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Figure S1. (a) Adjusted branch cuts chosen such that scalar kernel is zero free. The lightly shaded regions show where

the change in cut configuration from figure 2a in the main body of the paper affects the value of K. The radius of the dark

circle (ε) is such that K(z) 6= 0 for |z|< ε. (b) The contour Γ ′ used in computing the scalar kernel factors. The variable

α lies in the shaded region.

S1. Factorisation of the scalar kernel
To transform the kernel factorisation integral (6.2) into a form useful for numerical computation, it
is necessary to deform the paths of integration. Zeros of K(z) could interfere with this process, but
we can rule these out as follows. First, from (5.14), we observe that K(0) =−|q3|(A2|q2|+ iA1),
which is clearly nonzero. Hence there exists ε > 0 such thatK(z) 6= 0 for |z|< ε. Next, we reposition
the branch cuts emanating from ±1 to run along the real and imaginary axes, joining 1 to q2 and
−1 to −q2. Near the origin, we use curved indentations that lie inside the circle |z|< ε. Since the
multivalued components of K(z) are the products γ1γ3 and γ2γ3, neither of which has a branch
point at infinity, the cuts above q3 and below −q3 now disappear, and the new configuration is as
shown in figure S1a. The paths of integration (Γ± in (6.2)) can pass between the curved sections of
the cuts, so that their orientation with respect to all of the branch points is preserved.

We may now use the principle of the argument [1, section 7.3] to prove that K is zero-free on
the primary sheet of the Riemann surface. We begin by observing that (5.15) now holds as α→∞
in any direction, because we are using finite branch cuts. Consequently, log[K(z)] will return to its
original value if z traverses a circle of radius N , centred at the origin, provided N is sufficiently
large. To complete the proof, it is sufficient to show that K(z) cannot be real and negative on the
faces of the branch cuts. It then follows log[K(z)] remains unchanged after z encircles the branch
cuts, because there can be no winding around the origin in theK plane. For z = v and z = iq2v with
−1< v < 1, γ1 is strictly negative imaginary whereas all other terms in K are real. Therefore K(z)

cannot be real here. The remaining sections of the cuts can be handled in a similar way, making
use of the inequalities (2.15).

Next, we observe that K is an even function, so it follows from (6.2) that K+(α) =K−(−α).
Since we also have the relationship K(α) =K+(α)K−(α), it is sufficient to determine K−(α) in
the region Re[α]<− Im[α]. To achieve this, we deform the contour Γ+ upwards. Letting ε→ 0

leaves an integral along the faces of the ‘L’ shaped cut in the upper half-plane, which we denote by
Γ ′. This consists of straight lines from z = 1 to the origin and then to z = q3 (see figure S1b). Then
(6.2) becomes

K−(α) =
√
K∞ exp

[
1

2πi

∫
Γ ′

{
log

(
K`(z)

K∞

)
− log

(
Kr(z)

K∞

)}
dz

z − α

]
, (S1)
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where the subscripts ‘`’ and ‘r’ refer to evaluation on the left and right faces of the cut, respectively.
Note that Γ+ in (6.2) is traversed from left to right, and passes below the ‘L’ shaped cut, whereas
Γ ′ is traversed from right to left, so that a factor −1 is introduced to the term involving K`. Since
K(z)/K∞ cannot be negative real on the faces of the cuts, we may take principal values for both
logarithms. On the left face of the cut, values of the functions γj are unchanged from the original
configuration in figure 2a in the main body of the paper. Therefore γ1γ3 is negative imaginary,
whereas γ2γ3 may be positive real or negative imaginary. On the right face of the cut, the real terms
are the same as those on the left face but the imaginary terms switch sign, so that Kr(z) =K`(z).
Therefore,

K−(α) =
√
K∞ exp

[
1

π

∫
Γ ′

arg[K`(z)]
dz

z − α

]
, (S2)

where the argument is a principal value.
Finally, we address the fact that α may lie close to the integration contour. Since there are no

branch points at ±q3 in the Kirchhoff problem (see §8), we also cause the contribution from the
path joining q2 to q3 to disappear as ω→ 0. We begin by splitting Γ ′ into two parts: Γ ′1 joining
z = 1 to the origin and then to q2, and Γ ′2 joining q2 to q3. Now (S2) is only used for values of α
on or to the left of the line Re[α] =− Im[α]. Therefore, for the purpose of numerical integration, α
may lie close to Γ ′1 but not to Γ ′2. Also, since Aj→−1 as ω→ 0, it follows from (5.14) that K`(z),
the value of the scalar kernel on the left face of the branch cut, is positive imaginary for z ∈ Γ ′2 in
the low frequency limit. In view of this, we write∫

Γ ′
arg[K`(z)]

dz

z − α =

∫
Γ ′
1

(
arg[K`(z)]− arg[K(α)]

) dz

z − α

+

∫
Γ ′
2

(
arg[K`(z)]−

π

2

) dz

z − α +H(α), (S3)

where

H(α) = arg[K(α)]

∫
Γ ′
1

dz

z − α +
π

2

∫
Γ ′
2

dz

z − α (S4)

= arg[K(α)] log

(
α− q2
α− 1

)
+
π

2
log

(
α− q3
α− q2

)
. (S5)

Since the variation in the argument of z − α cannot exceed π as z traverses either contour in (S4),
both logarithms in the last expression are principal values. The remaining integrals in (S3) are
suitable for numerical evaluation. The implementation used to produce the numerical results in
the main body of the paper employs mappings as in (A11)–(A13) to remove end-point square root
singularities, and applies the seven point Gaussian quadrature rule with adaptive refinement. In
this way, the kernel factors are computed to near machine precision. The second integral vanishes
from the right-hand side of (S3) in the limit ω→ 0, and the last term produces a multiplicative
factor (α− q3)1/2(α− q2)−1/2 in K−(α) so that the branch points at ±q3 disappear from the
Wiener–Hopf equation in this limit.

S2. Implementation of the implicit quadrature method
The main obstacle to numerically evaluating the solution to the matrix problem discussed in §7 of
the main paper relates to the location of nodes for use in the implicit quadrature scheme. Choosing
the nodes a priori leads to a simple implementation but does not control errors in an efficient way.
Instead, we use an adaptive scheme that works as follows. First, the integration contours are each
divided into four sections, using the vertices

± 1, ±(1 + q2)/2, ±q2, ±(q2 + q3)/2 and ± q3. (S1)

The end-point singularities are removed using (A11)–(A13). A small set of nodes is then generated
by applying a single step of a quadrature rule to each integral in the s plane. A second set of nodes
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is generated by applying the same quadrature rule in two equal steps. The resulting linear systems
are solved, and contributions to S̃+

j (α), w̃−(α) and ψ̃−x (α) from each section are calculated for a
set of test points. Errors in the initial estimates can be computed using the second set of nodes,
since these produce more accurate results. Nodes on subintervals for which the results meet a
specified tolerance are retained, and subintervals on which the errors are too large are bisected
again. This process is repeated until all results satisfy the tolerance condition. Using code written
in Fortran 2003, running at double precision and configured to use the seven point Gaussian rule,
a linear system sufficient to provide results accurate to ten significant figures was formed and
solved in under 30 seconds on a six core machine running at 3GHz. Typically the number of nodes
required was around one thousand. Almost all of the CPU time was used in solving the necessary
linear systems; the CPU time used by other components of the implementation is very small in
comparison.

Having applied the implicit quadrature method, the functions S̃+
j (α), w̃−(α) and ψ̃−x (α) can

be evaluated using their Cauchy integral representations. A useful test at this stage is to compute
both sides of the Wiener–Hopf equation (7.13) and compare their values. We can also make
use of (7.13) to avoid the situation in which quadrature becomes inaccurate due to branch cut
proximity. The strategy is similar to the use of the identityK+(α) =K−(−α) in the scalar problem,
above. We begin by dividing the plane across the line L : Imα=−|q2|Reα. On and to the right
of L, we compute S̃+

j (α) directly by quadrature. To the left of the line L, we compute w̃−(α)

and ψ̃−x (α) by quadrature. It follows from (7.16) that the removable singularity disappears from
(7.13) upon multiplication by M−1. Therefore we may compute S̃+

j (α) from w̃−(α) and ψ̃−x (α),
including near the origin. If α≈ α0 then (viewed as an equation for determining S̃+

j (α)), (7.13)
is subject to cancellation. In most cases this issue can be avoided by simply computing S̃+

j (α)

directly by quadrature. Both methods for computing S̃+
j (α) may be inaccurate if α0 ≈−1 and

α≈ α0 simultaneously. In practice this is unimportant because the cancellation in (7.13) leads to a
magnification of error roughly proportional to (α− α0)

−1, which does not cause all precision to
be lost. However, the issue can be avoided entirely by using (7.11) and (5.21) in (5.18) to obtain

S+
1 (α) =

−γ+1 (α)

(α− α0)K(α)

[
A2
(
γ2(α)γ3(α)− α2)w̃−(α) + iαγ−1 (α)ψ̃−x (α)

γ−2 (α)

]
, (S2)

after which the diffraction coefficient can be evaluated using (9.6).

S3. Steepest descents analysis
To apply the method of steepest descents to the diffraction integral (4.13), it is necessary to consider
the effects that singularities may have on the process of deforming the integration contour. Writing

γj(α)| sin θ|+ iα cos θ=−iqj + v, v≥ 0, (S1)

we find that the descent paths can be parametrised via

α=− cos θ(qj + iv)± sin θ(v2 − 2iqjv)
1/2, v≥ 0. (S2)

First consider the case j = 1, shown in figure S2a. If x< 0 so that cos θ < 0, the steepest descents
path lies predominantly in the upper half-plane, and there are no branch points to obstruct the
deformation process (as sin θ→ 0 the path wraps tightly around the cut emanating from α= q1 = 1).
The pole at α= α0 may lie to the right of the saddle point if cosΘ< 0, in which case its residue
must be collected, but this is addressed in the main body of the article. If x> 0, then a diversion
is required if the descent path crosses the imaginary axis at or below −q2, in order to retain the
correct orientation with respect to the branch point. Writing α=−iu with u> 0 in (S2) shows that
this occurs if | cot θ|> |q2|. The largest contribution comes from the branch point itself, and here
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Figure S2. Steepest descents paths for (a)w1 (b)w2. The dotted lines show the diversions around branch points needed

for certain observation angles θ. Note that the descent path for w2 in the case θ= π/2 is simply the real line.

the real part of the exponent is

r|q2| cos θ >
r |q2|2√
1 + |q2|2

. (S3)

Consequently, this contribution is exponentially small unless q2 ≈ 0, which occurs at high
frequencies, such that the Mindlin model itself breaks down (see §2). Therefore we may disregard
the contribution from this diversion; the most significant contributions to w1 are due to the pole
and the saddle.

The case j = 2 in (S2), shown in figure S2b, is similar though slightly more complicated. Since q2
is positive imaginary, (9.4) shows that the integrand is exponentially small at the saddle point. For
x< 0, the steepest descents path lies in the upper half-plane. Since the only singularity in the upper
half-plane is the branch point at α= q2, there are no obstructions to deforming the integration
contour onto the steepest descents path, and we may conclude that w2 =O(e−|q2|r). For x> 0, the
steepest descents path lies in the lower half-plane, and the residue from α= α0 is collected. The
branch point at α=−q3 does not interfere with the deformation of the path, but there is also a
branch point at α=−1, and the steepest descents path must be diverted around this. Now

γ2(−1)| sin θ| − i cos θ=
√

1− q22 | sin θ| − i cos θ, (S4)

meaning this contribution is exponentially small unless sin θ≈ 0. For θ close to zero or 2π, the
branch point contribution is typically O(r−3/2), because it can be related to an integral of the form∫∞
0

√
se−rs ds. This changes if the pole at α= α0 lies close to the branch point, in which case the

contribution is O(r−1/2), meaning the diversion does contribute to the field at leading order. This
pole is only present for y < 0 (see §9). Thus w2 can contribute to the diffracted field at leading order
if Θ≈ 0 and θ≈ 2π. This is related to the breakdown of the uniform approximation (9.9) near the
boundary in cases where Θ≈ 0, noted in §9.
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