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Introduction

“Socrates consisted of the genes his parents gave him, 
the experiences they and his environment later provided, 
and a growth and development mediated by numerous 
meals. For all I know, he may have been very successful 
in the evolutionary sense of leaving numerous offspring. 
His phenotype, nevertheless, was utterly destroyed by the 
hemlock and has never since been duplicated. The same 
argument holds also for genotypes. With Socrates’ death, 
not only did his phenotype disappear, but also his 
genotype.[...] The loss of Socrates’ genotype is not 
assuaged by any consideration of how prolifically he may 
have reproduced. Socrates’ genes may be with us yet, but 
not his genotype, because meiosis and recombination 
destroy genotypes as surely as death.”

–Williams (1966) 

Marble Head of Socrates, Louvre
Licensed under CC BY-SA 2.5



Introduction

• Organisms along with their genotypes and 
phenotypes are temporary, yet individual 
alleles have more permanence

• Phenotypic changes driven by natural 
selection are due to changes in the allelic 
composition of populations

• To understand selection, we must 
understand changes in allele frequency

Marble Head of Socrates, Louvre
Licensed under CC BY-SA 2.5



Introduction

• We’ve seen in multiple examples over the 
last few chapters that natural selection 
occurs when there are differences across 
individuals in terms of fitness

• Fitness may be defined as the probability to 
survive long enough to reproduce (viability) 
or based on the number of offspring 
(fertility) or both

• We’ll define absolute fitness of a genotype 
as the expected number of offspring of an 
individual with that genotype



Introduction

• Differences in number of offspring will result 
in allele frequency changes across 
generations

• In this chapter, we’ll study these dynamics 
based on single loci

• We will also be ignoring the effects of 
genetic drift, but will return to the interaction 
of selection and drift in future chapters



10.0.1 Haploid Selection Model

• We will model selection in a haploid due its relative mathematical simplicity

• The number of individuals carrying the 𝐴! and 𝐴" alleles in generation 𝑡 are 𝑃# and 𝑄#

• The relative frequencies of these alleles are: 𝑝# = 𝑃# 𝑃# + 𝑄# and 𝑞# = 𝑄# 𝑃# + 𝑄#

• Individuals with 𝐴! and 𝐴" alleles produce, on average, 𝑊! and 𝑊" offspring, with 𝑊$
being the absolute fitness of each genotype

• In the next generation, the absolute number of carriers of 𝐴! and 𝐴" alleles will be 
𝑃#%! = 𝑊!𝑃# and 𝑄#%! = 𝑊"𝑄#



10.0.1 Haploid Selection Model

• The mean absolute fitness of the population will then be:

• This is the sum of the absolute fitness of the two allele types weighted by their relative 
frequencies

• Note that mean fitness is tied to time, because it reflects the frequency of genotypes at 
any given time



10.0.1 Haploid Selection Model

• Drug-resistant viruses are an excellent 
example of rapid evolution in a haploid 
system

• Feder and colleagues (2017) studied 
dynamics of the simian immunodeficiency 
virus (SHIV) in macaques

• 12 weeks after infection, the macaque was 
treated with an anti-retroviral drug

• After treatment, the viral load initially 
decreased as fitness of the original strain 
(𝐴") was 𝑊" < 1 in the presence of the 
drug
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10.0.1 Haploid Selection Model

• The virus population began to rebound 
upon the mutation of a new drug-resistant 
allele (𝐴!)

• Viruses with this allele have an absolute 
fitness of 𝑊! > 1

• Over the course of 7 weeks, the new drug-
resistant allele became fixed in the virus 
population

• Rapid spread was driven by the much 
higher relative fitness of 𝐴! vs 𝐴" in the 
presence of the drug
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10.0.1 Haploid Selection Model

• We can express the frequency of a given 𝐴! allele in the next generation as:

• This tells us that the change in frequency of 𝑝 only depends on the ratio of fitnesses

• Given this understanding, it is also common to scale absolute fitnesses by the absolute 
fitness of one of the genotypes (e.g., the most or least fit genotype) to obtain relative 
fitness

• For example, if we scale by absolute fitness of 𝐴! then 𝑤! =
&!
&!

and 𝑤" =
&"
&!



10.0.1 Haploid Selection Model

• We can therefore also consider allele frequency across generations based on relative 
fitness:

• And develop this as change in allele frequency:



10.0.1 Haploid Selection Model

• If we make the assumption that fitness of our alleles remains constant over time, we 
can predict the number of our allelic types some generation 𝜏 after time 0 as

• 𝑃' = 𝑊!
'𝑃(

• 𝑄' = 𝑊"
'𝑄(

• The relative frequency of allele 𝐴! after 𝜏 generations then becomes:

• where we’ve switched from absolute to relative frequencies and divided the whole last 
term by (𝑤!)'



10.0.1 Haploid Selection Model

• Equation 10.5 can be rearranged to:

• And then solved for 𝜏:



10.0.1 Haploid Selection Model
• Relative fitnesses (𝑤$) can also be parameterized by setting 𝑤! = 1 and 𝑤" = 1 − 𝑠

with 𝑠 being known as the selection coefficient

• This allows us to simplify some of our previous equations, for example, 10.5 becomes:

• Selection coefficients are often quite small and when 𝑠 ≪ 1, we can approximate 
(1 − 𝑠)' in the denominator with 𝑒)*#:

• Which is in the form of what is known as a logistic equation, often used to model 
population growth (we can think of our two alleles as populations that are growing or 
declining)



10.0.1 Haploid Selection Model
• We can also revisit equation 10.7 and substitute in our selection coefficient:

• And then assuming again that 𝑠 ≪ 1: 



10.0.1 Haploid Selection Model

• One application of this equation might be wishing to know how long a new allele may 
take to reach fixation given a particular selective advantage

• Here, we assume the initial frequency, 𝑝(, is 1/𝑁 and that fixation frequency, 𝑝', is 1 −
1/𝑁 and after plugging these into equation 10.11 and making a few assumptions:



10.0.1 Haploid Selection Model

• Up until now, we’ve been assuming that selection pressure and fitness of alleles stay 
the same over time, but this is clearly not always true

• We can make our equations more realistic by having our fitness linked to time; for 
example, saying 𝑤!,# and 𝑤",# are relative fitnesses at time 𝑡

• The frequency of allele 𝐴!in generation 𝑡 + 1 then becomes:



10.0.1 Haploid Selection Model

• In this context, we can also consider the ratio of 𝐴! to 𝐴" at time 𝑡 + 1 as: 

• And, more generally, across time as:

• Based on this, the determination of which allele is increasing depends on whether 
(∏$,!

' 𝑤!,$/𝑤",$) is > 1 or < 1



10.0.1 Haploid Selection Model

• Thinking of the product of ratios over a given period of time can be a little daunting, but 
we can find a simple take home by taking the 𝜏#- root of equation 10.15:

• and realizing that # ∏$,!
' 𝑤!,$ is the geometric mean fitness of allele 𝐴! over 𝜏

generations

• This tells us that allele 𝐴! will increase if it has a higher geometric mean fitness than 
allele 𝐴"



10.0.1 Haploid Selection Model

• In fact, an allele will increase over 
another allele when its geometric 
mean fitness is higher even when its 
arithmetric mean fitness is not higher

• As an example, let’s consider a locus 
with alleles 𝐴! and 𝐴" where allele 𝐴!
does better in dry years but suffers in 
wet years and 𝐴" is a generalist that 
does equally across conditions 0 20 40 60 80 100
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10.0.1 Haploid Selection Model

• For example, we can propose the 
following fitness values:
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• If wet and dry years happen with 
equal frequency, the 𝐴" allele will rise 
to fixation despite a lower arithmetic 
mean fitness because its geometric 
mean fitness is higher



10.0.1 Haploid Selection Model

• Based on further development of expectations using the arithmetic and geometric 
means, in section 10.0.1 (we’ll skip the mathematical details here), we can explore the 
concept of “bet hedging” in evolution

• Just as in managing an investment portfolio, evolution can be risk averse when there is 
high variance in the selection environment

• For example, birds may lay eggs in multiple nests to spread risk across multiple 
nesting sites

• Genotypes with a high arithmetic mean fitness will be selected against due to a low 
geometric mean fitness when variance is high across generations



10.0.1 Haploid Selection Model

• Some clear examples of bet hedging happens in 
Sonoran desert plants investigated by Gremer and 
Venable (2014)

• In highly variable environments like the desert it’s a 
good strategy for plants to have only a portion of their 
seeds germinate the year after they are produced

• The trade-off of delayed germination is that this does 
come with some seed mortality

• Plants, like the woolly plantain (right), with highly 
variable yield from year to year also had the lowest 
fraction of germination each year

• This strategy maximized geometric fitness



10.0.1 Haploid Selection Model

• Bet-hedging is also a frequently used strategy in 
micro-organisms like the varicella zoster virus that 
causes chicken pox.

• After causing chicken pox, the virus enters a latent 
phase in the neurons of the spinal cord and can 
emerge 5-40 years later, causing the disease known 
as shingles

• This strategy can help the virus encounter a greater 
number of susceptible hosts in the future Source: Microbe Wiki

Contributed by Bryce S. Naberhaus
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10.0.2 Diploid Model

• In this section we consider selection in 
diploid organisms at a single locus

• As an example of selection in a diploid 
organism, we can look at one of the best-
documented instances of selection in 
humans: increased lactase persistence

• In most mammals, the lactase protein is no 
longer produced after childhood, but in 
multiple, independent human populations 
that have raised cattle and consumed milk, 
there is persistence of lactase production 
into adulthood 



10.0.2 Diploid Model

• Production of lactase allows humans to 
break down lactose, the main carbohydrate 
in milk, and to benefit nutritionally, thereby 
increasing fitness

• Recent improvements in DNA sequencing 
technology have allowed for sequencing 
ancient DNA and tracking frequency of the 
lactase persistence allele

• The allele was absent 5,000 years ago, but 
is now at 70% frequency in certain 
European populations



10.0.2 Diploid Model

• To understand how selection occurs in diploid organisms, let’s again develop models 
based on fitness

• In this section, we will focus on viability fitness, the differential number across 
genotypes of individuals that survive from zygotes until the time of reproduction

• We will denote the absolute fitnesses of genotypes 𝐴!𝐴!, 𝐴!𝐴", and 𝐴"𝐴" as 𝑊!!, 
𝑊!", and 𝑊""

• For example, 𝑊!! is the probability that an individual with the 𝐴!𝐴! survives to 
reproduce

• With random mating, our number of individuals with each genotype at time 𝑡 will be:



10.0.2 Diploid Model

• The mean fitness of our population of zygotes will be:

• And, if we want to know the probable number of individuals with each genotype that 
survive to reproduce:

• Which, in a straight-forward extension tells us the total number of individuals 
surviving to reproduction:

• And, even more simply: 𝑁 8𝑊



10.0.2 Diploid Model

• The relative frequency of individuals with each genotype that have survived to 
reproduce can then be summarized as:

• With all of this conveniently summarized in Table 10.2



10.0.2 Diploid Model

• Since we are only considering viability selection and not fecundity (i.e., number of 
offspring), then frequency of, for example, the 𝐴! allele in the next generation is 
simply:

• Each genotypic class responds to selection based on its fitness relative to the mean 
fitness of the population (e.g., 𝑊!!/ 8𝑊)

• We can estimate this fitness ratio for any genotype by looking at its frequency at 
birth relative to adulthood

• Let’s revisit our good friends the sticklebacks for an example…



10.0.2 Diploid Model

• As glaciers receded following the last ice 
age, stickleback colonized freshwater lakes 
a number of times from marine 
environments

• As you may remember, marine sticklebacks 
have substantial body armor that protects 
them from predation in this environment, but 
freshwater stickleback have repeatedly lost 
body armor through selection on the 
Ectodysplasin (EDA) gene

• The low armor allele (L) at this locus is 
found at low frequency in marine 
environments so selection has been on 
standing variation



10.0.2 Diploid Model

• Barrett and colleagues (2008) conducted an 
experiment in which they bred, in the lab, 
populations of stickleback segregating for 
the low armor (L) and high armor (C) alleles 
and introduced these into freshwater ponds

• Genotype frequencies were then measured 
over their lifetime:



10.0.2 Diploid Model

• Heterozygotes increased dramatically due to 
their high fitness relative to the mean of the 
population

• Looking at the relative fitness of the different 
genotypes, the CC homozygotes had a 
value ~ 1/5 of heterozygotes



10.0.2 Diploid Model

• The absolute value of fitness is irrelevant to the frequency of an allele and, when 
considering allele frequencies across time, we can replace absolute with relative 
fitnesses

• To simplify this equation, we will define two variables:

• 8𝑤! and 8𝑤" are what are known as the “marginal fitnesses” of alleles 𝐴! and 𝐴" and 
represent the average fitness of these alleles



10.0.2 Diploid Model

• For example, the fitness of the 𝐴! allele would be its fitness as a homozygote 
weighted by the probability that it is in a homozygote (𝑝#) plus its fitness as a 
heterozygote weighted by the probability that it is in a heterozygote (𝑞#)

• Mean relative fitness can be expressed in terms of marginal fitnesses as: 

• And, in this context, change in allele frequencies can be expressed as:



10.0.2 Diploid Model

• From 10.31, we can observe that whether 𝐴! increases or decreases, depends 
only on 8𝑤! − 8𝑤"

• 𝐴! will rise in frequency as long as its marginal fitness is higher than 𝐴"



10.0.2 Diploid Model

For part A, 𝑝$ = %$
$&&

= 0.16

𝑝 = 0.16 = 0.4

𝑞 = 1 − 𝑝 = 0.6



10.0.2 Diploid Model
For part B:

𝑊'' = 0.9 𝑊'$ = 0.5 𝑊$$ = 0.5

𝑤'' = 1 𝑤'$ = 0.56 𝑤$$ = 0.56

1×0.4$ + 0.56×0.4×0.6
1×0.4$ + 0.56×2×0.4×0.6 + 0.56×0.6$

0.2944/.6304=0.467



10.0.3 Diploid Model

• Coming back to directional selection in the 
context of diploid selection, we’ll see that one 
allele always has a larger marginal fitness

• For example, if the 𝐴! allele is most fit, then:

• 8𝑤! > 8𝑤"

• And, for mean fitnesses:

• 𝑤!! > 𝑤!" > 𝑤""
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10.0.3 Diploid Model

• In diploid models, like haploid models, we can 
also parameterize reduction in fitness using a 
selection coefficient:
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• In diploids, the selection coefficient, 𝑠, is the 
difference in fitness between the two 
homozygotes

• ℎ is the dominance coefficient and, under 
directional selection, 0 ≤ ℎ ≤ 1



10.0.3 Diploid Model

• When ℎ = 0, the 𝐴! allele is completely dominant 
and the 𝐴!𝐴! homozygote and 𝐴!𝐴" heterozygote 
have equal fitness

• When ℎ = 1, the 𝐴! allele is completely recessive 
to the 𝐴" allele

• Our equations for change in frequency across 
generations and mean fitness with these 
selection coefficients become: 
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10.0.3 Diploid Model

• As an example of allele trajectories under 
dominance, red foxes have 3 color morphs—
silver, cross, and red—determined by a single 
polymorphism with genotypes RR, Rr, and rr

• Historically, the pelts of silver foxes were highly 
valued, resulting in strong selection against 
this particular morph

• Over the period from 1834-1937, the silver fox 
proportion of the population declined from 16% 
to 5%
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10.0.3 Diploid Model

• Analysis of population data revealed recessive 
selection against the silver morph

• RR homozygotes declined substantially over 
this period of time, but the R allele is effectively 
masked in heterozygotes and these decline 
less quickly ●
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10.0.3 Diploid Model

• A special case of diploid, directional selection is when ℎ = 0.5, in which case the 
interaction among alleles with respect to fitness is additive

• We can then simplify equation 10.33 by removing the dominance coefficient: 

• And if we assume that 𝑠 ≪ 1 and therefore mean fitness, 8𝑤 ≈ 1:



10.0.3 Diploid Model

• If we return to our similar equation in haploids (10.4), set 𝑤! = 1 and 𝑤" = 1 − 𝑠 and 
again assume that 𝑠 ≪ 1:

• We’ll see that ∆𝑝# = 𝑠𝑝#𝑞#, and that, without dominance, the diploid model is the same 
as the haploid model up to a factor of !

"
, a difference due to parameterization of the 

diploid model



10.0.3 Diploid Model

• With no dominance, we can also formulate very similar models to our haploid models 
of the time, 𝜏, for our allele 𝐴! to go from frequency of 𝑝( to 𝑝' :

• and, similarly, in a diploid, no dominance model, to transit from new mutation to 
fixation in a population:
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10.1 Balancing selection and selective maintenance of polymorphism

While directional selection should act to remove variation from a population, we see 
plentiful phenotypic and genotypic variation because:

1. Variation is maintained through a balance of genetic drift (removing variation) 
and mutation (adding variation)

2. Selection acts to maintain variation (e.g., balancing selection)

3. Deleterious variation persists through a balance of natural selection (removing 
variation) and mutation (adding variation)

A remaining challenge for population genomics is understanding the extent to which 
each force shapes diversity



10.1.1 Heterozygote Advantage

• Balancing selection can be observed when the heterozygous genotype has 
greater fitness than either of the homozygous genotypes:

• Note our new selection coefficients, 𝑠! and 𝑠", which are the relative differences in 
the fitness of the homozygotes from the heterozygotes 



10.1.1 Heterozygote Advantage

• When the 𝐴! allele is rare, it is typically found as a 
heterozygote, making it the more fit allele which 
will increase in frequency

• The same is true when 𝐴" is the more rare allele

• In this way, neither allele can reach fixation

• Both alleles will be maintained at equilibrium 
frequencies as a balanced polymorphism within 
the population 
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10.1.1 Heterozygote Advantage

• By going back to 10.31, our equation for ∆𝑝, we can see there are three equilibria 
where ∆𝑝 = 0: 

• When 𝑝# or 𝑞# or 8𝑤! − 8𝑤" = 0, an equilibrium will be obtained; the first two are trivial 
because they are monomorphic, but the third is a stable polymorphic equilibrium

• Using our new selection coefficients (𝑠! and 𝑠"), our marginal fitnesses will be 
equal, and the polymorphic equilibrium will be obtained when:



10.1.1 Heterozygote Advantage

• At this equilibrium frequency of 𝐴! the mean fitness of the population will be 
maximized

• While the greatest fitness would be achieved if all individuals were heterozygotes, 
Mendelian segregation prevents this

• The equilibrium is an evolutionary compromise between the advantages of 
heterozygotes and the costs of the homozygotes



10.1.1 Heterozygote Advantage
• An example of a polymorphism maintained by 

heterozygote advantage is the allele for horn size in Soay
Sheep on Soay island off the coast of Scotland

• Males use their horns to compete for females and 
Johnston and colleagues (2013) found a large-effect locus, 
the RXFP2 gene, that controls variation in horn size

• The Ho+ allele at this locus leads to increased horn size 
and the Hop allele is associated with small horns



10.1.1 Heterozygote Advantage
• While Hop allele homozygotes show reduced 

offspring number, Ho+ allele homozygotes 
show reduced survival, meaning the overall 
highest fitness is seen in the heterozygote 
(right-hand panel of the figure)

• The polymorphism is therefore balanced in the 
population due to this instance of heterozygote 
advantage



10.1.1 Heterozygote Advantage
• Let’s consider that the marginal effects of 

alleles are equivalent to their additive effects 
on fitness

• As you may remember from Chapter 7, the 
difference in the additive effects of two alleles 
gives the slope of the regression of additive 
genotypes on fitness

• There is additive variance in fitness when the 
slope is something other than zero

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

0 1 2

●

●

●

●

●

●

p = 0.1

Fi
tn

es
s

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

0 1 2

●

●

●

● ● ●

p =peq

Genotype

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

0 1 2

●

●

●

●

●

●

p = 0.9



10.1.1 Heterozygote Advantage
• In the heterozygote advantage model, the 

marginal fitness of the 𝐴! allele (i.e., the 
additive effect of the 𝐴! allele on fitness) is 
greater than the marginal fitness of the 𝐴"
allele when 𝐴! is at low frequency

• In this case, there is a positive slope in the 
regression of fitness on the number of 𝐴!
alleles in an individual

• When the frequency of the 𝐴! allele rises 
above the equilibrium frequency, this slope 
becomes negative 

• When the population is at equilibrium 
frequency, there is no additive genetic 
variance, and the slope is zero
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10.1.1 Heterozygote Advantage (or lack of it!)
• We can also see examples in nature when the 

heterozygote is less fit than either of the homozygotes, 
known as underdominance

• For example, in the butterfly species Pseudacraea
eurytus, the two homozygous genotypes mimic toxic 
orange and blue butterflies, but the heterozygous 
genotype mimics neither and suffers high predation

• Underdominance can be parameterized as: 



10.1.1 Heterozygote Advantage (or lack of it!)
• Underdominance permits three equilibria, 
𝑝 = 0, 𝑝 = 1 and a polymorphic 
equilibrium, 𝑝 = 𝑝.

• However, the polymorphic equilibrium is 
unstable and if 𝑝 < 𝑝. then ∆𝑝 is negative 
and 𝐴! will be lost and if 𝑝 > 𝑝. then ∆𝑝
is positive and 𝐴! will be fixed

• While underdominant alleles will not 
typically spread within a population, they 
often arise in recently diverged species 
and may be a contributor to the 
maintenance of species



10.1.1 Heterozygote Advantage
• Selection pressures can vary over time 

and this variability may help maintain 
polymorphism

• Multiple instances of this phenomenon 
have been observed in Drosophila, where 
short lifespan allows for observation of 
seasonal fluctuation in allele frequencies

• The first example is Drosophila 
pseudoobscura populations in western 
North America
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10.1.1 Heterozygote Advantage
• Dobzhansky (1943) and Wright and 

Dobzhansky (1946) found an inversion 
polymorphism (i.e., where different 
individuals have a different orientation of 
DNA within a chromosomal region) 
segregating in seasonal patterns

• These authors documented frequencies 
of inversion types in multiple populations 
across four year and discovered that the 
standard allele decreased in frequency  
in the summer, when the inverted allele 
prevailed
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10.1.1 Heterozygote Advantage
• A second example was found by Paaby

and colleagues (2014) and involved an 
insertion-deletion polymorphism 
segregating in an insulin-like receptor 
gene in Drosophila melanogaster

• Alleles at this locus also oscillated with 
the seasons

• These alleles had large effects on 
developmental time and fecundity, which 
may help maintain both alleles through 
life-history fitness trade-offs
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10.1.1 Heterozygote Advantage
• In order to develop equations that capture temporal fluctuations in fitness, we’ll need 

to make our diploid fitnesses time-dependent: 𝑤!!,# , 𝑤!",# , 𝑤"",#

• The diploid case is more difficult to model across allele frequencies due to 
segregation, but we can investigate dynamics when, for example, 𝐴! is rare

• When 𝐴! is rare (𝑝 ≪ 1), the frequency in the next generation can be approximated 
in a similar fashion to equation 10.26:

• Where we have omitted 𝑝#" terms because they are so small, and 𝑞# in the 
numerator because 𝑞# ≈ 1



10.1.1 Heterozygote Advantage
• With similar assumptions, we can also approximate 𝑞#%!:

• And generalizing across any number of generations:

• From this we can see, similar to our haploid argument, that 𝐴! will increase in 
frequency when rare only when:



10.1.1 Heterozygote Advantage

• In other words, the 𝐴! allele will increase when rare if the heterozygote has a higher 
geometric mean fitness than the 𝐴"𝐴" homozygote

• But will the 𝐴! allele approach fixation or can a balanced polymorphism exist?

• To determine this, we can repeat our analysis for 𝑞 ≪ 1 and see:



10.1.1 Heterozygote Advantage

• Here, the 𝐴!𝐴! homozygote must be able to outcompete the heterozygote (i.e., have 
a higher geometric mean fitness); otherwise the 𝐴" allele will increase when rare

• This means that we can potentially have a balanced polymorphism when the 
heterozygote is never the most fit genotype, as long as it is always more fit than one 
of the homozygotes

• The heterozygote can win out in variable environments, even when it is never the 
most fit genotype in any particular environment



10.1.1 Heterozygote Advantage

• As a toy example of this type of balanced 
polymorphism, let’s imagine a plant population that 
half of the time experiences wet environments and 
the other half dry environments

• Across long periods of time, we can assume the time 
in wet and dry environments is equal and calculate 
the arithmetic means presented in the top table

• Note that the heterozygote does not have the highest 
fitness in either environment and it’s arithmetic mean 
fitness is less than the AA homozygote



10.1.1 Heterozygote Advantage

• If we take the 𝑡#- root across generations to obtain 
the geometric mean fitnesses (bottom table), we will 
see that the heterozygote has the highest value

• Both the 𝐴! and 𝐴" alleles will increase in frequency 
when rare because of the higher fitness of the 
heterozygote

• In this way, a balanced polymorphism will be 
maintained



10.1.1 Heterozygote Advantage

• The heterozygote advantage examples we have considered thus far involve 
maintenance of polymorphism because the common allele has a disadvantage 
relative to the more rare allele

• However, the relative fitness of genotypes has not been dependent on the other 
genotypes found in the population

• This is not the case for the family of models known as “frequency-dependent 
selection”

• For example, negative frequency dependent selection occurs when the fitness of an 
allele declines as it becomes more common



10.1.1 Heterozygote Advantage

• Long-term heterozygote advantage may be rare in nature, but balancing selection 
through negative frequency-dependent selection is likely common

• These dynamics often arise due to interactions within or among species

• For example, in predator-prey or host-pathogen interactions, common 
phenotypes/genotypes may be at a disadvantage because predators and pathogens 
become familiar with these and learn how to counteract or target them



10.1.1 Heterozygote Advantage

• The deceptive Elderflower orchid is a good example of 
negative frequency-dependent selection

• The species is polymorphic for yellow and purple flowers, 
with neither offering nectar or pollen rewards to their 
bumblebee pollinators

• The flower relies on inexperienced bumblebees for 
pollination and multiple flower colors help prevent 
pollinators from learning too quickly that the flower offers 
no rewards

• If one flower color were more common, the signal to 
pollinators would be stronger to avoid the orchid



10.1.1 Heterozygote Advantage

• Gigord and colleagues (1997) documented 
negative frequency-dependent selection by 
setting up plots with varying frequencies of the 
color morphs

• As a particular color morph became more 
common, bumblebees were less likely to visit 
and pollinate it because they learned there 
were no rewards

• This dynamic is likely responsible for 
maintaining the two flower morphs in natural 
populations across Europe
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10.1.1 Heterozygote Advantage

• Negative frequency-dependent selection can also 
occur due to interactions across individuals within a 
population

• For example, ruffs, a species of sandpiper in 
Eurasia, exhibit lekking behavior in which males 
gather together on open ground to display and 
attract females

• There are three male morphs with different breeding 
strategies: Independent, Satellite, and Faeder



10.1.1 Heterozygote Advantage

• Independent males display and defend their own 
small territories and are most common

• Satellite males occur at 16% frequency, do not 
defend territories, but join in lek displays, mating 
opportunistically with females

• Faeder males occur at 1% frequency and their 
plumage and size resembles females, but they join 
leks and surreptitiously mate with females

• These males rely on the displays of Independents 
and therefore Satellites and Faeders cannot 
become overly common in populations



10.1.1 Heterozygote Advantage

• The dynamics of the previous examples are likely simple in comparison to those 
occurring amongst the hundreds of alleles found across the many genes of the 
Major Histocompatibility Complex (MHC)

• The MHC is key to the vertebrate immune system and is in a constant arms race 
with pathogens adapting to common MHC alleles, causing rare alleles to be 
favored

• Balancing selection has caused some MHC polymorphisms to be maintained for 
millions of years

• In fact, a human MHC allele may be more closely related to an allele in another 
primate species than that found in another human
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10.2 Sex ratios, sex ratio distorters, and other selfish elements

• Frequency dependent selection can often prevent natural selection from increasing 
mean fitness

• For example, evolution of the male morphs of the Ruff species discussed in the 
previous section does not maximize the growth rate (i.e., reproduction) of the 
species

• The commonly observed 50/50 sex ratio across species is one clear example of how 
frequency dependent selection can drive non-optimal dynamics for a population

• In this, and other situations where selection acts below the level of the individual, we 
can see a compromise of fitness



10.2 Sex ratios, sex ratio distorters, and other selfish elements

• In many species, the sex ratio is close to 
50/50 even though this does not maximize 
fitness (reproduction) for a species

• Females are typically limiting in terms of 
population growth, so a sex ratio favoring 
females would be expected to be the 
optimum

• However, if populations deviate from the 
50/50 ratio they will typically quickly return

• For example, the platyfish work of Basolo
and colleagues (1994) in which 
populations with experimentally 
manipulated ratios quickly returned to 
50/50
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10.2 Sex ratios, sex ratio distorters, and other selfish elements

• Why do we then see such a stable ratio of 
50/50?

• Imagine a population in which females 
predominate 80/20; an autosomal mutation 
favoring higher production of males would 
confer an advantage to that individual 
because their offspring would father a 
much greater proportion of the population

• The same would be true if the ratio was 
skewed in the other direction (20/80 
favoring males)

• Selection on autosomal alleles will favor 
production of the rare sex (i.e., negative 
frequency dependent selection)
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10.2 Sex ratios, sex ratio distorters, and other selfish elements

• However, there are notable deviations from the 
50/50 ratio, for example, when the ratio can be 
controlled among offspring that reproduce together

• Fig wasps are a haplo-diploid species in which 
fertilized eggs lead to females and unfertilized to 
males

• Females can control the number of fertilized vs. 
unfertilized eggs that they lay in figs where they 
develop and therefore can control the sex ratio

• After hatching, mating occurs within the fig, with the 
wingless males never leaving the fig in which they 
were born



10.2 Sex ratios, sex ratio distorters, and other selfish elements

• Since females can tightly control these ratios, it 
would be to their advantage to produce as many 
females as possible and just enough males to 
ensure fertilization

• In many species of fig wasp, 95% of individuals that 
are born are female



10.2 Sex ratios, sex ratio distorters, and other selfish elements

• Additional selfish strategies can occur below the level of 
the individual, leading to low fitness and actively harming 
individuals

• For example, in multiple species with XY mating systems, 
“selfish X” dynamics have evolved, in which an allele on 
the X chromosome has arisen to release a poison killing Y-
chromosome-bearing sperm during gametogenesis

• This results in a strong skew toward females in the 
population

• This selfish mechanism can compromise the fitness of the 
individual

• A selfish X allele has been observed in Drosophila 
simulans populations near the town of Winters, California



10.2 Sex ratios, sex ratio distorters, and other selfish elements

• The gene responsible for the selfish X dynamic in D. 
simulans is known as Dox (Distorter on the X) and results 
in males having >80% daughters

• Male spermatids (those that look like rice krispies in the 
lower figure) do not fully develop and fertilize eggs

• Selfish X mechanisms are often suppressed by new 
mutations that occur on autosomes and are favored 
because individuals carrying a suppressor will have more 
male offspring when this sex is rare and contribute 
disproportionately to the next generation



10.2 Sex ratios, sex ratio distorters, and other selfish elements

• An autosomal allele has arisen that 
suppresses selfish X caused by the Dox gene 
in D. simulans and has restored a sex ratio of 
50/50

• The gene, NMY, is actually a duplicate of the 
Dox gene that was transposed to an 
autosome and now blocks the action of Dox
through RNA-interference degradation of the 
Dox transcripts



10.2 Sex ratios, sex ratio distorters, and other selfish elements

• Maternally transmitted DNA in cytoplasmic organelles can also 
be bad actors

• For example, from the mitochondrion’s perspective, pollen and 
male gametes are a waste of energy because they don’t 
transmit mitochondria

• Alleles have arisen in mitochondrial DNA that target male 
pollen, shunting energy to other processes beneficial to 
mitochondria

• This phenomenon is known as “Cytoplasmic Male Sterility” and 
usually creates populations of females or hermaphrodite plants 
as in the Bladder Campion plant to the right



10.2 Sex ratios, sex ratio distorters, and other selfish elements

• CMS is typically counteracted by autosomal suppressor alleles 
that arise and are favored because they produce the more rare 
gamete (pollen)

• The CMS mechanism has been used as a strategy in 
agricultural species, because it allows for much more tightly 
controlled crosses between different accessions of a species

• There will be no danger that CMS-induced female plants will 
self pollinate



10.2 Sex ratios, sex ratio distorters, and other selfish elements

• In fact, mitochondria can serve as a hotspot for 
mutations deleterious to males (an effect 
referred to as the “Mother’s Curse”)

• Another example is a mutation underlying 
Leber’s hereditary optic neuropathy (LHON) 
which causes loss of vision in teenage males

• This mutation is at low frequency in the 
Canadian province of Quebec, having arrived in 
a single woman who was one of the “fille de roi”, 
women sent to Quebec by Louis XIV of France 
to help balance gender ratios in the new colony.



10.2 Sex ratios, sex ratio distorters, and other selfish elements

• Milot and colleagues (2017) tracked 
mitochondrial descendants of this woman (those 
whose mothers were in her matrilineal line)

• No difference in fitness was found in women that 
carried or did not carry the allele

• However, males that carried this allele had only 
65% of the fitness of males who did not carry 
the allele

• This allele has continued to segregate in the 
population because it has no fitness 
consequence for females



10.2 Sex ratios, sex ratio distorters, and other selfish elements

• It is not only mitochondria and nuclear DNA that participate 
in the battle of the sexes; the intracellular bacteria 
Wolbachia also plays a role, particularly in insect species

• These bacteria are passed to offspring through the 
cytoplasm, and thus are maternally inherited

• Similar to mitochondria, males are of no advantage to 
Wolbachia and many mutations have arisen in these 
bacteria that increase their transmission through 
feminization of males or killing of male embryos

• One dramatic example is the eggspot butterfly in which 
Wolbachia caused a 100/1 ratio of females to males until an 
autosomal suppressor arose that restored a 50/50 sex ratio 
in the years 2001-2006



10.2 Sex ratios, sex ratio distorters, and other selfish elements

• While many of the examples we have discussed have been on sex chromosomes, 
selfish genetic mechanisms can also arise on autosomes

• These dynamics are driven by competition among alleles for inclusion in the gamete to 
be passed on to the next generation

• For example, the four products of meiosis can be seen in the asci for spores of the SxS
and TxT individuals of Podospora anserina below, and in the SxT individuals, there are 
only two products because the T allele releases a toxin that poisons the S spores


