Supporting Information for ## Development and *In-Vitro* Biodegradation of Biomimetic Zwitterionic Phosphorylcholine Chitosan Coating on Zn1Mg Alloy Yinying Sheng^{a,1}, Junjie Yang^{a,1}, Xueyang Zhao^a, Hui Liu^a, Shaogang Cui^{a*}, Lianxi Chen^a, Rong Zeng^b, Xiaojian Wang ^{a,c*}, Chi-Hsien Huang ^d, Wei Li^{a,c*} - a) Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China - b) Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, China - c) National Joint Engineering Center of High-performance Wear-resistant Metallic Materials, Guangzhou 510632, China - d) Department of Material Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan - 1. Yinying Sheng and Junjie Yang contributed equally to this work. ## *Corresponding authors: Email: xiaojian.wang@jnu.edu.c (Prof. X.J. Wang) Email: <u>liweijnu@126.com</u> (Prof. W. Li) Email: sgcui@jnu.edu.cn (Dr. S.G. Cui) **Figure S1.** (a-c) The thickness of PCCs layer prepared in PCCs solution with different concentration on Zn1Mg surface tested by α -step, and (d) the surface roughness after modification by PCCs with different concentration **Figure S2.** The adhesion strength for (a) PCC-0.5 and (b) PCC-1.0 tested by scratch test at a ramping mode from 0.5N to 20N