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Introduction

Evolution through Natural Selection 
requires:

1. There is variation in phenotype

2. Survival is non-random with 
respect to phenotype

3. Phenotypic variation is heritable*

*It is the heritable nature of variation coupled 
with the effects of natural selection within a 
generation that allows for evolution across 
generations



Introduction

• Let’s think about natural selection changing 
a mean phenotype such as height within a 
generation

• For example, perhaps taller individuals 
have a higher likelihood of surviving until 
reproduction

• We’ll call our mean phenotype before 
selection 𝜇!", our phenotype after selection 
𝜇", and our phenotype in the next 
generation 𝜇#$
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Introduction

• Our response to selection within a 
generation is: 𝜇" − 𝜇!" = 𝑆

• Our response to selection between
generations is: 𝜇#$ − 𝜇!" = 𝑅

• We can also write our expectation of the 
mean phenotype in the next generation as:
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• Where the outer expectation is over all 
randomly mating individuals that survive to 
reproduce 



Introduction

• We can solve for this expectation by going 
back to equation 7.14:
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• To be able to obtain 𝜇#$ we need to 
compute 𝔼 𝑋%&' , which is the expected 
mid-point phenotype of reproducing 
individuals, which is 𝜇" so:

• And rearranging a bit:
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Phenotype distribution before selection
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• Equation 8.4 tell us that our response to 
selection (𝑅) is proportional to our selection 
coefficient (𝑆) and the constant of proportionality 
is our narrow sense heritability (ℎ()

• This is what is known as the Breeder’s equation 
(𝑅 = ℎ(𝑆) and it tells us that evolutionary 
change across generations (𝑅) is proportional to 
the amount of change in phenotype caused by 
selection within a generation (𝑆), with the 
strength of this relationship determined by 
narrow sense heritability (ℎ()
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Introduction

• Based on the Breeder’s equation (𝑅 = ℎ(𝑆), 
if we know 𝑅 and 𝑆, we can estimate narrow 
sense heritability

• This estimate is what is known as “realized 
heritability”

• Realized heritability can be determined 
through artificial selection experiments 
where you know the strength of selection 
applied and can measure the response to 
selection empirically
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Introduction

• Figure 8.6 helps clarify the genetic basis 
of the response to selection

• All individuals in the population have a 
mean of 100 “up” alleles

• Those that survive to reproduce have a 
mean of 108 up alleles

• The offspring in the next generation 
have a similar distribution to those 
reproducing, and plenty of variation 
remains for ongoing evolution



8.0.1 The Long-term Response to Selection

• This means that, over time, our 
phenotype can continue to change in a 
linear fashion, resulting in impressive 
evolutionary change
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• The dynamics captured in our Breeder’s 
equation can continue on and on across 
generations

• If we assume that our heritability and 
selection coefficient are constant across 
generations, our phenotypic response to 
selection would be:



8.0.1 The Long-term Response to Selection
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Illinois long term selection experiment• The Illinois Long-term Selection 
Experiment in maize is an excellent 
example

• Selection has been applied for both 
higher and lower oil content in kernels 
for over a century

• Each generation, seeds in the extreme 
high or low end of the oil content 
distribution are chosen for the next 
generation

• The response has been continual, 
perhaps due to the great genetic 
diversity in maize



8.0.1 The Long-term Response to Selection

• In wild populations, selection coefficients 
are rarely constant across generations

• For example, Peter and Rosemary Grant 
have been tracking evolution of Darwin’s 
Finches in the Galapagos Islands for 
decades

• Selection pressure in the Medium 
ground-finch (Geospiza fortis) has 
changed multiple times over the course 
of their observations

●

● ●

●
●

●

●
●

●
●

● ●

●

●

● ● ● ●

●
●

●

●
●

●

●

●
●

● ●

1975 1980 1985 1990 1995 2000

−0
.2

0.
2

0.
4

0.
6

M
ea

n 
bo

dy
 s

ize

1975 1980 1985 1990 1995 2000

−0
.1

0.
1

0.
3

0.
5

●
●

●

●

●

●
●

●
●

●

● ●

●

●
●

●
● ● ●

●
●

●

●

●

●

●
● ●

Se
le

ct
io

n 
gr

ad
ie

nt



8.0.1 The Long-term Response to Selection

• We see so much variation in form and 
function across the diversity of life. Is 
long-term selection capable of 
generating this, given rates of evolution 
we see in the short-term?

• To measure the phenotypic change over 
various time periods we need an 
estimator of the rate of phenotypic 
change

Illustration by Färtenleser, licensed under CC-ASA 4.0



8.0.1 The Long-term Response to Selection

• J.B.S. Haldane (1949) proposed that the 
rate of phenotypic change from 𝑋) to 𝑋(
in the time interval ∆𝑡 spanning millions 
of years could be quantified as:

• By looking at the log of the ratio, we’re 
considering the fold change, which is 
reasonable given a 1cm change in leg 
length in a mouse is much more 
profound than in an elephant!



8.0.1 The Long-term Response to Selection

• Haldane called this unit of change a 
“Darwin”

• A 1-Darwin change corresponds to 𝑒 ≈
2.71 fold change in a million years, a 2-
Darwin change corresponds to 𝑒( ≈ 7.34
fold change in a million years, etc…



8.0.1 The Long-term Response to Selection

• Gingerich (1983) and later Uyeda (2011) 
examined the rate of evolutionary 
change in both field- and fossil-collected 
data

• Each point is an observation of the rate 
of phenotypic change measure in 
Darwins between compared populations 
or species

• Over short time spans (i.e., the lefthand
side of the plot) we see very rapid 
phenotypic change
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8.0.1 The Long-term Response to Selection

• For example, measurements on the decade 
scale in the dog whelk (a sea snail), showed 
that their shell lip thickness evolved from 
0.94mm to 1.44mm (50% increase) over just 
25 years, a rate of 17,060 Darwins!

• This rapid evolution is thought to be in 
response to predation by the invasive green 
crab that was recently introduced to the East 
Coast of North America



8.0.1 The Long-term Response to Selection

• In contrast, over greater time periods, the 
rate of evolution appears to be much slower

• For example, the Triceratops, which was ~30 
ft in length, evolved from a species known as 
Protoceratops, that was roughly the size of a 
sheep over the course of 7.5 million years

• While this may seem substantial, evolution 
over this long time period is at a rate of 0.143 
Darwins

• Thus, rates of evolution we see over 
contemporary timescales are enough to 
explain the diversity we see in life on Earth



Coop, Chapter 8: 8.1.1-8.1.3
The Response to Phenotypic Selection



8.1.1 Directional selection as the covariance between 
fitness and phenotype

• Directional selection occurs when selection drives a change in the mean 
phenotype within a generation

• This section reveals conditions under which directional selection occurs in the 
context of fitness and phenotype using the Breeder’s equation (𝑅 = ℎ(𝑆)

• Starting off, we need to define fitness of an organism: the probability that an 
individual with phenotype (𝑋) survives to reproduce 𝑤 𝑋

• We’ll also define the mean fitness of the population as 4𝑤



8.1.1 Directional selection as the covariance between 
fitness and phenotype

• The first portion of section 8.1.1 develops, mathematically, the concept that the 
selection coefficient we discussed as part of the Breeder’s equation (𝑆) can be 
expressed as covariance between a phenotype (𝑋) and its relative fitness, 
𝑤(𝑋)/4𝑤:

• Our change in phenotype across generations is therefore a measure of the 
covariance in phenotype and fitness and the Breeder’s equation can be rewritten 
as:

• This reveals that response to selection also depends on an offspring’s phenotype 
covarying with the parent’s, due to inclusion of the narrow-sense heritability (ℎ( =
*!
*
)



8.1.1 Directional selection as the covariance between 
fitness and phenotype

• To understand this in more detail, let’s consider the regression of an individual 𝑖’s 
phenotype (𝑋&) on fitness (𝑤&):

• The slope of this regression (𝛽) is called the fitness gradient and is defined as:

• So the fitness gradient is therefore the covariance of phenotype and fitness 
divided by the phenotypic variance



8.1.1 Directional selection as the covariance between 
fitness and phenotype

• We can then rewrite the Breeder’s equation 
as:

• This tells us that we’ll see a directional 
response to selection when there is a linear 
relationship of phenotype and fitness and 
additive genetic variation for the phenotype

• As an example, we can look at the lifetime 
reproductive success (fitness) of male red 
deer regressed against their antler mass 
(phenotype)

• The slope of the regression line (𝛽) is the 
fitness gradient
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8.1.1 Directional selection as the covariance between 
fitness and phenotype

• Finally, how does the mean fitness of a population (4𝑤) itself evolve?

• If we think about relative fitness as our evolving phenotype, then our response to 
selection becomes:

• In other words, response to selection is equal to the additive genetic variance for 
relative fitness



8.1.2 Directional selection on fitness landscapes

• One metaphor commonly used to describe 
evolution is the “adaptive landscape” in 
which natural selection pushes a 
population toward higher fitness and 
ultimately peaks in the landscape 

• In this context, Lande (1976) further 
developed the Breeder’s equation showing 
that the response to selection could be 
written in terms of the gradient (derivative) 
of mean fitness of the population as a 
function of the mean phenotype:
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8.1.2 Directional selection on fitness landscapes

• Since 𝑉+/4𝑤 is always positive, the direction 
the population responds within the 
landscape is determined by the derivative

• If increasing the mean phenotype of the 
population would increase the mean 
fitness (, -.

,0̅
> 0), our population will evolve 

toward higher values of the trait (𝑅 > 0; 
lefthand side of figure)

• If decreasing the mean phenotype would 
increase the mean fitness (, -.

,0̅
< 0), our 

population will evolve toward lower values 
of the trait (righthand side of figure)



8.1.2 Directional selection on fitness landscapes

• While natural selection operates on the 
individual-level, the cumulative effect is 
increased mean fitness in the population 
and adaptive hill climbing within this 
landscape

• When the population mean fitness is at the 
top of the peak (, -.

,0̅
= 0), a local maximum 

is reached and 𝑅 = 0 and the relationship 
between fitness and phenotype stays 
constant, our population will stay at this 
peak

• It is possible that our population may be at 
a local peak (optimum), but not the highest 
peak in the landscape (global optimum)



8.1.2 Directional selection on fitness landscapes

• One very striking example of a population 
reaching a new fitness optimum comes from a 
stickleback fish time series over thousands of 
years from a fossil lakebed in Nevada (Bell et 
al. 2006)

• Since sediment is laid down yearly, the time 
series is very detailed

• Five thousand measurements were taken, 
documenting the reduction of armor after the 
stickleback colonized this lake

• “Touching pterygiophores” are a metric of 
armor and, quickly after colonization, the 
stickleback showed marked reduction followed 
by fluctuation around a new value which is 
presumed to be the new optimum
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8.1.2 Directional selection on fitness landscapes

• Hunt and colleagues (2008) followed up on 
this story, constructing the adaptive landscape 
(lower panel of the figure)

• The arrows show the moves made by the 
population toward the optimum phenotype

• The population initially makes large steps 
toward this optimum and then vacillates 
around it

• The fluctuation around the optimum can be 
interpreted as genetic drift knocking the 
population off the optimum, followed by 
natural selection bringing the population back 
to the optimum
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8.1.2 Directional selection on fitness landscapes

Some issues with adaptive landscapes:

• In practice, fitness landscapes are not 
constant and populations may need to 
continually evolve to keep chasing a shifting 
optimum

• In some instances, the fitness peak may be 
shifting so rapidly, that evolution in the 
population cannot keep pace and the peak 
slips further and further away

• If the fitness of our population falls below 4𝑤 <
1 for a sustained period of time, the 
population may end up going extinct



8.1.2 Directional selection on fitness landscapes

Some issues with adaptive landscapes:

• For an adaptive landscape to hold and for a 
particular organism to reach a fitness peak, 
the fitness of different phenotypes needs to be 
independent of each other’s frequency

• As an example of positive, frequency-
dependent selection, when a butterfly that is 
toxic to predators reaches high enough 
frequency, the predator learns its wing 
coloration pattern and avoids it; wing 
coloration mimics that lack the toxin are then 
just as fit as the toxic butterfly



8.1.3 Stabilizing and disruptive selection

• With directional selection, we have focused on selection shifting the mean 
phenotype within a population

• Other forms of selection have pronounced effects on the variance of phenotype

• For example, selection may disfavor individuals in the tails of the phenotypic 
distribution, causing a reduction in the variance of phenotype (stabilizing selection)

• Alternatively, selection may favor extreme phenotypes, increasing the variance 
(disruptive selection)

• While we saw with directional selection that there was a linear relationship 
between phenotype and fitness, when selection acts on the variance in phenotype, 
we see a quadratic relationship between fitness and phenotype



8.1.3 Stabilizing and disruptive selection

• Therefore, our regression for these types of selection will include a quadratic term:

• The coefficient of our quadratic term in this model, 𝛾, is known as the quadratic 
selection gradient and represents the covariance of fitness and the squared 
deviation from the phenotypic mean of the population:

• Values of 𝛾 < 0 are consistent with stabilizing selection, reducing the variance and 
values of 𝛾 > 0 are consistent with disruptive selection, increasing the variance



8.1.3 Stabilizing and disruptive selection

• A classic example of stabilizing selection, 
in which selection disfavors phenotypic 
extremes, is human birth weight

• Mary Karn collected birth weight and 
mortality from ~14,000 pregnancies 
between 1935-1946

• The variance in all births was 1.575lb2, 
whereas the variance in surviving babies 
was 1.26lb2, a 20% reduction in variance 
due to stabilizing selection

0
50

0
10

00
15

00
20

00
25

00

0 5 10 15

N
um

be
r o

f b
irt

hs

Birth Weight (lb)

0
50

0
10

00
15

00
20

00
25

00
0

50
0

10
00

15
00

20
00

25
00

● ● ●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

0.
02

0.
05

0.
10

0.
20

0.
50

1.
00

M
or

ta
lit

y



8.1.3 Stabilizing and disruptive selection

• A striking example of disruptive selection 
can be found in the Central African Black-
bellied Seedcatcher

• Both large-beaked and small-beaked 
morphs of the bird can be found that have 
different primary food sources

• Small-beaked birds eat soft seeds from a 
marsh sedge and big-beaked birds eat 
much harder seeds from a different sedge 
that require much more force to break 
open



8.1.3 Stabilizing and disruptive selection

• Smith (1993) followed the fate of 
hundreds of juveniles and found those 
with intermediate beak sizes had a much 
lower survival rate because they were not 
adapted to either food source

• This example of disruptive selection 
shows a negative quadratic term in the 
regression of fitness on beak size 
phenotype and increased variance in 
phenotype in survivors (1.3mm2) versus 
all juveniles (0.5mm2)



8.1.3 Stabilizing and disruptive selection

• Finally, the goldenrod ball gallmaker is an 
excellent example of the interplay of 
directional selection and quadratic terms 
during adaptation

• This insect lays its eggs in the goldenrod 
plant and the larvae release chemicals 
that cause the plant to build a gall that 
acts as a home for the larvae as they 
mature

• When small, galls are targeted by 
parasitoid wasps and if all galls are 
initially small, directional selection will act 
linearly to increase gall size



8.1.3 Stabilizing and disruptive selection

• When galls are large, they begin to attract 
the attention of downy woodpeckers and 
black-capped chickadees and stabilizing 
selection kicks in

• Under stabilizing selection, a quadratic 
term fits the best in the regression and 
intermediate gall size is favored

• The population will remain at this fitness 
peak as long as selection pressures 
remain the same


