Coop, Chapter 2: Intro-2.1.1

Allele and Genotype Frequencies

Population Genetics is all about variation
－To understand evolutionary processes at the population level， we must consider how sequence differs across individuals both within and between populations：

```
读 >ATGGAGAACGATGAACTCAGCCCAGAAGCCAGCTAA
谣 >ATGGAGAATGATGAACTCAGCCCAGAAGCCAGCTAA
谣 >ATGGAAAATGATGAACTCAGCCCAGAAGCCAGCTAA
    >ATGGAAAACGATGAACTCAGCACAGAAGCCAGCTAA
湭 >ATGGCGAACGATGAACTCAGCACAGAAGCCAGCTAA
```

Population Genetics is all about variation
And there is a lot of vocabulary to keep straight

Terminology

连 $>$ ATGGAGAACGATGAACTCAGCCCAGAAGCCAGCTAA
诨＞ATGGAGAATGATGAACTCAGCCCAGAAGCCAGCTAA
権＞ATGGAAAATGATGAACTCAGCCCAGAAGCCAGCTAA
＞$\quad>$ ATGGAAAACGATGAACTCAGCACAGAAGCCAGCTAA
设 $>$ ATGGAGAACGATGAACTCAGCACAGAAGCTAGCTAA

Terminology

䡙＞ATGGAGAACGATGAACTCAGCCCAGAAGCCAGCTAA
泼＞ATGGAGAATGATGAACTCAGCCCAGAAGCCAGCTAA
练＞ATGGAAAATGATGAACTCAGCCCAGAAGCCAGCTAA
＞ATGGAAAACGATGAACTCAGCACAGAAGCCAGCTAA
振 $>A T G G A G A A C G A T G A A C T C A G C A C A G A A G C T A G C T A A$

N ：Number of individuals sampled from our population

Terminology

> 设 $>$ ATGGAGAACGATGAACTCAGCCCAGAAGCCAGCTAA N远 $>$ ATGGAGAATIGATGAACTCAGCCCAGAAGCCAGCTAA
> 设 $>$ ATGGAAAAT GATGAACTCAGCCCAGAAGCCAGCTAA
> $>A T G$ GAAAACGATGAACTCAGCACAGAAGCCAGCTAA
> 设 $>$ ATGGAGAACGATGAACTCAGCAGAGAAGCTAGCTAA

Locus：Any position in a gene or genome（plural：loci）

Terminology

$$
\begin{aligned}
& \text { 设 }>\text { ATGGAGAACGATGAACTCAGCCCAGAAGCCAGCTAA N }
\end{aligned}
$$

> 投 $>$ ATGBAGAAT GATGAACTCAGCCAGAAGCCAGCTAA Allele
> 连 $>$ ATGGAAAAT GATGAACTCAGCCCAGAAGCCAGCTAA
> >ATGGAAAACGATGAACTCAGCACAGAAGCCAGCTAA
> 设 $>$ ATGGAGAACGATGAACTCAGCACAGAAGCTAGCTAA

Allele：A genetic variant at a locus

Terminology

谢＞ATGGAGAACGATGAACTCAGCCCAGAAGCCAGCTAA设 $>$ 友 $>$ ATGGAGAATGATGAACTCAGCCCAGAAGCCAGCTAA酒＞ATGGAAAATGATGAACTCAGCCCAGAAGCCAGCTAA
＞ATGGAAAACGATGAACTCAGCACAGAAGCCAGCTAA栗＞ATGGAGAACGATGAACTCAGCACAGAAGCTAGCTAA

Polymorphic：When a locus has more than one（poly）allele（morphs） Segregating site：Same as a polymorphic locus

Terminology

谢＞ATGGAGAACGATGAACTCAGCCCAGAAGCCAGCTAA设 $>$ 友 $>$ ATGGAGAATGATGAACTCAGCCCAGAAGCCAGCTAA䠶＞ATGGAAAATGATGAACTCAGCCCAGAAGCCAGCTAA
＞ATGGAAAACGATGAACTCAGCACAGAAGCCAGCTAA
N Locus Allele Polymorphic Segregating Site Biallelic

Biallelic Site：A locus with two segregating alleles

Terminology

设 $>$ ，ATGGAGAACGATGAACTCAGCCCAGAAGCCAGCTAA N 垪 $>$ ATGGAAAATGATGAACTCAGCCCAGAAGCCAGCTAA
＞ATGGAAAACGATGAACTCAGCACAGAAGCCAGCTAA遵＞ATGGAGAACGATGAACTCAGCACAGAAGCTAGCTAA
N Locus Allele Polymorphic Segregating Site Biallelic Minor Allele

Minor Allele：The least common allele at a biallelic site

Terminology

䡙＞ATGGAGAACGATGAACTCAGCCCAGAAGCCAGCTAA设 $>$ 友 $>$ ATGGAGAATGATGAACTCAGCCCAGAAGCCAGCTAA䠶＞ATGGAAAATGATGAACTCAGCCCAGAAGCCAGCTAA
＞ATGGAAAACGATGAACTCAGCACAGAAGCCAGCTAA设设＞ATGGAGAACGATGAACTCAGCACAGAAGCTAGCTAA

Major Allele：The most common allele at a biallelic site

Terminology

> 惮＞ATGGAGAACGATGAACTCAGCCCAGAAGCCAGCTAA遵 $>A T G G A G A A T G A T G A A C T C A G C C C A G A A G C C A G C T A A$蘵＞ATGGAAAATGATGAACTCAGCCCAGAAGCCAGCTAA
> ＞ATGGAAAACGATGAACTCAGCACAGAAGCCAGCTAA设 $>$ ATGGAGAACGATGAACTCAGCACAGAAGCTAGCTAAN Locus Allele Polymorphic Segregating Site Biallelic Minor Allele Major Allele
Synonymous

Synonymous：An allele that encodes the same amino acid in a protein

Terminology

遵＞ATGGAGAACGATGAACTCAGCCCCAGAAGCCAGCTTAA N
唒＞ATGGAAAATGATGAACTCAGCCCAGAAGCCAGCTAA ＞ATGGAAAACGATGAACTCAGCACAGAAGCCAGCTAA遵 $>A T G G A G A A C G A T G A A C T C A G C A C A G A A G C T A G C T A A$

M	E	N	D	E	L	＇S	P	E	A	S	${ }^{*}$
M	E	N	D	E	L	＇S	T	E	A	S	$*$

Nonsynonymous：An allele that encodes a different amino acid in a protein

More Terminology

More Terminology

Polymorphism

pos.	con.	a	b	c	d	e	f	g	h	i	j	k	1	a	b	c	d	e	f	a	b	c	d	e	f	g	h	i	j	k	1	NS / S
781	G	T	T	T	T	T	T	T	T	T	T	T	T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NS
789	T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	C	C	C	C	C	C	C	C	C	C	C	C	S
808	A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	G	G	G	G	G	G	G	G	G	G	G	G	NS
816	G	T	T	T	T	-	-	-	-	-	-	-	T	T.	T.	, T.	.T.	T	T	-	-	-	-	-	-	-	-	-	-	-	-	S
834	T	-	-	-	-	-	-	-	-	-	-	-	-	C	C	-	-	-	C	-	-	-	-	-	-	-	-	-	-	-	-	S
859	C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	G	G	G	G	G	G	G	G	G	G	G	G	NS
867	C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	G	G	G	G	G	A	G	G	G	G	G	G	S
870	C	T	T	T	T	T	T	T	T	T	T	T	T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	S
950	G	-	-	-	-	-	-	-	-	-	-	-	-	-	A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	S
974	G	-	-	-	-	-	-	-	-	-	-	-	-	T	-	T	T	T	T		-	-	-	-	-	-	-	-	-	-	-	S
983	T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	C	C	C	C	C	C	C	C	C	C	C	C	S

More Terminology
Fixed Difference

pos.	con.	a	b	c	d	e	f	g	h	i	j	k	1	a	b	c	d	e	f	a	b	c	d	e	f	g	h	i	j	k	1	NS/S
781	G	T	T	T	T	T	T	T	T	T	T	T	T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NS
789	T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	C	C	C	C	C	C	C	C	C	C	C	C	S
808	A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	G	G	G	G	G	G	G	G	G	G	G	G	NS
816	G	T	T	T	T	-	-	-	-	-	-	-	T	T	T	T	T	T	T	-	-	-	-	-	-	-	-	-	-	-	-	S
834	T	-	-	-	-	-	-	-	-	-	-	-	-	C	C	-	-	-	C	-	-	-	-	-	-	-	-	-	-	-	-	S
859	C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	G	G	G	G	G	G	G	G	G	G	G	G	NS
867	C																			G	,	G	G	G	A	G		G			G	S
870	C	"'" ${ }^{\text {T }}$																					+-1				-	-				S
950	G														"A"																	S
974	G	-	-	-	-			-	-	-	-	-	-	T		T	T	T	T	-		-		-	-	-	-	-	-	-	-	S
983	T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		C	C	C	C	C	C	C	C	C	C	C	C	S

More Terminology

Nonsynonymous Fixed Difference

pos．	con．	a	b	c	d	e	f	g	h	i	j	k	1	a	b	c	d	e	f	a	b	c	d	e	f	g	h	i	j	k	1	NS／S
781	G	－	T	T＂	T	T	T	T	T	T	T	T	T	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	NS
789	T	－－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	C	C	C	C	C＇	C	C	C	C	C	C	C	S
808	A	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	G	G	G	G	G	G	G	G	G	G	G	G	NS
816	G	T	T	T	T	－	－	－	－	－	－	－	T	T	T	T	T	T	T	－	－	－	－	－	－	－	－	－	－	－	－	S
834	T	－	－	－	－	－	－	－	－	－	－	－	－	C	C	－	－	－	C	－	－	－	－	－	－	－	－	－	－	－	－	S
859	C	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	G	G	G	G	G	G	G	G	G	G	G	G	NS
867	C	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	G	G	G	G	G	A	G	G	G	G	G	G	S
870	C	T	T	T	T	T	T	T	T	T	T	T	T	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	S
950	G	－	－	－	－	－	－	－	－	－	－	－	－	－	A	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	S
974	G	－	－	－	－	－	－	－	－	－	－	－	－	T	－	T	T	T	T	－	－	－	－	－	－	－	－	－	－	－	－	S
983	T	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	C	C	C	C	C	C	C	C	C	C	C	C	S

More Terminology
D. melanogaster, derived allele
D. simulans, ancestral allele

pos.	con.	a	b	c	d	e	f	g	h	i	j	k	1	a	b	c	d	e	f	a	b	c	d	e	f	g	h	i	j	k	1	NS/S
781	G				"r"	T	T	T	T	T	T	T	T	-	-			-														NS
789	T		-	.	.-	-	.	-	-.	-	.	-'									C"	"		C	C	C"	C"	"C	C"	C	C"	S
808	A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	G	G	G	G	G	G	G	G	G	G	G	G	NS
816	G	T	T	T	T	-	-	-	-	-	-	-	T	T	T	T	T	T	T	-	-	-	-	-	-	-	-	-	-	-	-	S
834	T	-	-	-	-	-	-	-	-	-	-	-	-	C	C	-	-	-	C	-	-	-	-	-	-	-	-	-	-	-	-	S
859	C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	G	G	G	G	G	G	G	G	G	G	G	G	NS
867	C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	G	G	G	G	G	A	G	G	G	G	G	G	S
870	C	T	T	T	T	T	T	T	T	T	T	T	T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	S
950	G	-	-	-	-	-	-	-	-	-	-	-	-	-	A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	S
974	G	-	-	-	-	-	-	-	-	-	-	-	-	T	-	T	T	T	T	-	-	-	-	-	-	-	-	-	-	-	-	S
983	T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	C	C	C	C	C	C	C	C	C	C	C	C	S

2.1 Allele Frequencies

Allele frequencies are a central unit of population genetic analyses.

An individual's "genotype" is its complement of alleles at a locus

Based on genotypes we can calculate allele frequencies

2.1 Allele Frequencies

\boldsymbol{N} : Total number of individuals in a population
$\boldsymbol{A}_{1}, \boldsymbol{A}_{\mathbf{2}}$: Two alleles at a biallelic locus
N_{11} : Number of homozygous $A_{1} A_{1}$ individuals
N_{12} : Number of heterozygous $A_{1} A_{2}$ individuals

Genotype frequencies:

$$
\boldsymbol{f}_{11}=N_{11} / N \quad \boldsymbol{f}_{12}=N_{12} / N
$$

The frequency of allele A_{1} :
$p=\frac{2 N_{11}+N_{12}}{2 \mathrm{~N}}$ and $p=f_{11}+\frac{1}{2} f_{12}$
The frequency of allele A_{2} :

$$
q=1-p
$$

2.1.1 Measures of Genetic Variability

- Nucleotide diversity (π) : Average number of single nucleotide differences between haplotypes chosen at random from a population
- With 6 samples, there are 15 different possible pairs

$$
\begin{array}{r}
a b=2 \mathrm{ac}=1 \mathrm{ad}=1 \mathrm{ae}=1 \mathrm{af}=0 \\
\mathrm{bc}=3 \mathrm{bd}=3 \mathrm{be}=3 \mathrm{bf}=2 \\
\mathrm{~cd}=0 \mathrm{ce}=0 \mathrm{cf}=1 \\
\mathrm{de}=0 \mathrm{df}=1 \\
\mathrm{ef}=1
\end{array}
$$

D. simulans data

- $\pi=1 / 15(2+1+1+1+0+3+3+3+2+0+0+1+0+1+1)$
- $\pi=1.26$

2.1.1 Measures of Genetic Variability

- π depends on the length of a sequence, so let's instead calculate π per base pair:
- Total length of ADH gene (monomorphic + polymorphic sites) = 397bp
- π per bp $=1.26 / 397=0.0032$
- Interpretation: on average, about a third of a percent ($1 / 300$) of sites are polymorphic between two D. simulans individuals at the ADH locus
- We can also calculate π at only synonymous sites, or only nonsynonymous sites

2.1.1 Measures of Genetic Variability

- The number of sites that are segregating within a given locus can also be calculated as a summary of genetic variability
- There are 2 segregating sites in D. melanogaster and 3 segregating sites in D. simulans at the ADH locus

D. simulans

- This depends critically on the number of individuals sequenced

2.1.1 Measures of Genetic Variability

The Site Frequency Spectrum

- Summary of the frequency of minor (folded SFS) or derived (unfolded SFS) alleles across all genotyped sites
- When the minor or derived allele occurs in only 1 of all genotyped individuals, this is called a singleton; when in two individuals, this is a doubleton, etc...

2.1.1 Measures of Genetic Variability

- With measurements across species, population geneticists have been surprised at the relatively small range of genetic variability given the large variation in census size.
- Leffler et al. (2012) compiled genetic diversity (π) data for 167 species across 14 phyla
- 800-fold difference in diversity from least (lynx) to most (sea squirt) diverse species; census-size variation is much more dramatic

2.1.1 Measures of Genetic Variability

2.1.1 Measures of Genetic Variability

Eurasian Lynx (Lynx lynx)
$\pi=0.01 \%$ (1 in 10,000 bases differ)

Sea Squirt (Ciona savignyi)
$\pi=8.3 \%$ (1 in 12 bases differ)

Coop, Chapter 2: 2.1.2-2.1.3 Allele and Genotype Frequencies

Hardy-Weinberg Proportions
Assortative Mating

HapMap YRI (Africans)

HapMap CEU (Europeans)

2.1.2: Hardy-Weinberg Proportions

For Hardy-Weinberg proportions we assume:

- Random Mating with respect to genotypes
- No inbreeding
- No assortative mating
- No population structure
- No sex differences in allele frequencies

2.1.2: Hardy-Weinberg Proportions

For example, let's say the frequency of the A_{1} allele at the time of reproduction is p :

What is p in this example?

2.1.2: Hardy-Weinberg Proportions

For example, let's say the frequency of the A_{1} allele at the time of reproduction is p :

What is p in this example? $p=8 / 10=0.8$

2.1.2: Hardy-Weinberg Proportions

An $A_{1} A_{1}$ diploid genotype is made by making

 two random A_{1} draws from the haploid gamete pool of the population:What is the probability/expected frequency of an $A_{1} A_{1}$ diploid genotype?

2.1.2: Hardy-Weinberg Proportions

An $A_{1} A_{1}$ diploid genotype is made by making

 two random A_{1} draws from the haploid gamete pool of the population:What is the probability/expected frequency of an $A_{1} A_{1}$ diploid genotype?
$f_{11}=p^{2}=(0.8)^{2}=0.64$

2.1.2: Hardy-Weinberg Proportions

The expected frequency of the three possible diploid genotypes is thus:

*Note that selection can change frequencies within a generation, but our expectations hold as long as p is the frequency of the A_{1} allele when gametes fuse to form a zygote

2.1.2: Hardy-Weinberg Proportions

An example of Hardy-Weinberg proportions in human populations based on 10,000 HapMap SNPs:

2.1.2: Hardy-Weinberg Proportions

On the coastal islands of British Columbia there is a subspecies of black bear (Ursus americanus kermodei, Kermode's bear). Some, called spirit bears, are white. They are homozygotes for a recessive allele at the MC1R gene. Individuals who are GG at this SNP are white while AA and AG individuals are black.

Here are the empirical genotype counts:

$A A$	$A G$	$G G$
42	24	21

What are the expected HardyWeinberg frequencies of these genotypes?

2.1.2: Hardy-Weinberg Proportions

What are the expected frequencies of the three genotypes under HWE?

$A A$	$A G$	$G G$
42	24	21

- First, we calculate the total number of individuals: $42+24+21=87$
- Then, we calculate the allele frequency of the A allele (p): $p=42 / 87+.5$ * $24 / 87=0.62$
- Then the allele frequency of the G allele (q) : $q=1-p=0.38$
- Finally, we apply Hardy-Weinberg to calculate expected allele frequencies:

$A A$	$A G$	$G G$
p^{2}	$2 p q$	q^{2}
0.38	0.47	0.14

2.1.3: Assortative Mating

Hardy-Weinberg assumptions can be violated in a number of ways. For example, if the probability of mating depends on a phenotype encoded by a particular genotype at a locus:

Negative Assortative, Disassortative Mating

Positive Assortative Mating

2.1.3: Assortative Mating

An example of positive assortative mating

- Wing coloration of Heliconius butterflies signals "I'm poisonous, don't eat me!" to predators
- Different coloration of hybrids relative to other wing coloration morphs results in them being highly predated
H. cydno chioneus

F1 hybrid.

sympatric comimic

- These species show strong positive assortative mating (like with like), presumably due to the selective consequences of mating with a different morph

2.1.3: Assortative Mating
 An example of positive assortative mating

- Under positive assortative mating, an excess of homozygotes is observed

2.1.3: Assortative Mating

An example of disassortative mating

- White-throated sparrows have a white-striped and a tan-striped morph (these are not gender differences)
- Mating pairs show strong enrichment for consisting of different morphs (1099 of 1116 pairs)

2.1.3: Assortative Mating

An example of disassortative mating

- Under disassortative mating, an excess of heterozygotes is observed
- Alleles in this empirical example show expected heterozygote enrichment and lack of homozygotes:

```
Tan White (Super)White
2/2 2/2m 2m/2m
978 1011 3
```


Coop, Chapter 2: 2.2

Allele and Genotype Frequencies

Allele sharing among related individuals and Identity by Descent

2.2: Allele Sharing, Identity by Descent (IBD)

- All individuals in a population are related through a giant pedigree (i.e., a family tree)
- While relatedness varies across pairs of individuals, they all show some level of kinship

2.2: Allele Sharing, Identity by Descent (IBD)

- Related individuals share alleles from their common ancestor, with close relatives sharing more alleles due to separation by fewer meioses
- Many pop/quant genetics theories rely on how closely related individuals are--we need to know kinship

2.2: Allele Sharing, Identity by Descent (IBD)

- Definition: Alleles are Identical by Descent (IBD) if they are identical due to transmission from the same ancestor within the last few generations
- For example, parent and child share exactly 1 allele IBD

2.2: Allele Sharing, Identity by Descent (IBD)

- We can summarize how related two individual are by calculating the probability that they have IBD for 0,1 , or 2 alleles: r_{0}, r_{1}, r_{2}
- These values can also be summarized as genome-wide averages (e.g., a quarter of all loci in full siblings have zero alleles that are IBD; $r_{0}=0.25$)

2.2: Allele Sharing, Identity by Descent (IBD)

- One important summary is the coefficient of kinship ($\mathrm{F}_{i j}$) which is the probability that two alleles drawn at random ($/ \& J$) from two individuals (i \& j) are IBD
- Mathematically, this can be expressed as:

$$
\begin{align*}
F_{i j}= & P(\mathrm{I} \& \mathrm{~J} \mathrm{IBD}) \tag{2.3}\\
= & P(\mathrm{I} \& \mathrm{~J} \text { IBD } \mid \mathrm{i} \& \mathrm{j} 0 \mathrm{IBD}) P(\mathrm{i} \& \mathrm{j} 0 \mathrm{IBD}) \\
& +P(\mathrm{I} \& \mathrm{~J} \operatorname{IBD} \mid \mathrm{i} \& \mathrm{j} 1 \mathrm{IBD}) P(\mathrm{i} \& \mathrm{j} 1 \mathrm{IBD}) \\
& +P(\mathrm{I} \& \mathrm{~J} \operatorname{IBD} \mid \mathrm{i} \& \mathrm{j} 2 \mathrm{IBD}) P(\mathrm{i} \& \mathrm{j} 2 \mathrm{IBD}) \tag{2.4}\\
= & 0 \times r_{0}+\frac{1}{4} r_{1}+\frac{1}{2} r_{2} . \tag{2.5}
\end{align*}
$$

2.2: Allele Sharing, Identity by Descent (IBD)

- In 2.4 we sum the conditional probabilities that alleles $/$ and J are IBD over whether parents i and j have 0,1 , or 2 alleles that are IBD
- In 2.5 we've taken advantage of the fact that we can calculate these conditional probabilities based on rules of Mendelian transmission

$$
\begin{aligned}
F_{i j}= & P(\mathrm{I} \& \mathrm{~J} \mathrm{IBD}) \\
= & P(\mathrm{I} \& \mathrm{~J} \operatorname{IBD} \mid \mathrm{i} \& \mathrm{j} 0 \mathrm{IBD}) P(\mathrm{i} \& \mathrm{j} 0 \mathrm{IBD}) \\
& +P(\mathrm{I} \& \mathrm{~J} \mathrm{IBD} \mid \mathrm{i} \& \mathrm{j} 1 \mathrm{IBD}) P(\mathrm{i} \& \mathrm{j} 1 \mathrm{IBD}) \\
& +P(\mathrm{I} \& \mathrm{~J} \mathrm{IBD} \mid \mathrm{i} \& \mathrm{j} 2 \mathrm{IBD}) P(\mathrm{i} \& \mathrm{j} 2 \mathrm{IBD}) \\
= & 0 \times r_{0}+\frac{1}{4} r_{1}+\frac{1}{2} r_{2} .
\end{aligned}
$$

2.2: Allele Sharing, Identity by Descent (IBD)

 $P($ I\&J IBD \mid i\&j 1 IBD)- The pair of alleles ($/ \& J$) drawn from individuals i and j are IBD, given these individuals share 1 allele that is IBD
- This probability is $1 / 4$ because we need to draw the IBD allele twice (once from each individual i and j): $1 / 2$ $x^{1 / 2}=1 / 4$

$1 / 2 \times 1 / 2=1 / 4$

2.2: Allele Sharing, Identity by Descent (IBD)

When we know that 0 alleles are IBD, there is no way we can draw IBD alleles from two individuals

2.2: Allele Sharing, Identity by Descent (IBD)

$$
\begin{equation*}
=0 \times r_{0} \frac{\mathbb{1}}{\frac{1}{1}} r_{1}+\frac{1}{2} r_{2} \tag{2.5}
\end{equation*}
$$

2.2: Allele Sharing, Identity by Descent (IBD)

$$
\begin{equation*}
=0 \times r_{0}+\frac{1}{4} r_{1}+\frac{1}{2} \frac{i_{2}}{2} \tag{2.5}
\end{equation*}
$$

2.2: Allele Sharing, Identity by Descent (IBD)

- Based on equation 2.5 below which incorporates Mendelian transmission, convince yourself that the coefficient of kinship for first

Relationship (i,j)*	$P(\mathrm{i} \& \mathrm{j} 0$ IBD $)$	$P(\mathrm{i} \& \mathrm{j} 1 \mathrm{IBD})$	$P(\mathrm{i} \& \mathrm{j} 2 \mathrm{IBD})$	$P(\mathrm{I} \& \mathrm{~J}$ IBD $)$
Relationship $(\mathrm{i}, \mathrm{j})^{*}$	r_{0}	r_{1}	r_{2}	$F_{i j}$
parent-child	0	1	0	$1 / 4$
full siblings	$1 / 4$	$1 / 2$	$1 / 4$	$1 / 4$
Monozygotic twins	0	0	1	$1 / 2$
$1^{\text {st }}$ cousins	$3 / 4$	$1 / 4$	0	$1 / 16$

$$
\begin{align*}
F_{i j}= & P(\mathrm{I} \& \mathrm{~J} \mathrm{IBD}) \tag{2.3}\\
= & P(\mathrm{I} \& \mathrm{~J} \mathrm{IBD} \mid \mathrm{i} \& \mathrm{j} 0 \mathrm{IBD}) P(\mathrm{i} \& j \mathrm{j} \operatorname{IBD}) \\
& +P(\mathrm{I} \& \mathrm{~J} \mathrm{IBD} \mid \mathrm{i} \& \mathrm{j} 1 \mathrm{IBD}) P(\mathrm{i} \& \mathrm{j} 1 \mathrm{IBD}) \\
& +P(\mathrm{I} \& \mathrm{~J} \mathrm{IBD} \mid \mathrm{i} \& \mathrm{j} 2 \mathrm{IBD}) P(\mathrm{i} \& \mathrm{j} 2 \mathrm{IBD}) \tag{2.4}\\
& 0 \times r_{0}+\frac{1}{4} r_{1}+\frac{1}{2} r_{2} .
\end{align*}
$$

2.2: Allele Sharing, Identity by Descent (IBD)

- Our r coefficients have more uses. For example, we can calculate the probability of a homozygous genotype $A_{1} A_{1}$ when we know both the allele frequency and the coefficient of inbreeding

$$
\begin{aligned}
P\left(A_{1} A_{1}\right)= & P\left(A_{1} A_{1} \mid 0 \text { alleles IBD }\right) P(0 \text { alleles IBD }) \\
& +P\left(A_{1} A_{1} \mid 1 \text { allele IBD }\right) P(1 \text { allele IBD }) \\
& +P\left(A_{1} A_{1} \mid 2 \text { alleles IBD }\right) P(2 \text { alleles IBD })
\end{aligned}
$$

Or, in our r_{0}, r_{1}, r_{2} notation:

$$
\begin{align*}
P\left(A_{1} A_{1}\right)= & P\left(A_{1} A_{1} \mid 0 \text { alleles IBD }\right) r_{0} \\
& +P\left(A_{1} A_{1} \mid 1 \text { alleles IBD }\right) r_{1} \\
& +P\left(A_{1} A_{1} \mid 2 \text { alleles IBD }\right) r_{2} \tag{2.7}
\end{align*}
$$

2.2: Allele Sharing, Identity by Descent (IBD)

- If our individuals share 0 alleles IBD, then probability that they are $A_{1} A_{1}$ is:
- If our individuals share 1 allele IBD, then shared allele is of type A_{1} with probability p, and other, non-IBD allele is A_{1} with probability p^{2}
- If our individuals share 2 allele IBD, then shared allele is of type A_{1} with probability p^{2}, because if one individual is homozygous A_{1}, both are
$P\left(A_{1} A_{1} \mid 0\right.$ alleles IBD $)=p^{2} \times p^{2}$
$P\left(A_{1} A_{1} \mid 1\right.$ alleles IBD $)=p \times p^{2}$
$P\left(A_{1} A_{1} \mid 2\right.$ alleles IBD $)=p^{2}$
2.2: Allele Sharing, Identity by Descent (IBD)

$$
\begin{align*}
P\left(A_{1} A_{1}\right)= & P\left(A_{1} A_{1} \mid 0 \text { alleles IBD }\right) r_{0} \\
& +P\left(A_{1} A_{1} \mid 1 \text { alleles IBD }\right) r_{1} \\
& +P\left(A_{1} A_{1} \mid 2 \text { alleles IBD }\right) r_{2} \tag{2.7}
\end{align*}
$$

simplifies to:

$$
\begin{equation*}
P\left(A_{1} A_{1}\right)=p^{4} r_{0}+p^{3} r_{1}+p^{2} r_{2} \tag{2.8}
\end{equation*}
$$

2.2: Allele Sharing, Identity by Descent (IBD)

- In a scrub jay population, pedigree information has been kept for decades.
- Estimates of r_{1} and r_{2} match theoretical predictions and pedigree well

2.2: Allele Sharing, Identity by Descent (IBD)

- Plot of expected chromosome sharing of two cousins with their shared grandmother
- Purple regions are IBD
- Companies like 23\&me look for such blocks of IBD and use their cumulative extent and length to predict relatedness of individuals

2.2: Allele Sharing, Identity by Descent (IBD)

- With $3^{\text {rd }}$ cousins, there is less IBD from the shared great, great grandmother
- IBD blocks are also shorter due to the increased number of meioses
- Beyond this level of relatedness, IBD can be difficult to detect due to short block lengths

Coop, Chapter 2: 2.2.1

Allele and Genotype Frequencies
Inbreeding

2.2.1: Inbreeding

- Inbred: an individual whose parents are more closely related to each other than two random individuals drawn from a population
- Inbred individuals can have 2 alleles that are IBD, homozygous by descent through 2 paths in the pedigree
- Increased likelihood of being
 homozygous due to non-random mating \rightarrow inbreeding

2.2.1: Inbreeding

- Remember, the probability of two alleles being IBD is the coefficient of kinship

$$
F_{i j}=0 \times r_{0}+\frac{1}{4} r_{1}+\frac{1}{2} r_{2}
$$

- The only way an individual can be heterozygous is to not be IBD (1-F)

$$
\begin{gathered}
\hline f_{12} \\
\hline(1-F) 2 p q \\
\hline
\end{gathered}
$$

2.2.1: Inbreeding

An individual could be an $A_{1} A_{1}$ homozygote in one of two ways:

- They have two A_{1} alleles that are not IBD but happen to both be A_{1}

$$
(1-F) p^{2} \quad F p
$$

An individual could be an $A_{2} A_{2}$ homozygote in one of two ways:

- They have two A_{2} alleles that are not

IBD but happen to both be A_{2}

$$
(1-F) q^{2}
$$

- The two alleles are IBD
$F q$

2.2.1: Inbreeding

- This leads to the generalized Hardy-Weinberg Form with Inbreeding:

f_{11}	f_{12}	f_{22}
$(1-F) p^{2}+F p$	$(1-F) 2 p q$	$(1-F) q^{2}+F q$

2.2.1: Inbreeding

- Up until now, we've talked about single loops of inbreeding within a pedigree, but there can often be many more
- More loops increases probability of IBD and inbreeding
- Charles II of Spain is a classic example: his inbreeding coefficient was calculated at 0.254 , the equivalent of full sib mating
- Expression of recessive disease alleles might have explained Charles II's poor health

Coop, Chapter 2: 2.2.2

Allele and Genotype Frequencies
Calculating inbreeding coefficients from genetic data

2.2.2 Calculating inbreeding coefficients from genetic data

Assuming Hardy-Weinberg...

$$
\begin{equation*}
\hat{F}=1-\frac{f_{12}}{2 p q}=\frac{2 p q-f_{12}}{2 p q} \tag{2.12}
\end{equation*}
$$

2.2.2 Calculating inbreeding coefficients from genetic data

Assuming Hardy-Weinberg...

$$
\begin{equation*}
\hat{F}=1-\frac{f_{12}}{2 p q}=\frac{2 p q-f_{12}}{2 p q} \tag{2.12}
\end{equation*}
$$

Where...
$\widehat{F}=$ estimated inbreeding coefficient
2.2.2 Calculating inbreeding coefficients from genetic data

Assuming Hardy-Weinberg...

$$
\begin{equation*}
\hat{F}=1-\frac{f_{12}}{2 p q}=\frac{2 p q-f_{12}}{2 p q} \tag{2.12}
\end{equation*}
$$

Where...
$\widehat{F}=$ estimated inbreeding coefficient
$f_{12}=$ observed frequency of heterozygotes (also referred to as H_{O})
2.2.2 Calculating inbreeding coefficients from genetic data

Assuming Hardy-Weinberg...

$$
\begin{equation*}
\hat{F}=1-\frac{f_{12}}{2 p q}=\frac{2 p q-f_{12}}{2 p q} \tag{2.12}
\end{equation*}
$$

Where...
$\widehat{F}=$ estimated inbreeding coefficient
$f_{12}=$ observed frequency of heterozygotes (also referred to as H_{O})
$2 p q=\operatorname{expected}$ frequency of heterozygotes under HWE $\left(H_{E}\right)$
2.2.2 Calculating inbreeding coefficients from genetic data

Which can be reduced to

$$
\begin{equation*}
\hat{F}=\frac{H_{E}-H_{O}}{H_{E}}=1-\frac{H_{O}}{H_{E}} \tag{2.13}
\end{equation*}
$$

Where...
$H_{E}=$ expected frequency of heterozygotes under HWE
$H_{O}=$ observed frequency of heterozygotes under HWE
2.2.2 Calculating inbreeding coefficients from genetic data

Reminder: What deviation from HWE do we expect when a population is inbred? What do you expect \hat{F} to be when a population is inbred?

$$
\begin{equation*}
\hat{F}=\frac{H_{E}-H_{O}}{H_{E}}=1-\frac{H_{O}}{H_{E}} \tag{2.13}
\end{equation*}
$$

Important: This equation measures deviation of heterozygote frequency from the expected frequency under random mating (HWE)
2.2.2 Calculating inbreeding coefficients from genetic data

- Genetic markers are commonly used in conservation genetics to gauge inbreeding in species of concern like Mexican wolves
- The deficit of heterozygotes in Mexican wolves suggested substantial inbreeding:

$$
\begin{gathered}
H_{E}=0.18, H_{O}=0.12 \\
\hat{F}=1-\frac{H_{O}}{H_{E}}
\end{gathered}
$$

$$
\hat{F}=0.33
$$

- 33\% of Mexican wolves' genome was homozygous due to inbreeding

2.2.2 Calculating inbreeding coefficients from genetic data

Genomic blocks of homozygosity: a product of inbreeding

For each progressive generation, there is an additional crossing-over event

Runs of homozygosity (ROH) decrease in size
2.2.2 Calculating inbreeding coefficients from genetic data

Genomic blocks of homozygosity: a product of inbreeding

Inbreeding increases the frequency of ROH by increasing the likelihood of homozygosity by descent (HBD)
2.2.2 Calculating inbreeding coefficients from genetic data

Genomic blocks of homozygosity: a product of inbreeding

ROH: Runs of homozygosity
HBD: Homozygosity by descent

Measuring the frequency of $\mathrm{ROH}\left(F_{R O H}\right)$ can tell us about inbreeding

Fig. 2.21
2.2.2 Calculating inbreeding coefficients from genetic data

Genomic blocks of homozygosity: a product of inbreeding

> ROH: Runs of homozygosity
> HBD: Homozygosity by descent
> F $_{\text {ROH: }}$ Frequency of ROH

Notice the different shapes of the curves:

- Doberman Pinscher has more large $\mathrm{ROH}>$ recent inbreeding
- English Bulldog has more short $\mathrm{ROH}>$ older inbreeding

