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i) Allowable Domain Size, Measurement of Domain Size & Box Size  

Allowable domain size can be measured by following equation:1,2  

 
𝑃 =

𝐷𝑥𝐷𝑦𝐷𝑧

√(𝑛𝑥. 𝐷𝑦𝐷𝑧)2 + (𝑛𝑦. 𝐷𝑥𝐷𝑧)2 + (𝑛𝑧 . 𝐷𝑥𝐷𝑦)2
 

(1) 

 

where P is an allowable domain size, Di refers to the box dimension in the i direction, and ni is an 

integer greater than or equal to zero.  

For a box size of 35, the allowable domains greater than 10 are:  10.1036, 10.5529, 11.068, 

11.6667, 12.3744, 14.2887, 15.6525, 17.5, 20.2073, 24.7487, and 35. The measured domain sizes 

for our system and the method used to measure them are shown below. The difference between 

these allowable domains and any domain that may form is less than 10% for domains smaller than 

~27 and is generally around 5% or less. The free energy penalty for  a small deviation (~10%) 

from the optimal domain size is generally small.3 This can be seen in block copolymer directed 

self-assembly where block copolymers commonly adjust to patterns that are not perfectly 

commensurate to their preferred domain sizes. Often, variations of 10% or more are found to be 

acceptable and still form high quality lamellae.3–5 Additionally block copolymers will still form 

lamellae when non-commensurate with a guiding pattern, but defects will form; they do not 

disorder. Therefore, while there is some small amount of error that is present because the box size 

is not allowed to change (not possible for the given model) it is small, and would likely not produce 

a disordered state, but defective lamellae which could have been easily identified.  

 



SI-3 

 

In our calculation, the domain size was measured by calculating the structure factor (S(q)) using 

the Faber-Ziman method6–8 with a Lorch window function.9,10 

 
𝑆(𝑞) − 1 = 4𝜋𝜌0 ∫ 𝑟2

∞

0
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(2) 

 

Here, g(r)= The pair distribution function takes for D beads with D beads, and the domain size D 

is calculated by, 

 
𝐷 =

2𝜋

𝑞∗
 

(3) 

 

Here, 𝑞∗ is the location of the maximum in S(q). 

For large domain systems, the results consist of some error. To rectify the error a correction factor 

has been used.6 

 

 
%𝐸𝑟𝑟𝑜𝑟 =

𝐿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝐿0

𝐿0
 × 100 

 

(4) 

 

   

ii) Relation among Graft density, Length of graft, Domain Size  

While the lamellar state is an energy minimum, the box size used here is constant and therefore 

only allows a finite number of repeat distances to occur without defect. Domain size calculated by 

using equations (2) & (3). Domain sizes are shown in the lamellar state, except when a system 

never formed lamellae.  Lamellae were not formed for graft density 0.4 𝑑2⁄  because the system 
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was kinetically trapped and experienced a significant slowdown in equilibration. So, for this 

particular graft density domain size was calculated from the disordered state.  

Domain size has been calculated when graft density is variable and graft length is changing. 

Graft Density, 𝐺 Graft Length Domain Size 

1.2 𝑑2⁄  18 14.51 

1 𝑑2⁄  22 15.26 

0.8 𝑑2⁄  28 17.82 

0.6 𝑑2⁄  36 21.15 

0.4 𝑑2⁄ * 54 25.43 

Domain size has been calculated when graft density is constant, but graft length is changing. 

Graft Density, 𝐺 Graft Length Domain Size 

1.2 𝑑2⁄  18 14.51 

1 𝑑2⁄  22 15.89 

0.8 𝑑2⁄  28 16.83 

0.6 𝑑2⁄  36 20.43 

0.4 𝑑2⁄ * 54 26.17 

Domain size has been calculated when graft length is constant, but graft density is changing. 

Graft Density, 𝐺 Graft Length Domain Size 

1.2 𝑑2⁄  18 14.51 

1 𝑑2⁄  18 14.76 

0.8 𝑑2⁄  18 14.47 

0.6 𝑑2⁄  18 14.49 

0.4 𝑑2⁄ * 18 14.25 

* - Graft Density 0.4 𝑑2⁄  did not form lamellae. It was taken from disordered state while other 

graft densities are taken from lamellae state.  
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Figure S1 – Domain size as a function of graft length.  

From Figure S1 it is clear that domain size mostly depends on graft length, not graft density.  

 

iii) Mean Square Displacement 

By calculating the mean square displacement (MSD) the diffusion of a particle can be measured. 

We wanted to measure the diffusive timescale of the nanoparticle. For that reason, the DPD 

repulsive potential magnitudes were set to A = 25 so there was no drive to phase separate. The 

distance from the particles original position was measured over time and distance were averaged 

over 10 independent runs. This average MSD is found in Figure S2 for different graft densities 

from 𝐺 = 0.4/𝑑2to 𝐺 = 1.2/𝑑2. For each graft density a linear fit on MSD vs. time with the 

intercept set at the origin is taken and used to calculate the expected time to diffuse a given 

distance. This is plotted in Figure 1 and found to be 0.00004416 for graft density, 𝐺 = 0.4/𝑑2 in 

units of 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2/𝑡𝑖𝑚𝑒. Domain size calculated for 𝐺 = 0.4/𝑑2 is 12.6 and for a distance (d) of 
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12.6/4=3.15 the diffusion time is 224,680 while for d=12.6/2=6.3 the diffusion time is 898,730. 

The average time to diffuse D/4 is 152,770 timesteps for graft density  𝐺 = 1.2/𝑑2 , 160,955 

timesteps for graft density  𝐺 = 1.0/𝑑2, 199,842 timesteps for graft density  𝐺 = 0.8/𝑑2 , 314,525 

timesteps for graft density  𝐺 = 0.6/𝑑2 , 224,682 timesteps for graft density 𝐺 = 0.4/𝑑2. 

 

(a) 𝐺 = 0.4/𝑑2  

 

(b) 𝐺 = 0.6/𝑑2 
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(c) 𝐺 = 0.8/𝑑2 

 

(d) 𝐺 = 1.0/𝑑2 



SI-8 

 

 

(e) 𝐺 = 1.2/𝑑2 

Figure S2 - Mean square displacement (MSD) of nanoparticle in polymer matrix at different graft 

density. 

iv) Particle Location and the Pair Distribution Function 

Particle location relative to the lamella centers and the pair distribution function between the 

nanoparticles were calculated as described in the methods section. Histograms of the centers of 

nanoparticles relative to the center of the domain are shown in Figure S3. Figures S4 and S5 show 

the pair distribution function g(r) and a zoom in on the first peak respectively. The first peak 

represents particles that are in contact. Normalized particle count refers to the average number of 

particles in that bin per timestep.  
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Figure S3. Histogram of particle centers for a) constant graft length, and b) constant polymer mass per 

particle. . a) shows constant graft length simulations, specifically ξ = 0.01, except for G = 0.6 

for which ξ = 0.014 was used because ξ = 0.01 did not form lamellae. For G = 0.6 that forms 

lamellae, see  Figure 11. b) shows constant polymer mass per particle simulations, specifically 

ξ = 0.008.  
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Figure S4. g(r) between particles over the volume for a) constant graft length and b) constant 

polymer mass per particle simulations. The same simulations as for Figure 9 were used, that is, 

τ = 1,000,000 with ξ = 0.01 for a) except for G = 0.6, 0.4 or 0.2 for which ξ = 0.014 was used, 

and ξ = 0.008 for b). 

 

 

Figure S5. Zoom in of the first peak in Figure S4.  
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v) Effect of χ and ξ 

The repulsion parameter A was varied for G = 1.2 and simulations were run for τ = 1,000,000. A 

decrease in A corresponds to a decrease in χ and therefore drive to phase separation. A decrease in 

χ means that higher ξ will disorder the system sooner since the magnitude of the energy barrier is 

determined by χ. The same occurs for the minimum ξ. At some low χ no lamellae occur.  

 

Figure S6.  Lamellae vs. disordered results for G = 1.2 and τ = 1,000,000 when χ is varied.   
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