching, while it is single valued for the case when there is chaos
only in the amplitude. Moreover, the former seems to show hints of stretching and
folding similar to a Smale horseshoe map [104].

We emphasise that such modes are unphysical because the two droplets occupy the
same location as they cross their centre line. However, in the physical system, this
may correspond to droplets bouncing off each other rather than switching, and this
has been observed for promenading pairs of superwalkers (see figure 3.11). To capture
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Figure 6.8 : Switching walkers: (center panel) Parameter space diagram for switching
walkers indicating periodic switching and periodic (and constant) amplitude changes
(light purple), periodic switching and chaotic amplitude changes (black) and chaotic
switching and chaotic amplitude changes (purple). Representative trajectory plots show
(a) periodic switching with constant amplitude (κ = 0.5 and β = 9.4), (b) periodic
switching with amplitude changes repeating every 3 oscillations (κ = 1.2 and β = 9.7),
(c) chaotic amplitude modulations and chaotic switching (κ = 0.5 and β = 9.1) and (d)
chaotic amplitude modulation and regular switching (κ = 0.575 and β = 9.9). (e,f)
First return map of the maximum distance dk+1 in the k + 1st oscillation as a function
of the maximum distance dk in the kth oscillation for trajectories (c,d). The map is
single-valued for trajectories with chaos only in the amplitude, while it is multi-valued
for trajectories with chaos in both amplitude and switching.

this, perhaps the interaction between two nearly touching droplets would need to be
included in the governing model.

6.8 Wandering walkers

More exotic behaviours are observed in the simulations once they begin to deviate
from on-average straight-line walking. A detailed analysis of these is beyond the scope,
but here we describe some of the more interesting features.

6.8.1 Back-and-forth walkers

These are rare states found for small inertia, κ < 0.25, and occur shortly after parallel
walkers become unstable. The droplets in these trajectories walk as oscillating walkers
but they reverse their direction of walking after several oscillations (see figure 6.9).
This type of dynamics seems to be unstable and although observed at intermediate
times in most of the simulations in this region of parameter space, the droplets usually
unbind before the end of the simulation.
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Figure 6.9 : Back-and-forth walkers: Trajectory of back-and-forth oscillating walkers
at κ = 0.1 and β = 15.1. (a) Initial motion for 0 < t ≲ 210.9, (b) the pair reverse their
direction for 210.9 ≲ t ≲ 226.5 and (c) reverse it again for 226.5 ≲ t ≲ 242.2. The
colour bar indicates the speed of the droplets.

6.8.2 Discrete-turning walkers

The bifurcations from parallel walkers to (symmetrically) oscillating walkers to lopsided
walkers culminate in discrete-turning walkers in a narrow region near 0.4 ≲ κ ≲ 0.6
and 3 ≲ β ≲ 8. In this regime, the two droplets perform repeated quantised turns
after walking in an on-average straight line for some distance. Figure 6.10(a) shows a
typical trajectory. In Figures 6.10(b) and (c), we show two phase-space projections
illustrating the lead-up to discrete-turning walkers with variables of the distance d
between the two droplets, the speed u of the droplets in the direction of the line
joining them and cos(θ) the cosine of the angle between the velocity of the centre of
mass and the line joining the droplets. Relevant equilibria of the D1 and D2 parallel
walking modes and the D2 chasing mode (see Section 6.9) are indicated as black filled
circles and crosses. In the trajectory shown in figure 6.10(a), the droplets start out
as symmetrically oscillating walkers and make multiple discrete turns before settling
into a stable lopsided motion. The limit cycle associated with walkers oscillating
symmetrically around the D1 equilibrium is shown by the purple curves and the stable
lopsided walkers are shown by the navy blue curves. Turns are shown in yellow. When
a pair of symmetrically oscillating walkers attempts to transition from the symmetric
mode to the lopsided, it gets flung towards the chasing fixed point in the phase space
as shown in figure 6.10(c). This fixed point being unstable, brings the droplets back to
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Figure 6.10 : Emergence of discrete turning walkers: (a) Trajectory at κ = 0.5 and
β = 5.3 showing symmetrically oscillating walkers (purple) making multiple discrete
turns and eventually settling into a lopsided mode (navy blue). The transient behaviour
during the discrete turns is shown as yellow. Projections of phase space dynamics in
(a) u-d and (b) cos(θ)-d plane where u is the speed of the droplet in the direction of
the line joining the droplets, d is the distance between the droplets and cos(θ) is the
cosine of the angle between the velocity of the centre of mass and the line joining the
droplets. Relevant equilibria of the D1 (black filled circle) and D2 (black cross) parallel
walking modes and the D2 (black cross) chasing mode (see Section 6.9) are indicated.

the symmetrically oscillating walkers mode at D1. This loop near the chasing fixed
point in the phase space corresponds to the actual turn in the trajectory.

As β is increased, it appears that the loops towards the chasing mode begin to
dominate and the two droplets briefly chase one another before decaying either to the
D1 or the D3 parallel walking fixed point. When it goes to the D3 parallel walking
fixed point, it is accompanied by a turn which is nearly right angled and then cascades
back to the parallel walking distance D1 as symmetrically oscillating walkers. We call
these right-angled discrete turning walkers and they are shown in figure 6.11.
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The underlying wave field shows that the turns are due to one of the walkers being
reflected from a wave barrier. On studying the statistics of the turning angles, we find
a strong peak near 90◦ (figure 6.11(d)), which is also evident from the trajectories.
Nearly right-angled turns are observed for all simulations in this region. At larger
scales, the trajectory appears like a random walk (figure 6.11(a)). By calculating the
mean squared displacement as a function of time for an ensemble of simulations at
κ = 0.5 and β = 6, we find a sub-diffusive exponent of 0.815 ± 0.002. Such discrete
turning behaviour has been observed for a single floating water droplet on the surface
of a vertically vibrated bath of high-viscosity silicone oil [105].

A region of discrete-turning walkers is also observed in a small window at κ ≈ 0.4
and β ≈ 11. These behave similarly, except they tend to walk in straight lines for
longer before abruptly turning. A larger region of discrete-turning walkers is observed
between 1 ≲ κ ≲ 2.5 and β ≳ 7. These are switching walkers and a typical trajectory is
shown in figure. 6.12(a). Note that in these trajectories, the droplets do not necessarily
occupy the same location at the same time.

Discrete-turning walkers are not always stable. When they are unstable, they
typically unbind (as indicated in the mixed grey/green region in figure 6.1), although
occasionally they cascade into tight orbits. These are reminiscent of cascades from
oscillating walkers to orbits that have been observed in experiments with walkers [10].

6.8.3 Continuously turning walkers

For larger inertia, these abrupt discrete turns become smoothed, as shown in the
progression of trajectories for increasing κ and fixed β in figure 6.12. For sufficiently
large inertia, the turns become a series of loops and eventually closed circles. Note
that for κ ≲ 2.5, the droplets switch positions. Although their trajectories cross, they
do not necessarily occupy the same position at the same time.

6.8.4 Closed trajectories and nearly closed trajectories

Remarkably, we find that initially parallel walkers travelling in a straight line can
ultimately settle into closed trajectories. Such states are primarily observed at high
inertia as indicated by the pink region in the parameter space plot figure 6.1. In this
region, the trajectories are circles, as shown in a representative plot in figure 6.12(d).

Circular closed trajectories also appear near 0.4 ≲ κ ≲ 0.6 and β ≈ 4 or β ≈ 9. In
the former region, the droplet mode is a lopsided oscillation as shown in figure 6.13(a),
while in the latter it is a symmetric oscillation. Rare regular polygons also appear in
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Figure 6.11 : Right-angled discrete-turning walkers: (a) Trajectory at κ = 0.5 and
β = 6 indicating random walk-like behaviour. (b) Focusing on individual turns indicates
that oscillating walkers at D1 temporarily go to D3 before cascading back to D1. The
colour bar indicates the speed of the droplets. (c) Mean squared displacement (MSD)
versus time: individual trajectories are shown as light grey curves, the trajectory in
(a) is shown as the black dotted curve and the ensemble average over 160 simulations
(at κ = 0.5 and β = 6 with noise in initial conditions) is shown as the solid black
curve. Curve fitting suggests the diffusion exponent is 0.815 ± 0.002 (solid yellow
line), indicating sub-diffusive behaviour. (d) Distribution of turning angles from the
ensemble of simulations indicates a strong peak near 90◦ (red vertical line).

isolation in the parameter space, including a hexagon (figure 6.13(c)), an octagon (not
shown) and a nonagon (figure 6.13(d)). In the closed-trajectory region near κ ≈ 1.8
and β ≳ 15, smoothed star-shaped trajectories are observed such as the exterior of an
enneagram (see figure 6.13(b)). Polygonal orbits have been previously observed for
diametrically opposed orbiting walkers [89], but the closed trajectories we observe here
are much larger in extent. We note that these polygonal structures are very sensitive
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Figure 6.12 : Wandering walkers: β-κ parameter space plot along with a progression
of trajectories at fixed β = 13 showing the transition from discrete-turning walkers to
closed trajectories. (a) Discrete-turning walkers at κ = 1.9 become (b) continuously
turning walkers at κ = 2.5 leading to (c) circular loops at κ = 2.825 and eventually (d)
stable circular trajectories at κ = 3. The droplets are not always side-by-side during
this wandering motion, this is shown in inset of (a) where the droplets do not reach
the crossing point simultaneously.

to the numerical time step chosen, and we have not been able to reproduce them
at smaller time steps although we can reliably reproduce them with different initial
conditions. We think this is because the parameters at which they form change slightly
with the modified time step and we have not been able to find the exact values at
which they reappear.

Intriguingly, in all closed trajectories, only the waves from the previous two os-
cillations of the droplets have not decayed to less than a tenth of their initial value
(estimated from the location of the droplets two units of time earlier, where the expo-
nential decay of the amplitude is e−2 ≈ 1/10). In particular for the polygonal paths,
this suggests that the waves from the previous turn are not directly contributing to
the next turn. However, a “memory” of the previous turn is retained by the system
as shown in figure 6.13(e): the droplets are not walking symmetrically with the inner
droplet on a turn leading its partner along the edges.

6.9 Chasers

Consider two in-phase droplets chasing one another in one-dimensional motion at a
constant speed u and maintaining a constant separation d: x1 = (ut, 0) and x2 =
(ut+ d, 0). Substituting these forms into equation (6.1), we obtain the following pair
of equations:

u = β

∫ ∞

0
J1(uz)e−zdz +

∫ ∞

0
J1(uz ∓ d)e−zdz

. (6.7)
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Figure 6.13 : Closed trajectories: (a) Closed circles with lopsided walkers for κ = 0.6
and β = 4, (b) exterior of an enneagram for κ = 1.875 and β = 18, (c) hexagon for
κ = 1.85 and β = 14.2, and (d) nonagon for κ = 1.575 and β = 16. The polygonal
structures were only traversed two or three times before the end of a simulation (only
one traverse is plotted to show the structure), except for the hexagon where we have
extended the simulation to 43 traverses. In all cases, some precession was apparent.
(e) One side of the hexagon showing that the droplets are not always side-by-side and
hence do not always approach the crossing point simultaneously.

Here the first integral represents the force on the droplet due to its own wave field
while the second integral is the force from the other droplet’s wave field.
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Figure 6.14 : Chasers: Equilibrium solutions u = Un(β) and d = Dn(β) for n = 1 (solid
blue curve), 2 (dashed red curve), 3 (dashed-dotted yellow curve) and 4 (dotted purple
curve). The black dotted curve shows the speed for a single walker. The grey vertical
lines are the stationary state equilibrium distances.

Figure 6.14 shows the numerical solutions of equation (6.7) as a function of β
(solutions are independent of κ). There are infinitely many solution pairs u = Un(β)
and d = Dn(β). Each solution pair only exists for a window of β values. The
solution first emerges from the corresponding stationary state solution at β = βc

n with
Un = 0 and Dn = Dn. Pairs of solution pairs coincide and annihilate one another in a
saddle-node bifurcation at the upper end of the window.

6.9.1 Linear stability analysis

To understand the stability of this mode, we consider a general perturbation to
a pair of droplets in the chasing mode applied at t = 0 as follows: x1 = (ut +
ϵx11(t)H(t), ϵy11(t)H(t)) and x2 = (ut + d + ϵx21(t)H(t), ϵy21(t)H(t)), similar to the
analysis for parallel walkers. Substituting this form into equation (6.1) and linearising,
we find
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κẍi1 + ẋi1 =β
(∫ ∞

0
(J′

1(uz) + J′
1(uz ∓ d))e−zdz)

)
xi1(t)

−
∫ ∞

0
J′

1(uz)xi1(t− z)H(t− z)e−zdz −
∫ ∞

0
J′

1(uz ∓ d)xj1(t− z)H(t− z)e−zdz


κÿi1 + ẏi1 =β
(∫ ∞

0

(
J1(uz)
uz

+ J1(uz ∓ d)
uz ∓ d

)
e−zdz

)
yi1(t)

−
∫ ∞

0

J1(uz)
uz

yi1(t− z)H(t− z)e−zdz −
∫ ∞

0

J1(uz ∓ d)
uz ∓ d

yj1(t− z)H(t− z)e−zdz


for i = 1, j = 2 with the negative signs, and i = 2, j = 1 with the positive signs.
On taking Laplace transforms of both sides, the equations can be rewritten in the

matrix form
Achase(s)X(s) = X0(s),

where

X(s) =


X11(s)
Y11(s)
X21(s)
Y21(s)

 , X0(s) = (s+ 1)x(0) + ẋ(0),

and
Achase(s) = (κs2 + s)I4 + βK(s).

Here xi1(t) and yi1(t) are the dynamical variables in the time domain and Xi1(s) and
Yi1(s) are the dynamical variable in Laplace space with

K(s) =


B(s) − A− 0 C−(s) 0

0 E(s) − D− 0 F−(s)
C+(s) 0 B(s) − A+ 0

0 F+(s) 0 E(s) − D+

 ,



116 Pilot-wave dynamics of two droplets

Figure 6.15 : Chasers: Plot of the (a) real and (b) imaginary part of the poles as a
function of β at D1(β) (solid curves) and D2(β) (dashed curves) with κ = 0.5. The
vertical black dotted lines correspond to the start of solution at D1(β) and D2(β) while
the vertical black dashed line corresponds to the end of the chasing solution at β = βf .
Poles with imaginary parts are shown in green. The thick black solid curve corresponds
to the pole from inline perturbation for which Re(s) < 0 for βc < β < βf where βc

(vertical black solid line) is where it first crosses Re(s) = 0. This pole is a complex
conjugate as indicated by the thick black curves in (b) and its stability in the β-κ
parameter space is shown in (c) where the stable and unstable regions are indicated by
S and US respectively. The dashed vertical line at κ = 0.5 in (c) corresponds to the
plots in (a) and (b).

and

A∓ =
∫ ∞

0
(J′

1(uz) + J′
1(uz ∓ d)) e−zdz,

D∓ =
∫ ∞

0

(
J1(uz)
uz

+ J1(uz ∓ d)
uz ∓ d

)
e−zdz,

B(s) = L
{
J′

1(ut)e−t
}
, C∓(s) = L

{
J′

1(ut∓ d)e−t
}
,

E(s) = L

{
J1(ut)
ut

e−t

}
and F∓(s) = L

{
J1(ut∓ d)
ut∓ d

e−t

}
,

where L is the Laplace transform operator.
Figures 6.15(a) and (b) shows the real Re(s) and imaginary Im(s) part of the poles

of X(s) as a function of β for chasing walkers at distance D1(β) and D2(β) with κ = 0.5.
Note that the zero eigenvalue reflects the invariant properties of the base state. There
is always a transverse mode with Re(s) > 0 for both D1(β) and D2(β) indicating that
the chasers are always unstable for general perturbations. This hold true for all κ. For
D1(β), we see that the only unstable eigenvalue (complex conjugate) corresponding
to the inline perturbation crosses Re(s) = 0 around β = βc ≈ 31 indicating that
droplets are stable to inline perturbations for βc < β < βf and chasers will be realised
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if restricted to only one space dimension, where βf is where the chasing solution
terminates. A stability diagram in the β-κ parameter space indicating the stable and
unstable region to inline perturbations at D1(β) is shown in figure 6.15(c).

Although in our analysis, we find that chasers are unstable to general perturbations,
Durey and Milewski [63] in their theoretical analysis found that two-droplet trains
(equivalent to chasers) are unstable for identical, in-phase droplets with general pertur-
bations but can become stable for out-of-phase droplets. We also note that chasers have
been observed in experiments with superwalkers where the droplets bounce in-phase
(see figure 3.10). Moreover, by adding a spatial decay to the wave in the theoretical
model presented in this chapter, we are able to observe chasers in numerical simulations
for in-phase droplets as will be shown in Chapter 7.

6.10 Conclusion

In this chapter, we have taken the stroboscopic mode of Oza et al. [88] as a theoretical
pilot-wave description and explored the remarkable range of possible behaviours for a
pair of droplets initially walking in parallel. With increasing inertia κ and/or wave
forcing β, the droplets’ motion gains degrees of freedom, commencing from a stationary
pair where drag dominates both inertia and wave forcing. The droplets first gain a
single translational degree of freedom, either oscillating in place for larger κ or parallel
walking at constant speed and constant separation for larger β. For larger β and
moderate κ, both modes are apparent and the droplets oscillate towards and away
from one another with their centre of mass moving in a straight line. For larger β
still, the droplets perform this motion with random changes in direction by 180◦ before
gaining an additional degree of freedom with increased κ by taking discrete turns of
less than 180◦ while walking. With sufficient inertia, these turns eventually become
continuous. Surprisingly, we find that droplets only unbind if the wave forcing β is
large and inertia κ is moderately small or in a narrow tongue where β is small and κ

moderately large. For large β and κ, the states observed at long times are intriguing:
closed trajectories with effective diameters many tens of Faraday wavelengths and
many times the wavelengths of the droplets’ oscillations towards and away from one
another. These closed trajectories can be either regular polygons or circles.

Our investigation has reproduced the states that have been observed experimen-
tally such as inline oscillations, orbiting droplets, parallel walkers and symmetrically
oscillating walkers (promenading pairs). Our simulations agree quantitatively with
where oscillating walkers have been observed (white curve in figure 6.1) except at the
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highest memories. Parameters for existing experimental setups are restricted to a
wedge of parameter space between the white dashed curves in figure 6.1. Besides the
experimentally observed states, we predict switching modes, discrete-turning walkers
and closed circular trajectories in this region. Switching walkers are unlikely to be ob-
served in the form described here and the droplets might either bounce off one-another,
coalesce, or possibly continue walking as a condensed pair (as seen for superwalkers in
figures 3.9 and 3.11). The important facet of an evolving impact phase in experiments
may modify or even suppress any turning mode. It would be interesting to explore
whether any of the behaviours are realised.



Chapter 7

Two-droplet correlations

In this chapter, we present a numerical study of two-droplet pair correlations for
in-phase droplets walking on a vibrating bath. Two such walkers are launched toward
each other at an angle with different initial path differences. As they approach each
other, their underlying waves may overlap and the droplets have a non-zero probability
of forming a two-droplet bound state. The likelihood of such pairing is quantified by
measuring the probability of finding the droplets in a bound state at late times. Three
generic types of two-droplet correlations are observed: promenading, orbiting, and
chasing pair of walkers. For certain parameters, the droplets may become correlated
for certain initial path differences and remain uncorrelated for others, while in other
cases, the droplets may never produce droplet bound states. These observations pave
the way for further studies of strongly correlated multi-droplet behaviours in the
hydrodynamical quantum analogues of walking and superwalking droplets.

This chapter is based on the following published paper:

R. N. Valani, A. C. Slim and T. Simula, Hong–Ou–Mandel-like two-droplet corre-
lations, Chaos 28, 096104 (2018).

7.1 Introduction

In quantum mechanical systems, particle correlations are of fundamental importance.
The Einstein–Podolsky–Rosen paradox [106] and the Hanbury Brown and Twiss ef-
fect [107] are vivid demonstrations of non-classical correlations. Quantum correlations
that have no classical counterpart can also be revealed using the Hong–Ou–Mandel
(HOM) two-photon interference experiment [108]. In the classic optical HOM effect,

https://doi.org/10.1063/1.5032114
https://doi.org/10.1063/1.5032114
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HOM dip

number of coincidences

arrival time di↵erence

number of coincidences
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(a) (b)
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Figure 7.1 : Hong–Ou–Mandel interference of photons. (a) Two distinguishable photons
(blue arrows) may be combined in a beam splitter (black bar) in four ways with equal
probabilities and the probability of coincident detection (one photon leaving on each
side of the beam splitter) is independent of the delay in the time of arrival of the
photons at the beam splitter. (b) Two indistinguishable photons may also be combined
in a beam splitter in four ways but the quantum amplitudes of ‘neither is reflected’ and
‘both are reflected’ interfere destructively such that no coincident detection is possible
when the photon arrival time difference vanishes. This results in the Hong–Ou–Mandel
dip in the coincidence detection probability as a function of the time of arrival of the
photons at the beam splitter.

illustrated in figure 7.1, two photons (blue arrows) arrive at a ‘50/50’ beam splitter.
A single photon, when incident on such a beam splitter, has a 50% probability of
being reflected and a 50% probability of being transmitted. When two photons are
incident, four possibilities arise: (1) the photon coming from the left is reflected and
the photon arriving from the right is transmitted, (2) the photon coming from the
right is reflected and the photon arriving from the left is transmitted, (3) both photons
are transmitted, and (4) both photons are reflected. Two detectors (not shown) are
placed far behind the beam splitter, one on the left and the other on the right side, and
record coincident photon pairs (one photon detected by each detector). The normalised
number of coincidence detections are recorded as a function of the difference in time of
arrival of the photons. If the photons are fully distinguishable (see figure 7.1(a)), all
four possibilities occur with equal probabilities and whether the photons pass through
the beam splitter simultaneously or one after another is irrelevant. However, if the
photons are indistinguishable (see figure 7.1(b)), their quantum mechanical description
shows that the last two of the four possible outcomes cancel out—the photons interfere
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destructively—and the probability of coincident detection vanishes [109]. One way to
continuously ‘tune the level of indistinguishably’ is to vary the distance of the photon
sources from the detector and thereby the difference in the photon arrival times. This
results in the HOM dip shown in figure 7.1(b) whose characteristic width is determined
by the size of the wavepacket of the photons. The HOM effect has a classical analogue
and a HOM dip is also observable using classical light sources. However, the maximum
visibility of the HOM dip cannot exceed 0.5 (the coincidence detection rate at the
deepest point of the dip cannot be less than 0.5 of the maximum coincidence detection
rate) for classical waves or particles [110]. As such, the HOM effect can be used
for drawing a distinction between classical and quantum correlations. More recently,
the HOM interference has been observed for photons that always pass through the
beam splitter at different times [111] and by using atoms instead of photons [112].
Also, a variant of the HOM experiment in the absence of beam splitters has also been
proposed [113].

Inspired by the atomic and optical HOM phenomena, we have performed numerical
experiments with two droplets to study their spatiotemporal correlations. Nevertheless,
we emphasise that, unlike photons, our droplets are interacting particles and cannot
be indistinguishable in the quantum mechanical sense. A simple thought experiment is
sufficient to demonstrate this: filling one of the droplets with dye will facilitate tracking
the exact paths of the two droplets yet the results presented here would be unaffected
by such particle tagging.

7.2 Theoretical model

Consider two identical walkers of mass m and radius R. The positions (in units
of k−1

F = λF/2π, where λF is the Faraday wavelength) of the two droplets in the
horizontal plane are given by x1 = (x1, y1) and x2 = (x2, y2). To study two-droplet
correlations, we describe the horizontal motion of the droplets using the extension of
the stroboscopic model of Oza et al. [88] presented in chapter 6 with an added spatial
damping that was introduced in the improved stroboscopic model of Oza et al. [89].
We restrict our exploration of two-droplets correlations to in-phase bouncing droplets.
The dimensionless equations of horizontal motion for two droplets are thus

κ
d2xi

dt2
+ dxi

dt
= −β∇h(x, t)

∣∣∣
xi

for i = 1, 2, (7.1)
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Figure 7.2 : Schematic diagram of the numerical setup. Two identical droplets with a
dimensionless diameter d̂ = 2R/λF each and an initial path difference τ are launched
towards each other at an angle. The initial centre of mass positions (white dots) of the
droplets are randomly chosen within a disk of diameter d̂. The initial velocities have
constant magnitude u and are always oriented toward the origin. Four generic types of
behaviours are observed at late times (top sketches): (i) uncorrelated, (ii) promenading
correlations, (iii) orbiting correlations, and (iv) chasing correlations.

with wave field

h(x, t) =
∫ t

−∞
J0(|x − x1(s)|) e−G1(x,t,s)ds+

∫ t

−∞
J0(|x − x2(s)|) e−G2(x,t,s)ds, (7.2)

and spatial and temporal decay envelope

Gj(x, t, s) = α̂
|x − xj(s)|2

t− s+ Me−1 + (t− s) for j = 1, 2.
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The dimensionless parameters κ, Me and β follow directly from the stroboscopic
model for a single walker developed by Oza et al. [88] and are given by κ = m/DTF Me,
β = mgAk2

FTF Me2/D and Me = Td/TF (1 − Γf/ΓF ), while the parameter α̂ =
α/k2

FTF Me follows from Oza et al. [89]. We note that κβ ∼ Me and hence one
can obtain curves in the β-κ parameter space along which memory is constant. Here
time has been non-dimensionalised using the scale TF Me.

7.2.1 System parameters

We restrict our exploration of the parameter space by fixing the parameters to the
typical values for experiments [88, 89, 10] in addition to limiting to in-phase droplets.
We consider a fixed forcing frequency of f = 80 Hz and consider droplets of diameter
in the range 0.6 mm ≤ 2R ≤ 1 mm that are typically found in experiments with
walkers [51]. In accordance with the experiments on orbiting [89] and promenading [10]
pairs, the fluid density is chosen to be ρ = 949 kg/m3, fluid viscosity ν = 20 cSt, surface
tension σ = 20.6 × 10−3 N/m, λF = 4.75 mm, ΓF = 4.2, Td = 1/54.9 s, viscosity of
air µa = 1.84 × 10−5 kg/ms and density of air ρa = 1.2 kg/m3. We choose a constant
impact phase of sin(Φ) = 0.2. The dimensionless drag coefficient C depends weakly on
system parameters [85] and is shown to vary over the range 0.17 ≤ C ≤ 0.33. In our
numerical experiments we consider the two extreme values C = 0.17 and 0.33. From
the remainder of this chapter, we will use dimensionless quantities in the results with
the length scale chosen as the Faraday wavelength λF and the time scale as TF Me.

7.2.2 Numerical experiments

Figure 7.2 (not to scale) shows the setup of our numerical experiments. Two in-phase
walkers are initially placed at distances r1 and r2 from the origin and at equal angles
from the y-axis. If the droplets were travelling at constant speed, the difference
τ = |r1 − r2| would be proportional to the difference in their time of arrival at the
origin. To limit the size of the parameter space to be explored, we have fixed the
average angle between the droplets’ trajectories to 90◦. However, we note that the
detailed dynamics of the droplets are quite sensitive to the choice of this initial impact
angle. In the numerical simulations, the droplets are point particles and the blue
disk indicates the non-dimensional diameter d̂ = 2R/λF in the range 0.13 ≤ d̂ ≤ 0.21
corresponding to the diameters in the range 0.6 ≤ 2R ≤ 1 mm of the physical droplet.
The visible size of the wavepacket produced by the droplet’s impact is a few times λF.
We assume an initial uncertainty in the centre of mass of the droplets’ positions (white
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Figure 7.3 : The β-κ parameter space considered in the numerical experiments. The
two sets of curves correspond to dimensionless drag coefficients C = 0.17 (yellow)
and C = 0.33 (dark red). Each of the five curves of the same colour corresponds to
droplets of diameters 2R = 0.6 mm (solid), 0.7 mm (dashed), 0.8 mm (dashed-dotted),
0.9 mm (dotted) and 1 mm (thick solid). Light grey shaded regions correspond to
parallel walkers that unbind at long times in simulations with α̂ = 0, while white
regions correspond to parallel walkers that remain as stable droplet pairs at long times,
see figure 6.1. The black horizontal line indicates the walking threshold β = 2. All
simulations were performed for β ≥ 3 (black dashed line) to ensure that the walking
speed of the droplet is sufficiently high so that a single walker would travel at least 2r1
by the end of the simulation, t = 250. The markers indicate the three different types
of correlations observed: promenading (red ◦), orbiting (green +) and chasing (blue
×) pairs of walkers. Simulations with only uncorrelated walkers are shown as a black
dot. Markers indicate the correlations observed with probability greater than 20% for
simulations with path differences 0 ≤ τ ≤ 18/2π.

dots in figure 7.2). This is modelled by drawing random numbers from a uniform
distribution within a disk of the same diameter as a droplet, d̂. The droplets are
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launched at constant speed u, corresponding to the stable walking speed of an isolated
droplet given by the stroboscopic model for a single walker [88], and are directed
towards the origin. The detection occurs at time t = 250, during which a droplet
travelling at speed u would travel a distance of at least 2r1. This cut-off point of
t = 250 has been chosen to ensure that any transient dynamics of droplet pairs have
decayed and the droplets have settled either into a stable uncorrelated state or one
of the correlated bound states. We numerically integrate the equations of motion in
equation (7.1) using the same numerical method as in Chapter 6 (see Appendix C)
with a dimensionless timestep of ∆t = 2−6.

We vary the proximity to the Faraday threshold, Γf/ΓF , which traces out a curve
for a droplet of fixed diameter in the β-κ parameter space. Figure 7.3 shows two sets of
such curves in the β-κ parameter space. Each curve corresponds to a fixed value of the
dimensionless drag coefficient C and the dimensionless droplet diameter d̂. Increasing
Γf/ΓF increases β and decreases κ.

7.3 Two-droplet correlations

Two walkers are launched towards each other with varying path differences in the range
0 ≤ τ ≤ 18/2π. This is done by fixing the distance r1 = 100/2π of the first droplet
and changing the distance of the second droplet r2 in the range 82/2π ≤ r2 ≤ 100/2π.
Each droplet is set to have an uncertainty in the initial position of its centre of mass.
The droplets’ initial positions are thus determined by drawing random numbers from a
uniform distribution within a disk of diameter d̂. We observe four generic behaviours:
(i) In the majority of cases the droplets remain uncorrelated and travel along straight
lines in different directions. (ii) The droplets pair up into promenading walkers where
the droplets are walking parallel with sideways oscillations. More exotic promenading
walkers also arise as shown in the parameter space study of two droplets in Chapter
6. We refer to all of these as promenading correlations. (iii) The droplets form a
two-droplet orbiting pair referred to as orbiting correlations. (iv) The droplets pair up
in a chasing mode where they are walking one behind the other. These are referred to
as chasing correlations. In experiments with walkers, promenading and orbiting pairs
are common and have been studied in detail [89, 10]. Chasers have previously been
identified in a bounded domain where walkers are confined into an annular region [14]
but free chasers have not been reported previously in experiments. However, we
have occasionally observed free chasers at relatively high memory in experiments with
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(a) (b)

(e) (f) (h)(g)

(c) (d)

Uncorrelated Promenading

Orbiting Chasing

Figure 7.4 : Typical two-droplet trajectories: Uncorrelated trajectories whose inter-
droplet distance diverges with time are shown in (a) and (b) with parameter values same
as figure 7.5(b) and path differences τ = 2.71 and τ = 1.51 respectively. Promenading
correlations with symmetrical oscillations (c) at τ = 0.40 and other parameters same
as figure 7.5(f), and asymmetrical oscillations (d) at τ = 0.16 and other parameters
same as figure 7.5(e). Orbiting correlations of smaller diameter (e) at τ = 0.95 and
larger diameter (f) at τ = 1.99 with other parameters same as figure 7.5(c). Chasing
correlations with a circular path (g) at τ = 2.71 and other parameters same as
figure 7.5(f), and on a straight line (h) at τ = 1.25 and other parameters same as
figure 7.5(d). The axes are in units of the Faraday wavelength λF .

walkers. Moreover, they are ubiquitous in experiments with mismatched superwalkers
and less common for identical superwalkers (see figure 3.10).

Typical realisations of the two droplet bound states and uncorrelated trajectories
are summarised in figure 7.4. For the uncorrelated trajectories, two walkers may
travel straight through the interaction region when their underlying waves interact
weakly as shown in figure 7.4(a), or unbind after a short interaction as depicted in
figure 7.4(b). Two walkers can also reflect off each other and end up uncorrelated.
The first type of bound state we observe are promenading walkers. We observe two
generic types of oscillating modes for this state: (i) a symmetrical mode, figure 7.4(c),
in which droplets perform symmetric sideways oscillations while walking in parallel
and their centre of mass follows a straight line trajectory, and (ii) an asymmetric mode,
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figure 7.4(d), in which oscillations are lopsided and the centre of mass oscillates. The
second type of bound state we observe in simulations are orbiting walkers. In this state,
the two walkers orbit around their common centre of rotation. We observe two types
of orbiting correlations: (i) In the first type, the droplets are in a smaller tight orbit
at an inter-droplet distance of do

12 ≈ 0.8, figure 7.4(e), while in the second type (ii)
the droplets are orbiting at a larger inter-droplet distance of do

12 ≈ 1.8 figure 7.4(f).
These larger orbits are sometimes accompanied by radial oscillations. The third kind
of correlation we observe are chasers. In this state, the droplets are chasing one after
another and are travelling at a constant speed and a fixed inter-droplet distance. We
classify the chasers into two types: (i) those which follow a circular path, figure 7.4(g),
and (ii) those which walk on a straight line trajectory, figure 7.4(h). Straight-line
chasers are found to have inter-droplet distances of dc

12 ≈ 3 and dc
12 ≈ 4, while the

chasers which follow a circular path are more tightly bound with inter-droplet distances
dc

12 ≈ 1.3 and dc
12 ≈ 2. Moreover, the trailing walker is offset sideways from the leading

walker in this latter case.
To understand the probabilistic properties of the emergence of two-walker correla-

tions, we have studied the statistics of the two-droplet bound states by simulating many
trajectories with similar initial conditions. On studying the final state of the droplets
as functions of the path difference τ , we find regions of correlated and uncorrelated
behaviours. The parameter space chosen for the results presented is summarised in
figure 7.3. The light grey region in the background corresponds to where initially
parallel walkers unbind at late times in simulations with α̂ = 0, while white regions
correspond to where initially parallel walkers remain in a bound state at late times (see
figure 6.1). We primarily observe orbiting and chasing correlations, and uncorrelated
behaviour for parameters in the light grey region, consistent with promenading walkers
being unstable there. However, we do sometimes observe promenading walkers near the
edges of the light grey region, which may be because the simulations here are relatively
short or may result from α̂ ̸= 0. On traversing one of the curves corresponding to
C = 0.17 (low drag), we find that the low memory region (small β) is dominated by
orbiting correlations with the emergence of promenading correlations at mid-memory
and then only chasing correlations at high memory (large β). On the other hand,
traversing a curve for C = 0.33 (high drag), we find both promenading and orbiting
correlations at low memory, promenading and chasing correlations at mid-memory and
only chasing correlations at high memory. At even higher memories corresponding to
β > 20, we either observe chasing correlations or uncorrelated walkers.
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Figure 7.5 : Probability of different correlations as a function of the path difference
τ (in units of Faraday wavelength λF ). The six plots (a)-(f) correspond to the six
points A-F in the β-κ parameter space plot in figure 7.3. The parameter values for
these are, (a) d̂ = 0.19 and Γf/ΓF = 0.86, (b) d̂ = 0.21 and Γf/ΓF = 0.77, (c) d̂ = 0.13
and Γf/ΓF = 0.88, (d) d̂ = 0.21 and Γf/ΓF = 0.88, (e) d̂ = 0.19 and Γf/ΓF = 0.85 and
(f) d̂ = 0.19, Γf/ΓF = 0.9. Thick black lines indicate the probability of uncorrelated
walkers while the coloured lines show probabilities of each of the different types of
correlations: the symmetrical (red solid line) and asymmetrical (red dashed line) modes
of promenading walker correlations, smaller (green solid line) and larger (green dashed
line) diameter orbiting correlations, circular-path chasing correlations with inter-droplet
distance d12 ≈ 2 (blue solid line) and straight-line chasing correlations with inter-droplet
distance d12 ≈ 3 (blue dashed line) and d12 ≈ 4 (blue dotted line). Each data point
has a statistical uncertainty of 1/

√
90 since each data point is obtained by averaging

over 90 trajectories with slightly different initial conditions due to uncertainty in the
initial positions of the droplets resulting from their non-zero size. The horizontal black
bar indicates the diameter of each droplet.

Figure 7.5 shows the probabilities of droplets being correlated or uncorrelated at
t = 250 as functions of the path difference τ . If the walkers end up in any of the
droplet bound states at the end of the simulation, we classify them as correlated, while
if the droplets are found to be separated by a distance exceeding 30 and moving in
different directions, we classify them as uncorrelated. The thick black solid lines in
figure 7.5 shows the probability of uncorrelated walkers while the coloured lines show
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the probabilities of each different types of correlations. Every dip in the black curves
corresponds to a certain type of two-droplet correlation. Each of the data points
comprises an ensemble average over 90 simulated trajectories. The β-κ parameter
values used for obtaining the data in figure 7.5 are indicated in figure 7.3 as A-F. In
figure 7.5(a), we observe a single dominant dip arising from the asymmetrical mode
of promenading correlations (red dashed line) for 0 < τ ≲ 1. Figures 7.5(b) and (c)
comprise of two dips. Figure 7.5(b) has two dips arising from the asymmetrical and
symmetrical (red solid line) modes of promenading walkers correlation for τ ≈ 0 and
τ ≈ 1.2, respectively. The two dips in figure 7.5(c) arise from the smaller (green solid
line) and the larger (green dashed line) diameter orbiting correlations. The dip near
τ ≈ 1 comprises of both types of orbiting correlations while the dip near τ ≈ 2.2
emerges only from the larger diameter orbiting correlation. Figure 7.5(d) has a single
dip near τ ≈ 1.3 but it is dominated by a mixture of both straight-line (blue dashed
line) chasing correlations with inter-droplet distance dc

12 ≈ 3 as well as circular-path
(blue solid line) chasing correlations with inter-droplet distance dc

12 ≈ 2. Figures 7.5(e)
and (f) each have two dips arising from two different types of correlations. Dips in
figure 7.5(e) arise from the asymmetrical mode of promenading walkers correlations
and larger diameter orbiting correlations, while the dips in figure 7.5(f) are from
the symmetrical mode of promenading walker correlations and circular path chasing
correlations.

7.4 Conclusion

We have considered the non-Markovian dynamics of pairs of walking droplets with
crossing paths that are initially separated by a large inter-droplet distance. We have
studied the probability that the droplets remain unbound as a function of their path
difference to the common origin. We have found three generic classes of two-droplet
correlations: promenading, orbiting and chasing, that are identified as dips in figure 7.5.

Our numerical experiments correspond to a hydrodynamic analogue of the Hong–Ou–
Mandel (HOM) two-photon interference experiment without a beam splitter. One of the
limitations of the hydrodynamic pilot-wave model used in this study is the assumption
of a constant impact phase. If one were to study these phenomena experimentally, the
modulations of the impact phase may occur and may result in either enhancement or
suppression of correlation dips. Another feature we observe here is that the correlation
dips are very sensitive to the system parameters and an experimental realisation of
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this setup may result in quantitatively different correlation dips, but we do expect the
qualitative features of the correlation dips to persist.

To achieve a closer analogue of the HOM interference experiment, a hydrodynamic
equivalent of a 50/50 beam splitter would need to be implemented. An ad hoc numerical
implementation of a beam splitter can be realised by reversing the x-component of the
droplets’ velocity along with their memories with a 50% probability once the droplets
enter a spatial ‘beam splitter region’. On testing this idea, we found that the qualitative
features of the two-droplet correlation dips persist.

In summary, we have demonstrated a richness in the reaction dynamics of two
walkers paving the way to further studies of many-droplet correlated behaviours of
these curious non-Markovian dynamical systems.



Chapter 8

Unsteady dynamics of a walking
droplet

In this chapter, we explore the unsteady dynamics of a single walking droplet using
the stroboscopic model of Oza et al. [88] with different wave fields. We find that for
small inertia and large wave forcing, the steady walking motion of a droplet becomes
unstable and unsteady dynamics emerge. We study the unsteady dynamics of the
droplet by restricting its motion to one horizontal dimension. We uncover a variety of
unsteady motions such as random walk-like motion, oscillating walker and self-trapped
oscillations of the droplet. We explore the chaotic nature of these unsteady motions as
well as their statistical behaviour.

8.1 Introduction

A single walker or a superwalker travels in a straight line at a constant speed unless it
encounters obstacles or other droplets. However, in simulations it has been shown that in
the very high memory regime, which is currently not accessible in experiments, the linear
motion of the droplet becomes unstable and the droplet’s dynamics becomes bimodal
where it erratically switches between phases of linear motion and diffusive motion [114].
This bimodal motion shows analogies with the run-and-tumble motion that is ubiquitous
in swimming micro-organisms. For example, the motion of Escherichia coli in a
nutriment-filled medium is known to display the ‘run-and-tumble’ dynamics [115].
Moreover, it has been observed that artificial droplet swimmers, that are used to
mimic living microswimmers, can also display bimodal gait switching triggered by the
interaction between the droplet and its self-generated chemical gradients [101]. This is
reminiscent of gait-switching dynamics in biological organisms [116].
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Recently, Durey et al. [117] explored this regime using the stroboscopic model of
Oza et al. [88] by restricting the droplet’s motion to one dimension and identified
regimes in the parameter space where the droplet has a wavelike statistical signature.
A regime where speed oscillations with the wavelength of the guiding wave arise when
the droplet is perturbed from the steady walking state, and an unsteady regime where
a random walk-like motion is observed in the high memory regime similar to Hubert
et al. [114]. Sáenz et al. [23] in their experimental exploration of a hydrodynamic
analogue of Friedel oscillations also showed that the emergent wavelike statistics arise
from the inline oscillations of the walking droplet.

In this chapter, we revisit the unsteady walking regime using the stroboscopic
model of Oza et al. [88] and explore the dynamics observed in the parameter space
using different forms of the wave field. We start with the linear stability analysis of a
single walking droplet in 2D in Section 8.2 and show that the perturbations to inline
and transverse directions decouple. Thereon, we restrict the motion of the droplet to
one horizontal dimension and explore the droplet’s unsteady dynamics using three
different forms of the wave field: a Bessel function wave field (Section 8.4), a Gaussian
wave field (Section 8.5) and a sinusoidal wave field (Section 8.6). We focus on the
nonlinear dynamics and the statistical behaviour in this unsteady regime and draw
connections of the walking droplet dynamics with Lorenz equations, Langevin equation
and deterministic diffusion.

8.2 Linear stability of a walking droplet in 2D

Following Oza et al. [88], we start by performing a linear stability analysis of the steady
walking state in the stroboscopic model of Oza et al. [88] whose equation of motion is
given in (2.15). This equation takes the following form for the motion in the x and y

directions respectively,

κẍd + ẋd = β
∫ t

−∞

J1
(√

(xd(t) − xd(s))2 + (yd(t) − yd(s))2
)

√
(xd(t) − xd(s))2 + (yd(t) − yd(s))2

(xd(t) − xd(s))e−(t−s)ds,

(8.1)

κÿd + ẏd = β
∫ t

−∞

J1
(√

(xd(t) − xd(s))2 + (yd(t) − yd(s))2
)

√
(xd(t) − xd(s))2 + (yd(t) − yd(s))2

(yd(t) − yd(s))e−(t−s)ds.

(8.2)
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Assuming a steady walking droplet with speed u and substituting xd = (ut, 0) in
the above equations, we arrive at

u = 1√
2

√
−1 + 2β −

√
1 + 4β.

We apply a general perturbation of the form xd = (xd, yd) = (ut, 0)+ϵH(t)(x1(t), y1(t))
with H(·) being the Heaviside step function used to introduce the perturbation at
t = 0. Substituting in equations (8.1) and (8.2), and comparing O(ϵ) terms on both
sides of the equations we get,

κẍ1 + ẋ1 = β
∫ ∞

0
J′

1(uz)[x1(t) − x1(t− z)H(t− z)]e−zdz,

κÿ1 + ẏ1 = β
∫ ∞

0

J1(uz)
uz

[y1(t) − y1(t− z)H(t− z)]e−zdz.

Taking a Laplace transform of the above two equations results in following matrix
equation

AW (s)X(s) = X0(s),

where

X(s) =
X1(s)
Y1(s)

 = L [x(t)] = L

x1(t)
y1(t)

 ,
X0(s) = (s+ 1)x(0) + ẋ(0),

and

AW (s) =
A(s) 0

0 B(s)

 .
Here L denotes the Laplace transform operator and

A(s) = κs2 + s− β
[∫ ∞

0
J ′

1(uz) e−z dz − L
{
J ′

1(ut) e−t
}]
,

B(s) = κs2 + s− β

[∫ ∞

0

J1(uz)
uz

e−z dz − L

{
J1(ut)
ut

e−t

}]
.

The poles of X1(s) and Y1(s) in the Laplace space correspond to the eigenvalues in
physical space and are determined by AW (s) = 0 which results in,

A(s)B(s) = 0.
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Thus, we see that the linear stability equation for the perturbation in the direction
of walking, A(s) = 0, decouples from the equation of perturbation in the direction
transverse to the walking, B(s) = 0. Solving B(s) = 0 for transverse perturbation
gives rise to a double pole at s = 0 for Y1(s) indicating that the droplet is neutrally
stable to perturbations transverse to the direction of walking (see Oza et al. [88] for
more details). However, solving A(s) = 0 for inline perturbations results in one of the
poles crossing Re(s) = 0 and resulting in a bifurcation we are interested in exploring
in this chapter. Hence, we restrict the droplet’s motion to 1D for the remainder of this
chapter.

8.3 Generalised 1D stroboscopic model with an ar-
bitrary wave form

The stroboscopic model of Oza et al. [88] describing the horizontal dynamics of a
walking droplet with a J0(·) Bessel function form of the wave field was described in
equation (2.15). We restrict ourselves to horizontal motion in only one direction and
extend this model to an arbitrary spatial wave form F (x) resulting in the following
general stroboscopic model

κẍd + ẋd = −β∂h
∂x

∣∣∣∣
x=xd

, (8.3)

where
h(x, t) =

∫ t

−∞
F (x(t) − xd(s)) e−(t−s) ds. (8.4)

Combining these two equations we get,

κẍd + ẋd = β
∫ t

−∞
f(xd(t) − xd(s)) e−(t−s) ds, (8.5)

where f(x) = −F ′(x). The two parameters in this dimensionless equation of motion, κ
and β, may be usefully interpreted as the ratio of inertia to drag and the ratio of wave
forcing to drag respectively.
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8.3.1 Steady walking solution

We look for a steady walking solution of the generalised stroboscopic model by substi-
tuting x = ut in equation (8.5) which results in the following equation

u = β
∫ ∞

0
f(uz) e−z dz. (8.6)

Provided that a solution to the above equation exists, one obtains the steady walking
speed u of the droplet for a given parameter β and spatial wave form F (x).

8.3.2 Linear stability analysis

To determine the stability of the steady walking solution in this generalised framework,
we apply a perturbation of the form xd(t) = ut + ϵx1(t)H(t) to the steady walking
solution with speed u. By substituting this in equation (8.5) and comparing O(ϵ) terms
on both sides we get,

κẍ1 + ẋ1 = β
[
x1(t)

∫ ∞

0
f ′(uz) e−z dz −

∫ ∞

0
f ′(uz)x1(t− z)H(t− z) e−z dz

]
. (8.7)

The first integral on the right side can be simplified as:
∫ ∞

0
f ′(uz)e−z dz = −f(0)

u
+ 1
u

∫ ∞

0
f(uz) e−z dz = −f(0)

u
+ 1
β
.

Substituting this in equation (8.7) and taking Laplace transform on both sides we get,

X1(s) = κ(sx1(0) + ẋ1(0)) + x1(0)
κs2 + s− 1 + β[f(0)/u+ g(s)] , (8.8)

where
g(s) = L

{
f ′(ut)e−t

}
.

Hence, the stability of the inline walking motion can be determined by finding the
poles of X1(s) in equation (8.8).

In this chapter we consider three different forms of the spatial wave field F (x). We
start by exploring the droplet dynamics using the Bessel wave field, F (x) = J0(x), that
was used in the stroboscopic model of Oza et al. [88] in Section 8.4. This Bessel wave
field has two key features: (i) spatial oscillations and (ii) a spatial decay. We analyse
the effects of each of these features separately by considering two alternate forms of the
wave field: a sinusoidal wave field of the form, F (x) = cos(x)/2, which has oscillations
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(a)

(b)

Figure 8.1 : (a) Comparison of the three different forms of the wave field considered in
this chapter. A Bessel function wave field J0(x) (blue solid curve), a sinusoidal wave field
cos(x)/2 (red dotted curve) and a Gaussian wave field e−(x/2)2 (yellow dashed-dotted
curve). Comparison of their gradients are shown in panel (b).

but no spatial decay, and a Gaussian wave field of the form, F (x) = e−(x/2)2 , which has
spatial decay but no oscillations. We discuss the droplet dynamics emerging from the
sinusoidal and the Gaussian form of the wave field in Sections 8.6 and 8.5 respectively.
Both of these wave fields have been chosen such that the gradient matches with the
Bessel function wave field at the location where the wave is created. A comparison of
the three wave fields and their gradients is shown in figure 8.1.

8.4 Droplet dynamics with a Bessel wave field

8.4.1 Steady solution and linear stability analysis

Choosing a Bessel function form of the wave field, F (x) = J0(x), results in f(x) =
−F ′(x) = J1(x) in equation (8.5). The steady walking solution obtained from equation
(8.6) is then given by,

u = 1√
2

√
−1 + 2β −

√
1 + 4β.

The equation foe the walking speed is identical to the walking speed solution
obtained for the 2D case considered in Section 8.2. This steady walking solution is
realised for β > 2 while for β ≤ 2, the stationary droplet solution is stable. For large
β, the above equation for the walking speed can be approximated by u ≈

√
β.
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No walking

Stable steady walking

Unstable steady walking

Figure 8.2 : Linear stability diagram in the (κ, β) parameter space for inline pertur-
bations to the steady walking solution of a single droplet using the Bessel wave field.
The grey dashed curve shows the path traversed in the parameter space for typical
experimental parameters as the driving acceleration (or the memory) is increased.

The linear stability analysis requires solving for the poles of X1(s) in equation (8.8)
with f(0) = J1(0) = 0 and

g(s) = L
{
J′

1(ut)e−t
}

= 1
2
√
u2 + (s+ 1)2

1 − u2(
s+ 1 +

√
u2 + (s+ 1)2

)2

 .
This results in solving the equation,

(κs2 + s− 1)
√
u2 + (s+ 1)2

(
s+ 1 +

√
u2 + (s+ 1)2

)
+ β(s+ 1) = 0. (8.9)

For small κ and large β, a complex pole of the above equation crosses Re(s) = 0
resulting in the instability of the steady walking solution. We can find the stability
boundary of the steady walking solution in the (κ, β) parameter space by making
Re(s) = 0 and substituting s = iω in equation (8.9). The linear stability diagram is
shown in figure 8.2. We see that a ‘lobe’ shape region appears for small κ and large
β where steady walking is unstable. For a fixed κ ≲ 0.14, as β is increased, we get
steady walking for small β, unsteady walking for moderately large β and intriguingly,
we recover the steady walking state for very large β.
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Steady walker Oscillating walker 

Self-trapped oscillations Random walk-like motion

Figure 8.3 : Different dynamical behaviours observed in the (κ, β) parameter space at
t = 1000 from simulations initiated in the steady walking state at t = 0. We explore the
parameter space region 0.01 ≤ κ ≤ 0.15 and 0 < β ≤ 500 with resolution ∆κ = 0.01
and ∆β = 1. We observe steady walking (blue), oscillating walker (yellow), self-trapped
oscillations (green) and random walk-like motion (red). The solid black curve is the
linear stability curve from figure 8.2 separating the steady walking and the unsteady
walking regime.

8.4.2 Simulations in the parameter space

We have explored the unsteady dynamics of a walker with the Bessel wave field in
the (κ, β) parameter space and the results are presented in figure 8.3. We numeri-
cally integrate equations (8.5) with the Bessel wave field using the same Leap-Frog
method [97] as in Chapter 6, but we use an implicit Euler method to solve the veloc-
ity equation compared to the explicit Euler method used in Chapters 6 and 7 (see
Appendix C for details). Moreover, the velocity for each implicit Euler step is solved
using a secant method. We use an implicit method because the unsteady motion of the
droplet arises in the parameter space region of very small κ and very large β where
the integro-differential equation describing droplet’s motion becomes a stiff equation.
The dimensionless time step is fixed to ∆t = 2−6.

We identify four distinct dynamical regimes from simulations. We observed a steady
walking solution where it is linearly stable as identified in figure 8.2. We observe that
the unstable region identified in figure 8.2 is mainly dominated by random walk-like
motion. A typical trajectory of the walker undergoing random walk-like motion is
shown in figure 8.4(a). Here the droplet performs inline oscillations while walking and
switches the walking direction erratically resulting in a random walk-like dynamics.
By observing the time series of the droplet’s velocity in figure 8.4(b), we see that the
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 8.4 : Trajectories showing the random walk-like motion and the self-trapped
oscillations of a droplet with a Bessel wave field. (a) Position-time plot and (b)
velocity-time plot along with (c) phase space plot showing the projection of the chaotic
attractor for the random walk-like motion of the droplet at κ = 0.13 and β = 101.
(d) Position time and (f) velocity-time plots along with the (e) velocity-position and
(g) acceleration-velocity phase space plots for self-trapped oscillations of a droplet at
κ = 0.13 and β = 128.

erratic switches between positive and negative velocities correspond to switch in the
walking direction the droplet. Moreover, the acceleration-velocity phase space plot (see
figure 8.4(c)) reveals the projection of the underlying chaotic attractor.

In very small isolated regions of the parameter space, we observe oscillating walkers
and self-trapped oscillations. In the oscillating walker state, the droplet walks in one
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direction with inline oscillations. We refer the reader to the work of Durey et al. [117]
who investigated the oscillating walker dynamics arising from a Bessel wave field in
detail. For self-trapped oscillations, the droplet trapped itself under its self-generated
wave field and performs periodic back-and-forth motion. A trajectory plot and a velocity
time series of this motion is shown in figures 8.4(d) and (f) respectively. Moreover, the
phase space dynamics shows closed loops due to the periodic nature of the oscillations
(see figure 8.4(e) and (g)). We note that such self-trapped periodic oscillations were
also observed by Durey [118] (see Section 5.2 of this work) using their discrete-time
pilot-wave model.

8.5 Droplet dynamics with a Gaussian wave field

Choosing a Gaussian form of the wave field F (x) = e−(x/2)2 results in f(x) =
(x/2)e−(x/2)2 in equation (8.5). The corresponding steady walking solution obtained
from equation (8.6) is then given by

u = βu

2

∫ ∞

0
z e−(uz/2)2−zdz = β

u

(
1 −

√
πe1/u2erfc(1/u)

u

)
, (8.10)

which in the limit of large β, scales as u ∼
√
β.

The linearly stability analysis results in solving for the poles of X1(s) in equation
(8.8) with f(0) = 0 and

g(s) = L

{(
−u2t2

4 + 1
2

)
e−(ut/2)2−t

}
.

We find that for the Gaussian form of wave field considered here, the steady walking
solution always remains stable. Hence we only get two qualitatively different behaviours
when a Gaussian wave field is used: (i) No walking for β ≤ 2 and (ii) steady walking
for β > 2. This suggests that perhaps, oscillations in the wave field are necessary for
the steady walking motion of the droplet to become unstable.

8.6 Droplet dynamics with a sinusoidal wave field

8.6.1 Steady walking solution and linear stability analysis

Choosing a sinusoidal wave form, F (x) = cos(x)/2, results in f(x) = sin(x)/2 and the
steady walking solution using equation (8.6) is given by,
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u = β

2

∫ ∞

0
sin(uz) e−z dz = βu

2(1 + u2) ,

which on solving for u gives,

u = ±
√
β

2 − 1.

By substituting f(0) = sin(0)/2 = 0 and

g(u, s) = L
{
f ′(ut) e−t

}
= s+ 1

2(u2 + (s+ 1)2) ,

in equation (8.8), we get the following equation to solve for the poles of X1(s),

(κs2 + s− 1)(2s2 + 4s+ β) + β(s+ 1) = 0. (8.11)

To find the onset of instability of the steady walking solution in (κ, β) parameter
space, we substitute s = iω in equation (8.11) and solving the resulting equation gives,

β = 2(1 + 4κ)
κ(1 − 2κ) , (8.12)

and
ω2 = β − 2

2κ+ 1 . (8.13)

8.6.2 Reducing the integro-differential equation to a finite
system of ODEs

For the sinusoidal wave field, we can rewrite integro-differential equation (8.5) as a
finite system of ODEs. Substituting the sinusoidal wave field in equation (8.5) and
using the addition formula for sine we get,

κ
d2xd

dt2
+dxd

dt
= β

2 sin(xd(t))
∫ t

−∞
cos(xd(s)) e−(t−s)ds−β

2 cos(xd(t))
∫ t

−∞
sin(xd(s)) e−(t−s)ds.

Now let y(t) =
∫ t

−∞ cos(xd(s)) e−(t−s)ds and z =
∫ t

−∞ sin(xd(s)) e−(t−s)ds then y and
z are the solution of the following ODEs

ẏ + y = cos(xd(t)),

ż + z = sin(xd(t)).



142 Unsteady dynamics of a walking droplet

No walking

Stable steady walking

Unstable steady walking

Figure 8.5 : Linear stability diagram in the (κ, β) parameter space for inline pertur-
bations to the steady walking solution of a single droplet using the sinusoidal wave
field.

Moreover, let ẋd = vd, then we have the following set of ODEs:

ẋd = vd,

κv̇d + vd = β

2 (y sin(xd) − z cos(xd)) ,

ẏ + y = cos(xd),
ż + z = sin(xd).

(8.14)

8.6.3 Simulations in the parameter space

We have explored the dynamics of a droplet with a sinusoidal wave field numerically
in the (κ, β) parameter space. We observed rich dynamical behaviour as shown in
figure 8.6. The simulations were performed by solving equations (8.14) in MATLAB
using the ode45 solver. We initialised the simulations assuming the droplet to be in
the steady walking state resulting in the following initial conditions for the system of
ODEs: xd(0) = 0, vd(0) = u, y(0) = 1/1 + u2 and z(0) = −u/1 + u2. The simulations
were run for a time t = 1000.

We observed four qualitatively different types of behaviours. As per the linear
stability analysis, we observed steady walking for relatively small β at all κ values and



8.6 Droplet dynamics with a sinusoidal wave field 143

Steady walker Oscillating walker

Self-trapped oscillations Random walk-like motion

Figure 8.6 : Different dynamical behaviours observed in the (κ, β) parameter space
at t = 1000 from simulations initiated in the steady walking state at t = 0 using
the sinusoidal wave field. We explore the parameter space region 0.025 ≤ κ ≤ 0.55
and 0 < β ≤ 500 with resolution ∆κ = 0.025 and ∆β = 1. We observe steady
walking (blue), oscillating walker (yellow), self-trapped oscillations (green) and random
walk-like motion (red). The solid black curve is the linear stability curve from figure 8.5
separating the steady walking and the unsteady walking regime.

we also observe steady walking for large κ at all β values. For small κ and large β, we
observed more exotic dynamics such as oscillating walker, self-trapped oscillations and
random walk-like dynamics.

In the oscillating walker regime, the droplet performs inline oscillations in the
direction of motion about some mean velocity. We note that the oscillating walkers
observed here span a larger region in the parameter space compared to the small
isolated regions of oscillating walkers obtained using the Bessel wave field.

We also find self-trapped oscillations similar to the one obtained for Bessel function
wave field. However, we again find an extended region in the parameter space where
these self-trapped oscillations are observed compared to small isolated regions of self-
trapped oscillations in the Bessel wave field. This is presumably due to the absence
of spatial decay in the sinusoidal wave field compared to the Bessel wave field, which
enhances interference of the waves in the far-field. Two typical trajectories along with
the phase-space plots are shown in figure 8.7. The type of oscillations can be different
where we have observed a simple closed loop or a dumbbell shaped closed loops in
phase space. We note that similar periodic oscillations were also observed by Moláček
[119] in his exploration of the walker dynamics along a line in a central force with a
sinusoidal wave field.
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(a)

(b)

Figure 8.7 : Self-trapped oscillations of the walking droplet using the sinusoidal wave
field. Self-trapped oscillations showing the back-and-forth motion of the droplet and
the corresponding phase space plot for κ = 0.3 and (a) β = 170 and (b) β = 400.

We also observe the random-walk like dynamics of the walker similar to the one
observed for the Bessel wave field. Here also the droplet performs a random walk-like
motion where it switches its walking direction erratically. Since the sinusoidal wave
field is simpler than the Bessel wave field, we explore the chaotic and statistical aspects
of random walk-like motion mainly using the sinusoidal wave field in Sections 8.7 and
8.8 respectively.

8.7 Chaotic aspects of the unsteady dynamics

8.7.1 Lorenz system and the droplet’s dynamics

One of the classic systems that exhibits chaotic behaviour is the celebrated Lorenz
system [120] defined as follows:

dX

dt
= σ(Y −X),

dY

dt
= −XZ + rX − Y, (8.15)

dZ

dt
= XY − bZ.

This system has three fixed points: (i) X = Y = Z = 0 (unstable), (ii) X = Y =√
b(r − 1) and Z = r−1 (stable) and (iii) X = Y = −

√
b(r − 1) and Z = r−1 (stable)
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(a)

(b)

(c)

Figure 8.8 : Comparison of the chaotic behaviour in the droplet’s dynamics using (a) a
sinusoidal wave field (κ = 0.2, β = 35) and (b) a Bessel wave field (κ = 0.1, β = 90)
with (c) the Lorenz system (r = 28, b = 8/3, σ = 10). For the droplet’s dynamics,
the time series of velocity v is shown in the left panel, the projection of the chaotic
attractor in the (v, v̇) phase space in the middle panel and the 1D return map for the
maximum absolute velocity is shown in the right panel. For the Lorenz system, similar
plots are shown for the variable X.

for 1 < r < rc with rc = σ(σ + b + 3)/(σ − b − 1). When r > rc, all fixed points are
unstable and the system exhibits either periodic or chaotic behaviour on a strange
attractor [121].

Figure 8.8 shows a comparison of the chaotic behaviour from the Lorenz system
with that from the unsteady regime of the droplet’s dynamics using a sinusoidal wave
field and a Bessel wave field. The velocity time series for the droplet’s dynamics seems
to have striking similarity with the time series for the variable X obtained from the
Lorenz equation (see figure 8.8 (a)-(c) left panel). The phase space dynamics of the
droplet in the (v, v̇) space reveals the projection of the underlying chaotic attractor
which is very similar to the projection of the Lorenz attractor in the (X, Ẋ) space (see
figure 8.8 (a)-(c) middle panel). A plot of the consecutive maxima of oscillations of |X|
in the Lorenz system, i.e. |Xn+1| against |Xn|, results in the classic cusp map. Indeed,
we see similar cusp maps for the consecutive maxima of the velocity oscillations |v| in
the droplet’s dynamics as shown in the right panel of figure 8.8 (a)-(c).
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Inspired by the above similarities between the Lorenz system and the droplet’s
dynamics, we further explore the connection between the two systems. Intriguingly,
Takeyama [122] showed that the system of Lorenz equations in (8.15) can be recasted
into an integro-differential equation for the variable X(t). By eliminating the variable
Y in equation (8.15) we get,

Ẍ + (1 + σ)X + σ(1 − r + Z)X = 0, (8.16)

Ż + bZ = X(X + Ẋ/σ). (8.17)

We can further eliminate Z by solving equation (8.17) and substituting into equation
(8.16). This results in the following integro-differential equation for X(t),

Ẍ + (1 + σ)Ẋ + σX

[
1 − r + 1

2σX
2 + (1 − b

2σ )
∫ ∞

0
X2(t− z) e−bz dz

]
= 0. (8.18)

This equation describes the steady-state (far from the initial transient) chaotic
dynamics of the Lorenz system defined in equation (8.15). In equation (8.18), we
have dropped the terms due to the initial values that decay exponentially in time and
assumed that the motion has started at an infinite past [122, 123]. If we assume that b
is very large and approximate the exponential in the integral of equation (8.18) by a
delta function, then the equation reduces to

Ẍ + (1 + σ)Ẋ + dU

dX
= 0,

with
U(X) = σ

(1 − r

2 X2 + 1
4bX

4
)
.

This equation can be interpreted as one-dimensional motion of a particle with unit
mass in a quartic potential well U(X) with friction coefficient 1 + σ [122, 124]. For
r > 1, the quartic potential well takes the form of a double-well potential with stable
fixed points at X = ±

√
b(r − 1) and an unstable fixed point at X = 0. We can rewrite

equation (8.18) as

Ẍ + (1 + σ)Ẋ + dU

dX
+
(
σ − b

2

)
X
∫ ∞

0

(
X2(t− z) −X2(t)

)
e−bz dz = 0. (8.19)

The above equation can be interpreted as a particle of unit mass and a friction
coefficient 1 + σ in a potential well U(X) with an additional force that depends on
the history of the motion. Without the memory term, the particle would stop in one
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(a) (b)

(c) (d)

Figure 8.9 : Flip-flop process in the velocity time series of the droplet with a sinusoidal
wave field at κ = 0.2 and β = 35. (a) The velocity time series along with circles at
the extrema of the oscillations are shown. The red filled circles indicate the extreme
values before and after the flip. (b) Map of absolute value of consecutive extrema in
the time series i.e. the absolute value of the consecutive circle in the left panel. The
red and black branch corresponds to the red and black circles in the time series. (c)
Same time series as in (a) but the markers now highlight the extreme values after a
flip with a fixed number of N oscillations between them. The N = 0 (red circles),
N = 1 (yellow circles) and N = 2 (purple circles) are shown. (d) The map showing
consecutive absolute values of the extrema after a flip with the N = 0, N = 1 and
N = 2 branch highlighted.

of the minima of the double-well potential U due to the damping force −(1 + σ)Ẋ.
The memory forcing sustains the particle motion. The particle oscillates in one of
the minima with growing amplitude until it has sufficient energy to cross the barrier
at X = 0 [123, 125]. The unpredictability of this crossing behaviour results in the
emergence of chaotic behaviour as shown in figure 8.8(c).
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(b)

(c)

(d)

(e)

(a)

Figure 8.10 : (a) Velocity bifurcation diagram showing the peaks and troughs of the
velocity time series as a function of the parameter β and a fixed κ = 0.2. The time
series of velocity and the corresponding map for the maximum consecutive absolute
values are shown for (b) β = 35, (c) 220 , (d) 240 and (e) 320.
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Now the integro-differential equation describing the motion of the droplet with a
sinusoidal wave field from equation (8.5) is given by,

κẍd + ẋd = β
∫ ∞

0
sin (xd(t) − xd(t− z)) e−z dz, (8.20)

where we have changed the variable in the integral using z = t− s. By differentiating
this equation with respect to time, we obtain the following integro-differential equation
for the velocity of the droplet,

κv̈d + (1 + κ)v̇d + vd

[
1 − β

∫ ∞

0
cos (xd(t) − xd(t− z)) e−zdz

]
= 0. (8.21)

By comparing equations (8.18) and (8.21), we can see that both equations have
similar structure with an inertia term, a damping term and a memory forcing term.
Although the form of the memory forcing is different in the two equations, we see from
figure 8.8 that they give rise to similar chaotic dynamics in regions of the parameter
space hinting at a deeper connection between the two systems. We also refer the reader
to the recent work of Durey [126] who have used the properties of Lorenz equations
as a guide to explored the bifurcations and chaos in the droplet’s dynamics with an
equation that is equivalent to equation (8.20).

8.7.2 1D map of the velocity time series

We further explore the 1D cusp-like map obtained when the consecutive maximum
values of absolute velocity are plotted against each other. As shown in figure 8.9, we
find that the ascending branch on the cusp map corresponds to absolute extreme values
of velocity oscillations when the droplet is moving in the same direction (black empty
circles) while the descending branch corresponds to the absolute extreme values of
velocity oscillations when a flip occurs in the velocity time series or equivalently the
walking direction (red filled circles).

To analyse this further, we only look at the maximum absolute velocity after a
flip occurs and plot their consecutive values against each other (see figure 8.9(c) and
(d)). Here we find a band like structure similar to the Gauss map [127] with each
band corresponding to a fixed number of N oscillations between flips. The branches
corresponding to N = 0 (red), N = 1 (yellow) and N = 2 (purple) are shown.

Figure 8.10(a) shows the velocity bifurcation diagram where the extreme values
in the velocity time series vp are plotted against the parameter β. The bifurcation
diagram reveals regions of periodic and chaotic dynamics as a function of β for a fixed
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Figure 8.11 : Schematic showing that a typical velocity time-series v(t) of the droplet
in the random walk-like regime can be though of as a sum of a flip-flop process J(t) and
an exponentially increasing sinusoidal S(t) which dictates the flip after the amplitudes
reaches some threshold value [128].

κ. Figure 8.10(b)-(e) shows the velocity time series and the 1D map of consecutive
maximum values of absolute velocity at different β values. At low β, near the onset
of the unsteady regime, we find that the map has a cusp like structure similar to
that observed for a Lorenz map. At large β, we see folding talking place in the cusp
map. Interspersed between the chaotic regimes are periodic regimes where the 1D map
collapses to a compact region. For β ≳ 330, the droplet transitions from the chaotic
regime to oscillating walker regime and then eventually to self-trapped oscillations.

8.8 Statistical aspects of the unsteady dynamics

8.8.1 Statistical properties of the flip-flop process

Aizawa [128] analysed the chaotic aspects of the Lorenz system by decomposing the
time series in the Lorenz system into a flip-flop process and sinusoidal oscillations
with increasing amplitude. As shown schematically in figure 8.11, we take a similar
approach for the droplet’s velocity time series and focus on the statistical aspects of
the flip-flop process.

The flip-flop process in the droplet’s velocity time series can also be thought of as
the switches between the two attracting basins of the chaotic attractor projection shown
in the middle panel of figures 8.8(a) and (b). Denoting the left and right attracting
basins by L and R respectively, the dynamics of the flip-flop process will generate a
sequence of states LLRRLR... for each trajectory (see figure 8.12(a) and (b)). The
probability of being found in each state, L or R, is given by Pr(L) = Pr(R) = 1/2,
due to the symmetry of the system. If the flip-flop process is Markovian, then the
transition probabilities should be constant. Calling p the probability of flipping or
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(a) (b)

(c) (d)

(e) (f)

L

R
LRRRRRLRLR

Figure 8.12 : Statistics of the flip-flop process for κ = 0.2 and β = 65 using the
sinusoidal wave field. (a) Time series of velocity for a typical droplet’s trajectory in
the random walk-like regime using the sinusoidal wave field and (b) the corresponding
projection of the chaotic attractor. The attractor has two basins that are labelled left
‘L’ and right ‘R’. Panel (c) shows the probability distribution for having m oscillations
between flips, while panel (d) shows the probability distribution for the number of
jumps J in a given sequence of M steps. In both panels (c) and (d), the histogram
is from the numerical simulations while the red curves are best fits obtained using
equations (8.22) and (8.23) respectively. Panel (e) shows the stationary probability
distribution for velocity while panel (f) shows the plot of velocity autocorrelation
function. In both the panels, the blue curve is from numerical simulations while the
green curve is the fit obtained by using Langevin model with dichotomous noise.
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jump we have Pr(L|R) = Pr(R|L) = p, while the probability of not switching the state
is given by Pr(L|L) = Pr(R|R) = 1 − p [129].

For a sequence LLRLRRLRRL..., one can generate a chain NJJJNJJNJ...,
where J denotes an occurrence of a jump and N denotes no jump has occurred. If
the process is Markovian, then the probability that the phase-space trajectory will
execute m turns after entering a basin before it jumps out of the basin is given by the
distribution [128, 129]

Pr(m) = p(1 − p)m−1. (8.22)

Similarly, the probability that J jumps have occurred in a sequence of M turns is
given by [128, 129]

Pr(J |M) =
(
M

J

)
pJ(1 − p)M−J . (8.23)

We can estimate these probabilities from long enough chains of the flip-flop process
from simulations by using

Pr(m) =
∑N

k=1 δm,ik

N
and Pr(J |M) =

∑T
k=1 δJ,Jk

T
. (8.24)

Here δ is the Kronecker delta, ik represents number of turns executed in the basin
between k − 1st and kth jump, N is the total number of jumps in the sample and Jk

is the number of jumps occurring in each of the T sequences of M turns of the kth
subdivided sample.

Figure 8.12(c) and (d) shows the comparison of these probability distribution
calculated from ensemble average of 100 trajectories in the simulations (histograms)
and the corresponding best fits of equations (8.22) and (8.23) for a typical κ and β

value in the random walk-like regime. For the parameters chosen in figure 8.12, we
obtain p = 0.376. We find a good fit at these parameters suggesting that Markovian
approximation is reasonable in regions of the parameter space. However, we note that
this is not always true in all the unsteady regimes of the parameter space.

We compare the equation of motion of the droplet, (8.5), with a Langevin-type
equation that describes the motion of a particle under stochastic forcing [130],

q̇ + γq = ξ(t). (8.25)

Here q is the dynamical variable, γ is the friction coefficient and ξ(t) is the stochastic
forcing. Comparing equation (8.25) with the droplet’s equation of motion with a
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sinusoidal wave field,

v̇d + 1
κ
vd = β

κ

∫ ∞

0

1
2 sin(xd(t) − xd(t− z)) e−z dz, (8.26)

we see that the dynamical variable q is equivalent to the velocity v of the droplet,
the friction coefficient γ is equivalent to 1/κ and the stochastic forcing in equation
(8.25) takes the place of memory forcing in the droplet’s equation of motion. The time
evolution of the memory force in the random walk-like regime of the walker is very
similar to the velocity time series with the force switching erratically between positive
and negative values with oscillations. We can crudely approximate the memory force
time series for the droplet as a flip-flop process and ignore the oscillations. Then, the
force time series of the droplet resembles a dichotomous process where the values of the
force flips randomly between only two possible values. Hence if we choose the stochastic
noise ξ(t) in equation (8.25) to be a dichotomous process, then we can compare the
Langevin dynamics results with the numerical simulations of the droplet’s dynamics.
We assume that ξ(t) is a dichotomous process that will have only two possible values
±∆ with equal probability and jumps between them at a rate λ/2 [130]. This form of
the forcing has zero mean and autocorrelation

⟨ξ(t)ξ(t′)⟩ = ∆2e−λ|t−t′|.

For the droplet’s dynamics this value of ∆ can be approximated by ∆ ≈ u/κ

where u =
√
β/2 − 1 is the steady walking speed for the sinusoidal wave field. For

the Langevin equation described in (8.25), one can obtain an exact solution for the
stationary probability distribution for the variable q [130] which gives,

Pst(q) = N(∆2 − γ2q2)λ/2γ−1, (8.27)

where
N = γΓ(1/2 + λ/2γ)

∆λ/γ−1Γ(1/2)Γ(λ/2γ) . (8.28)

The corresponding autocorrelation function for the variable q in the stationary
regime is

⟨q(t)q(t′)⟩ = −λ∆2

γ(γ2 − λ2)e−γ(t−t′) + ∆2

γ2 − λ2 e−λ(t−t′). (8.29)

A comparison of the Langevin model results with the numerical results for the
stationary probability distribution of droplet’s velocity and the velocity autocorrelation
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(a) (b)

(c) (d)

(a) (b) (c) (d)

Figure 8.13 : Random-walk like dynamics of the droplet. Diffusive exponent α as a
function of the parameter β for a fixed κ = 0.2. Typical trajectories at (a) β = 50, (b)
100, (c) 200 and (d) 300 are shown.

function is shown in figures 8.12(e) and (f) respectively. We find that the Langevin
model captures the qualitative features of both of these plots.
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8.8.2 Analysis of the diffusion-like dynamics

In 1828, Robert Brown observed the erratic motion of small particles suspended in water.
We now know this as Brownian motion. Brownian motion plays a key role in modelling
of many random behaviours in nature and it is typically modelled by considering
random impulsive forces acting on particles. However, numerous investigations have
shown that the existence of Brownian-like motion from deterministic dynamics (also
known as deterministic diffusion) in both discrete and continuous systems (see [131–
134, 123, 135] and the reference therin). In particular, deterministic diffusion have
been shown in differential delay equations [123, 136].

By investigating the trajectories in the random walk-like regime of the droplet with
a sinusoidal wave field, we also obtain diffusion-like behaviour for the droplet. The
diffusive behaviour of a system can be characterised by calculating how the mean
squared displacement (MSD) scales with time i.e., MSD ∼ tα with α the diffusive
exponent. If α = 2 then the motion is ballistic while diffusive motion has 0 < α < 2
with 0 < α < 1 indicating sub-diffusive behaviour, α = 1 indicating diffusive motion
and 1 < α < 2 indicating super-diffusive behaviour. We calculate the diffusive exponent
α from an ensemble of 1000 trajectories with each trajectory run for t = 1000. We
plot this diffusive exponent α as a function of the parameter β for a fixed κ as shown
in figure 8.13. We observe ballistic motion in the steady regime and in the random
walk-like regime, the diffusive exponent drops below 1 indicating that the motion is
sub-diffusive. Some typical trajectories in the random walk-like regime are shown in
figures 8.13(a)-(d).

We also note that as previously described, the Lorenz system can be written as an
integro-differential equation that describes a particle in a double-well potential. If the
double-well potential is substituted by a periodic potential then diffusive behaviour
like we see here is also obtained in the Lorenz system [123].

8.9 Conclusion

We have explored the unsteady dynamics of a walking droplet in the (κ, β) parameter
space using the stroboscopic model of Oza et al. [88] with three different forms of the
wave field: Bessel wave field, Gaussian wave field and sinusoidal wave field. Performing
a linear stability analysis of the steady walking solution using a Gaussian wave field
shows that the steady walking motion is stable in all of parameter space. Conversely,
for the Bessel wave field and the sinusoidal wave field, the linear stability analysis shows
regions in the parameter space where the steady walking solution becomes unstable and
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a variety of unsteady motions are realised including oscillating walkers, self-trapped
oscillations and random walk-like motion.

We have explored the chaotic dynamics of the droplet in the random walk-like regime
and observed that the velocity evolution of the droplet has striking similarity with
the evolution of the X variable in the Lorenz system and the projection of the chaotic
attractor have similar structure. Moreover, the Lorenz equations can be recasted into
an integro-differential equation that has similar form to the velocity equation for the
droplet. This suggests a deeper connection between the two systems and warrants
further investigation.

On exploring the statistical aspects of the droplet’s velocity time series in the
random walk-like regime, we find that in certain regions of the parameter space,
the statistics of the chaotic switching in the walking direction of the droplet can be
approximated by a Markovian process. Moreover, using the Langevin equation with
a dichotomous noise we are able to capture the qualitative aspects of the stationary
velocity distribution as well as the velocity autocorrelation function in the droplet’s
dynamics.



Chapter 9

Conclusions and outlook

In Part I of the thesis, we presented experimental and numerical results of a new
class of self-propelled droplets, coined superwalkers, that emerge when a bath of
liquid is simultaneously driven at a frequency and half that frequency with a relative
phase difference between them. Superwalkers are bigger and faster than typical single-
frequency driven walkers and they enable new types of inter-droplet interactions that
give rise to a plethora of new multi-droplet behaviours.

We presented an experimental investigation of superwalking droplets in Chapter
3 where we characterised the dynamics of solitary superwalkers. We showed that
superwalkers can be more than twice the size and walk at more than triple the speed of
typical walkers. Moreover, the superwalking behaviour was found to be sensitive to the
phase difference between the two driving frequencies which results in the droplets having
bouncing, coalescence and superwalking regimes depending on this phase difference.
We also noted that the inertia dominated superwalkers enable a new type of interaction
between droplets, where the droplets can overcome the underlying wave field and can
have short range droplet-droplet interactions. This results in novel dynamical bound
states for few superwalkers and emergent behaviours when many superwalkers interact.

Single-frequency driven walkers have been shown to mimic several quantum ana-
logues [51]. Thus, it would be interesting to revisit these experiments using superwalkers.
Superwalkers provide an extra degree of freedom where the phase difference between
the two driving signals can be used to tune the speed of the superwalkers. Thus, for
example, in quantum corral analogues where a walker confined in a circular cavity
displays wavelike statistics [35], it would be interesting to investigate the statistics of
superwalkers and how those statistics change as a function of the superwalking speed
which can be varied by varying the phase difference. This may give us new insights
into the role of inertia in these hydrodynamic quantum analogues.
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The observed collective dynamics of many superwalkers (see figure 3.13) are rem-
iniscent of a solid-liquid-gas-like phase transition with the forcing amplitude acting
as a temperature parameter. One can use the tools from statistical mechanics to
characterise this phase transition behaviour. Moreover, it seems conceivable that in
the ‘gas’ state, it may be possible to formulate an equilibrium statistical mechanics
theory for superwalkers, as their motion in this regime is similar to that of an ideal gas
of particles.

Superwalking droplets also constitute an example of active particles that extract
energy from the vibrating bath and convert it to mechanical walking motion [137].
Specifically, superwalkers form a unique system of active particles that are dominated
by inertia and can have both long-range interactions mediated by the underlying wave
field as well as short-range droplet-droplet interactions. In the flourishing field of
active matter, most of the focus have been towards studying systems where inertia
of the active particles can be neglected. Emergent behaviours of inertia dominated
active matter has not been explored much [137] and the superwalking droplets make a
suitable system for such investigations.

In Chapter 4, we explored superwalking droplets numerically by adapting the
previously established theoretical models for walkers to two-frequency driving and
derived a new model for the superwalker wave field. We showed that superwalking
emerges because driving the bath at two frequencies with an appropriate phase difference
raises every second peak and lowers the intermediate peaks in the vertical periodic
motion of the fluid surface allowing the large droplets to leap over intermediate
peaks and settle in a resonant bouncing mode. We were successfully able to capture
the experimentally observed superwalker characteristics for small- to moderate-sized
superwalkers. Our model failed to capture the dynamics of large superwalkers. We
suspect that to reproduce these large superwalkers in simulations, the droplet-wave
interactions need to be modelled more accurately. Galeano-Rios et al. [68] have
developed a model that provides a more complete description of the walking droplet
system by detailed modelling of the droplet-wave interaction. Using their model, they
have been able to capture the superwalking behaviour of a moderate sized droplet. It
would be interesting to explore the large superwalkers using this model and to see if
their characteristics are captured.

In Chapter 5, we presented a novel type of locomotion, stop-and-go motion (SGM),
exhibited by superwalkers when the two driving frequencies are slightly detuned. Such
motion arises because the small value of detuning results in a continuously varying
phase difference that causes the droplet to periodically traverse the pure bouncing (stop)
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and superwalking (go) regimes in speed versus phase difference space. By numerically
exploring the SGM in the parameter space, we found three distinct types of motion.
These are uncorrelated random walk-like motion where superwalking direction and
the distance travelled appear to vary chaotically, and correlated motion, where either
back-and-forth or forth-and-forth motion is observed. I plan to explore these behaviours
in more detail in future to have a deeper understanding of the underlying mechanism
that gives rise to correlated stop-and-go dynamics. Moreover, by engineering time
dependent functions of the phase difference, one may be able to manipulate and control
the motion of superwalking droplets.

In Part II of the thesis, we theoretically and numerically explored the dynamics
and correlations of two droplets as well as the unsteady dynamics arising due to
interfering memory of a single droplet using a stroboscopic model. We observed rich
nonlinear dynamics for both a single droplet and droplet pairs that we have attempted
to rationalise.

We began Part II of the thesis by exploring theoretically and numerically the
dynamics of two identical, in-phase bouncing droplets and observed a rich range of
behaviours. We captured the experimentally observed states such as parallel walkers
and promenading pairs as well as more exotic dynamics such as wandering walkers
and intriguing closed-loop trajectories. These more exotic trajectories have not been
observed for walking droplets in experiments. However, we note that the spatial extent
of some of these exotic trajectories, such as discrete turning walkers, is much larger than
current experimental setups. Hence it would be interesting to explore the two-droplet
dynamics systematically on a spatially extended experimental setup to see if any of
these exotic behaviours are realised. Even with just two droplets, we get a rich range
of exotic trajectories and hence it would be interesting to numerically explore the
dynamics of many droplets as it may give rise to novel collective behaviours in walking
droplets system.

A novel bound pair of droplets, called chasers, has been observed in experiments
with superwalkers (see figure 3.10). For two identical, in-phase droplets we found the
chasers to be unstable in Chapter 6. However, adding a spatial decay to the wave field
in the stroboscopic model resulted in stable chasers for the same system in Chapter
7. Thus, it would be interesting to understand the dynamics of two identical droplets
in a chasing pair in more detail. Moreover, the common chasing pairs observed with
superwalkers in experiments are mismatched with the leading droplet being bigger than
the trailing droplet. Hence, it would be interesting to explore different sized droplets
in a chasing pair using the stroboscopic model.
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In Chapter 7 we numerically studied the non-Markovian dynamics of pairs of walking
droplets with crossing paths that are initially separated by a large inter-droplet distance.
We have studied the probability that the droplets remain unbound as a function of
their path difference to the common origin. We have found three generic classes of
two-droplet correlations: promenading, orbiting and chasing, that are identified as dips
in the probability plots. These numerical experiments correspond to a hydrodynamic
analogue of the Hong–Ou–Mandel (HOM) two-photon interference experiment without
a beam splitter. It will be interesting to explore such a setup of two-droplet correlations
in experiments with walkers and superwalkers. It is known that for both classical
waves and for classical particles the visibility of the HOM dip cannot exceed 50% [110].
It is therefore reasonable to assume the same to be true also for classical composite
objects comprised of a droplet and a wave. To achieve a closer analogue of the HOM
interference experiment, a hydrodynamic equivalent of a 50/50 beam splitter would
need to be implemented. One such candidate could be a subsurface barrier with which
a hydrodynamic analogue of quantum tunnelling has been demonstrated [44, 46, 45].
If the height and the width of such a barrier are suitably tuned, then in principle it
should be possible to have a subsurface barrier reflect or transmit a single walker with a
50% probability. However, the reflection of a walker from a subsurface barrier is known
to be sensitive to the incident angle and it might be difficult to overcome this subtlety
in practice. Another scenario, motivated by the atomic HOM experiments [112], would
be to direct the droplets through a grid barrier that would act as a Bragg diffraction
grating for the droplets.

In Chapter 8, we explored the unsteady dynamics of a single droplet using different
forms of the wave field in the stroboscopic model. We showed that for a Bessel wave
field and a sinusoidal wave field, the steady walking motion of a single droplet becomes
unstable for small inertia and large wave forcing and three distinct types of unsteady
motions - oscillating walkers, self-trapped oscillations and random walk-like dynamics,
are realised. On further exploring the chaotic dynamics of a walker in the random
walk-like motion regime we found similarities in the chaos between the Lorenz system
and the droplet’s dynamics. Moreover, the Lorenz equations can be recast into an
integro-differential equation that has a similar form to the velocity equation for the
droplet. This suggests that we may be able to form deeper connections between these
two system by studying the droplet’s chaotic dynamics in more detail. Maybe, in some
appropriate limit, the velocity equation of a walker reduces to the Lorenz equations
allowing to form a robust connection between the two systems. Moreover, by studying
the velocity statistics in the random walk-like regime, we found that in some regions
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of the parameter space, the chaotic droplet dynamics can be well approximated by
a Markovian process. Diffusion-like behaviour in deterministic systems, also know
as deterministic diffusion [123, 125], has been known to arise in differential delay
equations [136] where, similar to the droplet’s trajectory equation in the stroboscopic
model, the dynamics depend on the history. Applications of deterministic diffusion in
modelling physical or biological phenomena that display stochastic behaviour may be
interesting to explore because what is typically thought to be a signature of a random,
nondeterministic process could well be a signature of a completely deterministic
process [136].

Superwalkers open a new parameter regime to explore in the established area of
walking droplets. They enable a new type of droplet-droplet interaction that gives rise
to novel multi-droplet behaviours. Studying superwalkers may give us new insights in
the areas of hydrodynamic quantum analogues and active matter. Moreover, integro-
differential equations that model the dynamics of walking droplets give rich range of
dynamical behaviours. The study of droplet dynamics performed in this thesis lays the
foundation for exploring hydrodynamic quantum analogous in a generalised pilot-wave
framework.
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Appendix A

Effects of horizontal vibrations and
air currents in experiments

Effects of horizontal vibrations

The oscillations of the bath were not completely uniaxial and unavoidably had horizon-
tal components of acceleration, ΓH40 and ΓH80, corresponding to the primary f = 80 Hz
driving and subharmonic f/2 = 40 Hz driving. We performed additional experiments
to quantify their effect on the superwalking behaviour. Over a period of half an hour of
continuous use of the experimental setup, these horizontal accelerations approximately
doubled in magnitude for constant vertical acceleration. During this time, we recorded
the superwalking speed of different sized droplets. A small- to moderate-sized super-
walker continued to walk for the entire half an hour duration while jumbo superwalkers
typically coalesced a few times presumably due to the impurities present on the liquid
surface. Thus, multiple identical jumbo superwalkers were created using a syringe
over the half an hour duration. The results are shown for several droplet sizes in
figure A.1(a). In addition, we added an off-centre weight to the bath in one case to
deliberately amplify the horizontal vibrations further. As shown in figure A.1(a), the
horizontal accelerations only have a small effect on the walking speed indicating that
the superwalking behaviour is quite robust.

Effects of air currents

To the naked eye, superwalkers seem more robust than walkers as they do not seem
to be affected significantly by the ambient air currents, presumably due to their large
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(a) (b)

Figure A.1 (a) Speed of a superwalker as a function of the horizontal vibration
amplitude ΓH40 (the larger of the two horizontal accelerations). Here the vertical
vibration amplitudes were Γ80 = 3.8, Γ40 = 0.6 and the phase difference ∆ϕ = 130◦.
To obtain the dataset at higher values of ΓH40, indicated by an asterisk in the legend,
an off-centre weight was added to the bath to deliberately increase the horizontal
vibration component. (b) Comparison of speeds of droplets of different sizes with and
without the lid on top of the bath. Parameters Γ80 = 3.8, Γ40 = 0.6, and ∆ϕ = 130◦.

inertia. However, to quantify the effect of ambient air currents on the superwalkers,
we performed additional experiments with and without a lid covering the bath. We
used a clear acrylic lid with a rubber sheet acting as a sealant between the lid and
the bath. The results of these control experiments are shown in figure A.1(b). Based
on these results we conclude that the air currents do not have a major effect on the
droplet speed.



Appendix B

Determination of parameters in
simulations with superwalkers

The theoretical model for simulating superwalkers presented Chapter 4 has three
free parameters that are currently not known for superwalkers: (i) the dimensionless
spring constant K (ii) the dimensionless damping coefficient B and (iii) the contact
drag coefficient C. In our study we fixed C = 0.17, a typical value that is used for
walkers [85]. To determine values of K and B, we simulated superwalkers in the (K,B)
parameter space and selected values that provide a good fit to our experimental results
presented in Chapter 3. We found that using a constant values of K = 0.70 and
B = 0.60 provided a reasonably good fit for small- to moderate-sized superwalkers
on the ascending branch of the speed-size curves presented in figure 4.6, but failed
for the largest superwalkers on the ascending branch for Γ40 = 1. By allowing the
parameter K to vary linearly with the droplet radius R while keeping the parameter
B fixed to 0.60, we were able to obtain a better fit on the ascending branch for the
results presented in figure 4.6. To arrive at this linear relationship, we simulated
superwalkers for a fixed Γ80 = 3.8, ∆ϕ = 130◦ and four different values of Γ40 = 0, 0.3,
0.6 and 1. Droplet size that line to the ascending branch in figure 4.6 were simulated.
Typical graphs that show the droplet’s superwalking speed and bouncing modes are
shown in figure B.1. For each droplet size and Γ40 = 0.6 and 1, the region of the
(K,B) parameter space where the relative difference between the speed of a simulated
superwalker and the corresponding experimental value ∆u/uexp = (u− uexp)/uexp is
within 20% was determined and then a value of K was selected from that region that
matched with the experimentally observed bouncing mode. A linear best fit through
all such K values for different sized droplets results in one generic linear relationship
given in equation (4.27). We note that obtaining a more accurate dependence of K and
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(a) (b) (c)

Figure B.1 Determination of the parameter values K and B. Bouncing modes (markers)
and relative difference between the numerical and the experimental values of the walking
speed ∆u/uexp = (u− uexp)/uexp (contours) in the (K,B) parameter space for three
different droplet radii (a) R = 0.5 mm, (b)R = 0.6 mm and (c)R = 0.7 mm at Γ80 = 3.8,
Γ40 = 1 and ∆ϕ = 130◦. In all the three panels, blue circles are (1, 2, 1)H, green triangles
are (1, 2, 1)L, yellow asterisks ∗ are (2,4,2) and purple squares represent chaotic or other
higher periodicity bouncing modes. The cyan solid lines represent the boundaries of
the region inside which |∆u/uexp| < 20% and the red circle corresponds to our chosen
K according to (4.27) and a fixed B = 0.60.

B on R would require performing experiments of droplets of different radii rebounding
on a vibrating bath to obtain the corresponding K and B for each droplet radius R.
Since this is beyond the scope of the thesis, we have just used our existing experimental
results chosen K and B that best fit that experimental data.



Appendix C

Numerical Method for simulating
droplets in the stroboscopic model

To simulate pair of droplets in Chapter 6 and 7, we numerically integrate equations
(6.1) using the Leap-Frog method [97], a modified version of the Euler method where
the new horizontal and vertical positions of the droplet are calculated using the old
velocities and then the new velocities are calculated using the new positions. In
Chapter 6, for t < 0, the droplets are assumed to be in a parallel walking state with
xO1 = (xO1, yO1) = (0,U1(β)t) and xO2 = (xO2, yO2) = (D1(β),U1(β)t). The new
position of the droplet is calculated form the old position using a forward Euler step
as follows:

xi(tn+1) = xi(tn) + vi(tn)∆t

We calculate the new velocity using the updated position as follows,

vi(tn+1) = vi(tn) + ∆t
κ

β
fij(xi) e−tn

+
∫ tn

0

J1(|xi(tn+1) − xi(s)|)
|xi(tn+1) − xi(s)|

(xi(tn+1) − xi(s)) e−(tn+1−s) ds

+
∫ tn

0

J1(|xi(tn+1) − xj(s)|)
|xi(tn+1) − xj(s)|

(xi(tn+1) − xj(s)) e−(tn+1−s) ds
− vi(tn)


(C.1)
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Figure C.1 Comparison of the parallel walking numerical solution using the modified
Euler method with the exact solution for timesteps ∆t = 2−4, 2−6, 2−8 and 2−10. The
absolute difference in the parallel walking velocity is plotted for different timesteps
(blue circles) with a line of best fit (orange line) of gradient ≈ 0.92. Parameter values
are κ = 0.5 and β = 3.

where,

fij(xi) =
∫ 0

−∞

J1(|xi(tn) − xOi(s)|)
|xi(tn) − xOi(s)|

(xi(tn) − xOi(s)) es ds

+
∫ 0

−∞

J1(|xi(tn) − xOj(s)|)
|xi(tn) − xOj(s)|

(xi(tn) − xOj(s)) es ds. (C.2)

The integration in equation (C.1) was performed using the trapezoidal rule where
we consider the contribution from all the previous impacts for the first 1280 timesteps
(t = 20 using ∆t = 2−6) and then the contribution from the last 1280 impacts for t > 20.
At 1280 previous impacts, the exponential damping factor has reached e−20 ≈ 10−9 so
we neglect all the contribution from impacts beyond 1280 previous steps. The integrals
in equation (C.2) were calculated using an adaptive Gauss-Kronrod quadrature routine
built into MATLAB. The convergence of this method for the parallel walking solution
is shown in Fig. C.1. Using this method, we have been able to reproduce the exotic
trajectories of a single walker in a rotating frame by Tambasco et al. [28] and Oza et al.
[37].
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Figure C.2 Comparison of trajectories for (a) κ = 0.6 and β = 4 and (b) κ = 0.5 and
β = 6 starting as parallel walkers with random noise using timesteps ∆t = 2−6 (blue
and orange), 2−8 (yellow and purple) and 2−10 (green and cyan). All three timesteps
eventually lead to the exotic trajectory of closed circles with lopsided walkers for (a)
and right-angled discrete turning walking for (b).

Figure C.2 shows the comparison with different timesteps of the closed circular
trajectory at κ = 0.6 and β = 4 where the pair of walkers are in a lopsided mode and
the right-angled discrete turning walkers at κ = 0.5 and β = 6. Simulating trajectories
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at this parameter value with timesteps ∆t = 2−6, 2−8 and 2−10 with noise in initial
conditions confirm that these exotic behaviours are robust.
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