# Coop, Chapter 2: Intro-2.1.1

#### Allele and Genotype Frequencies



#### Population Genetics is all about variation

 To understand evolutionary processes at the population level, we must consider how sequence differs across individuals both within and between populations:

>ATGGAGAACGATGAACTCAGCCCAGAAGCCAGCTAA
 >ATGGAGAATGATGAACTCAGCCCAGAAGCCAGCTAA
 >ATGGAAAATGATGAACTCAGCCCAGAAGCCAGCTAA
 >ATGGAAAACGATGAACTCAGCACAGAAGCCAGCTAA
 >ATGGCGAACGATGAACTCAGCACAGAAGCCAGCTAA

#### Population Genetics is all about variation

#### And there is a lot of vocabulary to keep straight



>ATGGAGAACGATGAACTCAGCCCAGAAGCCAGCTAA
>ATGGAAAATGATGAACTCAGCCCAGAAGCCAGCTAA
>ATGGAAAATGATGAACTCAGCCCAGAAGCCAGCTAA
>ATGGAAAACGATGAACTCAGCACAGAAGCCAGCTAA

ATGGAGAACGATGAACTCAGCCCAGAAGCCAGCTAA >ATGGAGAATGATGAACTCAGCCCAGAAGCCAGCTAA >ATGGAAAATGATGAACTCAGCCCAGAAGCCAGCTAA >ATGGAAAACGATGAACTCAGCACAGAAGCCAGCTAA >ATGGAGAACGATGAACTCAGCACAGAAGCTAGCTAA

N: Number of individuals sampled from our population

AT GGAGAAC GAT GAACTCAGC C CAGAAGCCAGCTAA
 AT GGAGAAT GAT GAACTCAGC C CAGAAGCCAGCTAA
 AT GGAAAAT GAT GAACTCAGC C CAGAAGCCAGCTAA
 AT GGAAAAC GAT GAACTCAGC A CAGAAGCCAGCTAA
 AT GGAGAAC GAT GAACTCAGC A CAGAAGCCAGCTAA

**Locus**: Any position in a gene or genome (plural: loci)

AT GGAGAAC GAT GAACTCAGC C CAGAAGCCAGCTAA
 AT GGAGAAT GAT GAACTCAGC C CAGAAGCCAGCTAA
 AT GGAAAAT GAT GAACTCAGC C CAGAAGCCAGCTAA
 AT GGAAAAC GAT GAACTCAGC A CAGAAGCCAGCTAA
 AT GGAGAAC GAT GAACTCAGC A CAGAAGCCAGCTAA

Allele: A genetic variant at a locus

ATGGAGAACGATGAACTCAGCCCAGAAGCCAGCTAA
ATGGAAAATGATGAACTCAGCCCAGAAGCCAGCTAA
ATGGAAAATGATGAACTCAGCCCAGAAGCCAGCTAA
ATGGAAAACGATGAACTCAGCACAGAAGCCAGCTAA

N Locus Allele Polymorphic Segregating Site

**Polymorphic**: When a locus has more than one (*poly*) allele (*morphs*) **Segregating site**: Same as a polymorphic locus

ATGGAGAACGATGAACTCAGCCCAGAAGCCAGCTAA
ATGGAGAATGATGAACTCAGCCCAGAAGCCAGCTAA
ATGGAAAATGATGAACTCAGCCCAGAAGCCAGCTAA
ATGGAAAACGATGAACTCAGCACAGAAGCCAGCTAA

N Locus Allele Polymorphic Segregating Site Biallelic

**Biallelic Site:** A locus with two segregating alleles

ATGGAGAACGATGAACTCAGCCCAGAAGCCAGCTAA
ATGGAAAATGATGAACTCAGCCCAGAAGCCAGCTAA
ATGGAAAATGATGAACTCAGCCCAGAAGCCAGCTAA
ATGGAAAACGATGAACTCAGCACAGAAGCCAGCTAA

N Locus Allele Polymorphic Segregating Site Biallelic Minor Allele

Minor Allele: The least common allele at a biallelic site

ATGGAGAACGATGAACTCAGCCCAGAAGCCAGCTAA
ATGGAAAATGATGAACTCAGCCCAGAAGCCAGCTAA
ATGGAAAATGATGAACTCAGCCCAGAAGCCAGCTAA
ATGGAAAACGATGAACTCAGCACAGAAGCCAGCTAA

N Locus Allele Polymorphic Segregating Site Biallelic Minor Allele Major Allele

Major Allele: The most common allele at a biallelic site

>ATGGAGAACGATGAACTCAGCCCAGAAGCCAGCTAA >ATGGAGAATGATGAACTCAGCCCAGAAGCCAGCTAA >ATGGAAAATGATGAACTCAGCCCAGAAGCCAGCTAA >ATGGAAAACGATGAACTCAGCACAGAAGCCAGCTAA >ATGGAGAACGATGAACTCAGCACAGAAGCTAGCTAA

N Locus Allele Polymorphic Segregating Site Biallelic Minor Allele Major Allele Synonymous

**Synonymous**: An allele that encodes the same amino acid in a protein

ATGGAGAACGATGAACTCAGCCCAGAAGCCAGCTAA
ATGGAGAATGATGAACTCAGCCCAGAAGCCAGCTAA
ATGGAAAATGATGAACTCAGCCCAGAAGCCAGCTAA
ATGGAAAACGATGAACTCAGCACAGAAGCCAGCTAA

| Μ | Е | Ν | D | Ε | L | ' S | Ρ | Ε | Α | S | * |  |
|---|---|---|---|---|---|-----|---|---|---|---|---|--|
| Μ | Е | Ν | D | Е | L | ' S | Т | Е | А | S | * |  |

**Nonsynonymous**: An allele that encodes a different amino acid in a protein N Locus Allele Polymorphic Segregating Site Biallelic Minor Allele Major Allele Synonymous Nonsynonymous





#### Polymorphism

| pos. | con.         | a | b            | с            | d            | е            | f            | g            | h            | i            | j            | k            | 1            | a            | b            | с            | d            | е            | f            | a            | b            | с            | d            | е            | f            | g            | h            | i            | j            | k            | 1            | NS/S |
|------|--------------|---|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------|
| 781  | G            | Т | Т            | Т            | Т            | Т            | Т            | Т            | Т            | Т            | Т            | Т            | Т            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | NS   |
| 789  | $\mathbf{T}$ | - | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{C}$ | S    |
| 808  | A            | - | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{G}$ | NS   |
| 816  | $\mathbf{G}$ | Т | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ | -            | -            | -            | -            | -            | -            | -            | $\mathbf{T}$ | Т            | Т            | Т            | Т            | т            | т            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | S    |
| 834  | $\mathbf{T}$ | - | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            |              | $\mathbf{C}$ | $\mathbf{C}$ | -            | -            | -            | $\mathbf{C}$ | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | S    |
| 859  | $\mathbf{C}$ | - | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{G}$ | NS   |
| 867  | $\mathbf{C}$ | - | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | Α            | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | S    |
| 870  | $\mathbf{C}$ | Т | $\mathbf{T}$ | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | S    |
| 950  | $\mathbf{G}$ | - | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | Α            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | S    |
| 974  | $\mathbf{G}$ | - | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{T}$ | -            | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | S    |
| 983  | Т            | - | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{C}$ | S    |



#### **Fixed Difference**

| pos. | con.         | a | b            | с            | d            | е | f | g | h | i | j | k | 1            | a            | b            | с            | d            | е            | $\mathbf{f}$ | a            | b            | с            | d            | е            | f            | g            | h            | i            | j            | k            | 1            | NS/S         |
|------|--------------|---|--------------|--------------|--------------|---|---|---|---|---|---|---|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| 781  | G            | т | Т            | Т            | т            | Т | Т | Т | Т | Т | Т | Т | Т            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | NS           |
| 789  | $\mathbf{T}$ | - | -            | -            | -            | - | - | - | - | - | - | - | -            | -            | -            | -            | -            | -            | -            | $\mathbf{C}$ | $\mathbf{S}$ |
| 808  | Α            | - | -            | -            | -            | - | - | - | - | - | - | - | -            | -            | -            | -            | -            | -            | -            | $\mathbf{G}$ | NS           |
| 816  | G            | Т | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ | - | - | - | - | - | - | - | $\mathbf{T}$ | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{S}$ |
| 834  | $\mathbf{T}$ | - | -            | -            | -            | - | - | - | - | - | - | - | -            | $\mathbf{C}$ | $\mathbf{C}$ | -            | -            | -            | $\mathbf{C}$ | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{S}$ |
| 859  | $\mathbf{C}$ | - | -            | -            | -            | - | - | - | - | - | - | - | -            | -            | -            | -            | -            | -            | -            | $\mathbf{G}$ | NS           |
| 867  | $\mathbf{C}$ |   | -            | -            |              |   |   |   | - | - |   |   |              |              |              |              |              | -            |              | G            | $\mathbf{G}$ | G            | $\mathbf{G}$ | G            | Α            | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{S}$ |
| 870  | С            | Т | Т            | Т            | Т            | Т | Т | Т | Т | Т | Т | Т | Т            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{S}$ |
| 950  | G            | - | -            | -            | -            | - | - | - | - | - | - | - | -            | -            | A            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            |              | -            | -            | $\mathbf{S}$ |
| 974  | $\mathbf{G}$ | - | -            | -            | -            | - | - | - | - | - | - | - | -            | $\mathbf{T}$ | -            | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{S}$ |
| 983  | $\mathbf{T}$ | - | -            | -            | -            | - | - | - | - | - | - | - | -            | -            | -            | -            | -            | -            | -            | $\mathbf{C}$ | $\mathbf{S}$ |



#### Nonsynonymous Fixed Difference

| pos. | con.         | a            | b            | с            | d            | e            | f            | g | h            | i            | j            | k            | 1            | a            | b            | с            | d            | е            | f            | a            | b            | с            | d            | е            | $\mathbf{f}$ | g            | h            | i            | j            | k            | 1            | NS/S |
|------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------|
| 781  | G            | Т            | Т            | т            | т            | Т            | Т            | т | Т            | Т            | Т            | Т            | Т            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            |              | NS   |
| 789  | Т            | -            | -            | -            | -            | -            | -            | - | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | С            | $\mathbf{C}$ | $\mathbf{C}$ | $\mathbf{C}$ | $\mathbf{C}$ | $\mathbf{C}$ | $\mathbf{C}$ | С            | С            | $\mathbf{C}$ | $\mathbf{C}$ | С            | S    |
| 808  | A            | -            | -            | -            | -            | -            | -            | - | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{G}$ | NS   |
| 816  | $\mathbf{G}$ | $\mathbf{T}$ | Т            | $\mathbf{T}$ | $\mathbf{T}$ | -            | -            | - | -            | -            | -            | -            | $\mathbf{T}$ | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | S    |
| 834  | $\mathbf{T}$ | -            | -            | -            | -            | -            | -            | - | -            | -            | -            | -            | -            | $\mathbf{C}$ | $\mathbf{C}$ | -            | -            | -            | $\mathbf{C}$ | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | S    |
| 859  | $\mathbf{C}$ | -            | -            | -            | -            | -            | -            | - | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{G}$ | NS   |
| 867  | $\mathbf{C}$ | -            | -            | -            | -            | -            | -            | - | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | Α            | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | S    |
| 870  | $\mathbf{C}$ | Т            | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ | Т | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | S    |
| 950  | $\mathbf{G}$ | -            | -            | -            | -            | -            | -            | - | -            | -            | -            | -            | -            | -            | Α            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | S    |
| 974  | $\mathbf{G}$ | -            | -            | -            | -            | -            | -            | - | -            | -            | -            | -            | -            | $\mathbf{T}$ | -            | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | S    |
| 983  | $\mathbf{T}$ | -            | -            | -            | -            | -            | -            | - | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{C}$ | $\mathbf{C}$ | $\mathbf{C}$ | $\mathbf{C}$ | С            | $\mathbf{C}$ | S    |



*D. melanogaster,* derived allele *D. simulans,* ancestral allele

| pos. | cor          | 1. a         | $\mathbf{b}$ | с            | d            | e            | $\mathbf{f}$ | g            | $\mathbf{h}$ | i            | j            | $\mathbf{k}$ | 1            | $\mathbf{a}$ | $\mathbf{b}$ | с            | $\mathbf{d}$ | е            | $\mathbf{f}$ | a            | b            | с            | $\mathbf{d}$ | e            | $\mathbf{f}$ | g            | $\mathbf{h}$ | i            | j            | $\mathbf{k}$ | 1            | NS/S          |
|------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|
| 781  | G            | Т            | Т            | Т            | Т            | Т            | Т            | Т            | Т            | Т            | Т            | Т            | Т            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | NS            |
| 789  | $\mathbf{T}$ | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{C}$ | $\mathbf{C}$ | $\mathbf{C}$ | $\mathbf{C}$ | $\mathbf{C}$ | С            | $\mathbf{C}$ | $\mathbf{C}$ | $\mathbf{C}$ | $\mathbf{C}$ | $\mathbf{C}$ | $\mathbf{C}$ | S             |
| 808  | Α            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{G}$ | $\mathbf{NS}$ |
| 816  | $\mathbf{G}$ | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ | -            | -            | -            | -            | -            | -            | -            | $\mathbf{T}$ | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{S}$  |
| 834  | $\mathbf{T}$ | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{C}$ | $\mathbf{C}$ | -            | -            | -            | $\mathbf{C}$ | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | S             |
| 859  | $\mathbf{C}$ | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{G}$ | $\mathbf{NS}$ |
| 867  | $\mathbf{C}$ | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | Α            | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{G}$ | $\mathbf{S}$  |
| 870  | $\mathbf{C}$ | $\mathbf{T}$ | $\mathbf{T}$ | Т            | $\mathbf{T}$ | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{S}$  |
| 950  | $\mathbf{G}$ | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | Α            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{S}$  |
| 974  | $\mathbf{G}$ | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{T}$ | -            | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{S}$  |
| 983  | $\mathbf{T}$ | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | -            | $\mathbf{C}$ | S             |

## 2.1 Allele Frequencies

Allele frequencies are a central unit of population genetic analyses.

An individual's "genotype" is its complement of alleles at a locus

Based on genotypes we can calculate allele frequencies

## 2.1 Allele Frequencies

**N** : Total number of individuals in a population

**A**<sub>1</sub>,**A**<sub>2</sub>: Two alleles at a biallelic locus

- $N_{11}$ : Number of homozygous  $A_1A_1$  individuals
- $N_{12}$ : Number of heterozygous  $A_1A_2$  individuals

Genotype frequencies:  $f_{11} = N_{11} / N$   $f_{12} = N_{12} / N$ 

The frequency of allele 
$$A_1$$
:  
 $p = \frac{2N_{11} + N_{12}}{2N}$  and  $p = f_{11} + \frac{1}{2}f_{12}$ 

The frequency of allele  $A_2$ : q = 1 - p

- Nucleotide diversity  $(\pi)$ : Average number of single nucleotide differences between haplotypes chosen at random from a population
- With 6 samples, there are 15 different possible pairs

$$ab = 2 ac = 1 ad = 1 ae = 1 af = 0$$
  
 $bc = 3 bd = 3 be = 3 bf = 2$   
 $cd = 0 ce = 0 cf = 1$   
 $de = 0 df = 1$   
 $ef = 1$ 

| a                                                                       | b                | с                          | d                                                                  |
|-------------------------------------------------------------------------|------------------|----------------------------|--------------------------------------------------------------------|
| -                                                                       | -                | -                          | -                                                                  |
| -                                                                       | -                | -                          | -                                                                  |
| -                                                                       | -                | -                          | -                                                                  |
| т                                                                       | $\mathbf{T}$     | -<br>Т                     | т                                                                  |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | т<br>С           | -<br>-<br>-<br>-<br>T      | T<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| -                                                                       | -                | -                          | -                                                                  |
| -                                                                       | -                | -                          | -                                                                  |
| -                                                                       | -                | -                          | -                                                                  |
| -                                                                       | Α                | -                          | -                                                                  |
| Т                                                                       | -<br>A<br>-      | $\mathbf{T}$               | т                                                                  |
| -                                                                       | -                | -                          | -                                                                  |
| -                                                                       | -                | -                          | -                                                                  |
| -                                                                       | -                | -                          | -                                                                  |
| -                                                                       | -                | -                          | -                                                                  |
| -                                                                       | -                | -                          | -                                                                  |
| -                                                                       | -                | -                          | -                                                                  |
| Α                                                                       | -<br>-<br>-<br>A | -<br>-<br>-<br>-<br>-<br>A | Α                                                                  |
| -                                                                       | -                | -                          | -                                                                  |
| -                                                                       | -                | -                          | -                                                                  |
| -                                                                       | -                | -                          | -                                                                  |
| -                                                                       | -                | -                          | -                                                                  |

*D. simulans* data

•  $\pi = 1/15(2+1+1+1+0+3+3+3+2+0+0+1+0+1+1)$ •  $\pi = 1.26$ 

- $\pi$  depends on the length of a sequence, so let's instead calculate  $\pi$  per base pair:
  - Total length of ADH gene (monomorphic + polymorphic sites) = 397bp
  - $\pi$  per bp = 1.26/397 = 0.0032
- Interpretation: on average, about a third of a percent (1/300) of sites are polymorphic between two *D. simulans* individuals at the *ADH* locus
- We can also calculate  $\pi$  at only synonymous sites, or only nonsynonymous sites

- The number of sites that are segregating within a given locus can also be calculated as a summary of genetic variability
- There are 2 segregating sites in D. melanogaster and 3 segregating sites in *D. simulans* at the ADH locus
- This depends critically on the number of individuals sequenced

#### D. melanogaster

D. simulans

| a      | b                       | с        | d | е            | $\mathbf{f}$            | g | h                       | i | j        | k                       | 1 | a | b            | с            | d | е            |  |
|--------|-------------------------|----------|---|--------------|-------------------------|---|-------------------------|---|----------|-------------------------|---|---|--------------|--------------|---|--------------|--|
| т      | т                       | т        | т | Т            | Т                       | т | Т                       | Т | Т        | Т                       | Т | - | -            | -            | - | -            |  |
|        | -                       | -        | - | -            | -                       | - | -                       | - | -        | -                       | - | - | -            | -            | - | -            |  |
| •      | -                       | -        | - | -            | -                       | - | -                       | - | -        | -                       | - | - | -            | -            | - | -            |  |
|        | Т                       | Т        | Т | -            | -                       | - | -                       | - | -        | -                       | Т | T | Т            | Т            | Т | Т            |  |
|        | -                       | -        | - | -            | -                       | - | -                       | - | -        | -                       | - | С | $\mathbf{C}$ | -            | - | -            |  |
|        | -                       | -        | - | -            | -                       | - | -                       | - | -        | -                       | - | - | -            | -            | - | -            |  |
|        | $\overline{\mathbf{T}}$ | $^{-}$ T | T | $\mathbf{T}$ | $\overline{\mathbf{T}}$ | T | $\overline{\mathbf{T}}$ | T | $^{-}$ T | $\overline{\mathbf{T}}$ | T | _ | _            | _            | _ | _            |  |
|        | _                       | -        | - | -            | -                       | - | -                       | - | -        | -                       | - | - | Α            | _            | _ | _            |  |
| _      |                         | -        | - | -            | -                       | - | -                       | - | -        | -                       | - | Т | -            | $\mathbf{T}$ | т | $\mathbf{T}$ |  |
| -      |                         | -        | - | -            | -                       | - | -                       | - | -        | -                       | - | - | -            | -            | - | -            |  |
| -      | •                       | -        | - | -            | -                       | - | -                       | - | -        | -                       | - | - | -            | -            | - | -            |  |
|        | -                       | -        | - | -            | -                       | - | -                       | - | -        | -                       | - | - | -            | -            | - | -            |  |
|        | -                       | -        | - | -            | -                       | - | -                       | - | -        | -                       | - | - | -            | -            | - | -            |  |
| -<br>Г | -<br>Т                  | -        | - | -            | -                       | - | -                       | - | -        | -                       | - | - | -            | -            | - | -            |  |
| L      | -                       | _        | _ | _            | _                       | _ | _                       | _ | _        | _                       | _ | Ā | Ā            | -<br>-       | Ā | -<br>-       |  |
|        | _                       | _        | _ | _            | _                       | _ | _                       | _ | _        | _                       | _ | - | _            | _            | _ | -            |  |
| -      | -                       | -        | - | -            | -                       | - | -                       | - | -        | -                       | - | - | -            | -            | - | -            |  |
| -      | -                       | -        | - | -            | -                       | - | -                       | - | -        | -                       | - | - | -            | -            | - | -            |  |
| -      | -                       | -        | - | -            | -                       | - | -                       | - | -        | -                       | - | - | -            | -            | - | -            |  |

#### The Site Frequency Spectrum



- With measurements across species, population geneticists have been surprised at the relatively small range of genetic variability given the large variation in census size.
- Leffler *et al.* (2012) compiled genetic diversity ( $\pi$ ) data for 167 species across 14 phyla
- 800-fold difference in diversity from least (lynx) to most (sea squirt) diverse species; census-size variation is much more dramatic



Eurasian Lynx (*Lynx lynx*)  $\pi = 0.01\%$  (1 in 10,000 bases differ)



Sea Squirt (*Ciona savignyi*)  $\pi = 8.3\%$  (1 in 12 bases differ)



# Coop, Chapter 2: 2.1.2-2.1.3

Allele and Genotype Frequencies

Hardy-Weinberg Proportions Assortative Mating



#### For Hardy-Weinberg proportions we assume:

- Random Mating with respect to genotypes
- No inbreeding
- No assortative mating
- No population structure
- No sex differences in allele frequencies

For example, let's say the frequency of the  $A_1$  allele at the time of reproduction is p:

What is *p* in this example?



For example, let's say the frequency of the  $A_1$  allele at the time of reproduction is p:

What is *p* in this example?

p = 8/10 = 0.8



An  $A_1A_1$  diploid genotype is made by making two random  $A_1$  draws from the haploid gamete pool of the population:

What is the probability/expected frequency of an  $A_1A_1$  diploid genotype?



An  $A_1A_1$  diploid genotype is made by making two random  $A_1$  draws from the haploid gamete pool of the population:

What is the probability/expected frequency of an  $A_1A_1$  diploid genotype?

 $f_{11} = p^2 = (0.8)^2 = 0.64$ 



The expected frequency of the three possible diploid genotypes is thus:

$$\begin{array}{c|cccc} f_{11} & f_{12} & f_{22} \\ \hline p^2 & 2pq & q^2 \end{array}$$

\*Note that selection can change frequencies within a generation, but our expectations hold as long as p is the frequency of the  $A_1$  allele when gametes fuse to form a zygote

# An example of Hardy-Weinberg proportions in human populations based on 10,000 HapMap SNPs:



On the coastal islands of British Columbia there is a subspecies of black bear (*Ursus americanus kermodei*, Kermode's bear). Some, called spirit bears, are white. They are homozygotes for a recessive allele at the MC1R gene. Individuals who are GG at this SNP are white while AA and AG individuals are black.

Here are the empirical genotype counts:

| AA | AG | GG |
|----|----|----|
| 42 | 24 | 21 |

What are the expected Hardy-Weinberg frequencies of these genotypes?



#### 2.1.2: Hardy-Weinberg Proportions

What are the expected frequencies of the three genotypes under HWE?

- First, we calculate the total number of individuals: 42+24+21 = 87
- Then, we calculate the allele frequency of the A allele (*p*): p = 42/87 + .5 \* 24/87 = 0.62
- Then the allele frequency of the G allele (q): q = 1 - p = 0.38
- Finally, we apply Hardy-Weinberg to calculate expected allele frequencies:

| AA    | AG   | GG    |
|-------|------|-------|
| $p^2$ | 2pq  | $q^2$ |
| 0.38  | 0.47 | 0.14  |

$$\begin{array}{c|ccc} AA & AG & GG \\ \hline 42 & 24 & 21 \end{array}$$



Hardy-Weinberg assumptions can be violated in a number of ways. For example, if the probability of mating depends on a phenotype encoded by a particular genotype at a locus:

Negative Assortative,<br/>Disassortative MatingPositive Assortative MatingXQOO<br/>XQOO<br/>XXQOO<br/>XQOO<br/>XQOO<br/>XQOO<br/>X

An example of positive assortative mating

- Wing coloration of *Heliconius* butterflies signals "I'm poisonous, don't eat me!" to predators
- Different coloration of hybrids relative to other wing coloration morphs results in them being highly predated
- These species show strong positive assortative mating (like with like), presumably due to the selective consequences of mating with a different morph



An example of positive assortative mating

 Under positive assortative mating, an excess of homozygotes is observed



sympatric comimic

sympatric comimic

An example of disassortative mating

- White-throated sparrows have a white-striped and a tan-striped morph (these are not gender differences)
- Mating pairs show strong enrichment for consisting of different morphs (1099 of 1116 pairs)



An example of disassortative mating

- Under disassortative mating, an excess of heterozygotes is observed
- Alleles in this empirical example show expected heterozygote enrichment and lack of homozygotes:

| Tan | White | (Super)White              |
|-----|-------|---------------------------|
| 2/2 | 2/2m  | $2\mathrm{m}/2\mathrm{m}$ |
| 978 | 1011  | 3                         |



# Coop, Chapter 2: 2.2

#### Allele and Genotype Frequencies

Allele sharing among related individuals and Identity by Descent



- All individuals in a population are related through a giant pedigree (*i.e.*, a family tree)
- While relatedness varies across pairs of individuals, they all show some level of *kinship*



- Related individuals share alleles from their common ancestor, with close relatives sharing more alleles due to separation by fewer meioses
- Many pop/quant genetics theories rely on how closely related individuals are--we need to know kinship



- Definition: Alleles are Identical by Descent (IBD) if they are identical due to transmission from the same ancestor within the last few generations
- For example, parent and child share exactly 1 allele IBD



- We can summarize how related two individual are by calculating the probability that they have IBD for 0, 1, or 2 alleles: r<sub>0</sub>, r<sub>1</sub>, r<sub>2</sub>
- These values can also be summarized as genome-wide averages (*e.g.*, a quarter of all loci in full siblings have zero alleles that are IBD; r<sub>0</sub> = 0.25)



(2.3)

- One important summary is the coefficient of kinship (F<sub>ij</sub>) which is the probability that two alleles drawn at random (I & J) from two individuals (i & j) are IBD
- Mathematically, this can be expressed as:

 $F_{ij} = P(\text{I\&J IBD})$ 

= P(I&J IBD| i&j 0 IBD)P(i&j 0 IBD)

+ P(I&J IBD| i&j 1 IBD)P(i&j 1 IBD)

+ 
$$P(I\&J IBD| i\&j 2 IBD)P(i\&j 2 IBD)$$
 (2.4)  
=  $0 \times r_0 + \frac{1}{4}r_1 + \frac{1}{2}r_2.$  (2.5)



- In 2.4 we sum the conditional probabilities that alleles *I* and *J* are IBD over whether parents *i* and *j* have 0, 1, or 2 alleles that are IBD
- In 2.5 we've taken advantage of the fact that we can calculate these conditional probabilities based on rules of Mendelian transmission

$$F_{ij} = P(I\&J IBD)$$
(2.3)  
=  $P(I\&J IBD| i\&j 0 IBD)P(i\&j 0 IBD)$   
+  $P(I\&J IBD| i\&j 1 IBD)P(i\&j 1 IBD)$   
+  $P(I\&J IBD| i\&j 2 IBD)P(i\&j 2 IBD)$ (2.4)  
=  $0 \times r_0 + \frac{1}{4}r_1 + \frac{1}{2}r_2.$ (2.5)

## P(I&J IBD| i&j 1 IBD)

- The pair of alleles (*I* & *J*) drawn from individuals *i* and *j* are IBD, given these individuals share 1 allele that is IBD
- This probability is ¼ because we need to draw the IBD allele twice (once from each individual *i* and *j*): ½ x ½ = ¼





When we know that 0 alleles are IBD, there is no way we can draw IBD alleles from two individuals

 $= 0 \ltimes r_0 + \frac{1}{4}r_1 + \frac{1}{2}r_2.$ 



When we know that 0 alleles are IBD, there is no way we can draw IBD alleles from two individuals

When we know that 1 allele is IBD, we have to draw it twice (from both individuals), each time with probability of  $\frac{1}{2}$ :  $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ 



 $= 0 \times r_0 + \frac{1}{4}r_1 + \frac{1}{2}r_2.$ 

(2.5)



 $= 0 \times r_0 + \frac{1}{4}r_1 + \frac{1}{2}n_2.$ 

When we know that 0 alleles are IBD, there is no way we can draw IBD alleles from two individuals

When we know that 1 allele is IBD, we have to draw it twice (from both individuals), each time with probability of  $\frac{1}{2}$ :  $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ 

When we know that 2 distinct alleles (black and red here) are IBD, we can draw an IBD allele in two ways, black with probability  $\frac{1}{4}$  or red with probability of  $\frac{1}{4}$ :  $\frac{1}{4}$ +  $\frac{1}{4}$  =  $\frac{1}{2}$ 

(2.5)

 Based on equation 2.5 below which incorporates Mendelian transmission, convince yourself that the coefficient of kinship for first cousins is 1/16:

| Relationship $(i,j)^*$ | P(i&j 0 IBD) | P(i&j 1 IBD) | P(i&j 2 IBD) | P(I&J IBD $)$ |
|------------------------|--------------|--------------|--------------|---------------|
| Relationship $(i,j)^*$ | $r_0$        | $r_1$        | $r_2$        | $F_{ij}$      |
| parent-child           | 0            | 1            | 0            | 1/4           |
| full siblings          | $^{1/4}$     | $^{1/2}$     | $^{1/4}$     | $^{1/4}$      |
| Monozygotic twins      | 0            | 0            | 1            | $^{1/2}$      |
| $1^{st}$ cousins       | 3/4          | 1/4          | 0            | $^{1}/16$     |

 $F_{ij} = P(I\&J IBD)$ 

```
= P(I\&J IBD| i\&j 0 IBD)P(i\&j 0 IBD)
```

+ P(I&J IBD| i&j 1 IBD)P(i&j 1 IBD)

+ P(I&J IBD| i&j 2 IBD)P(i&j 2 IBD)(2.4)

 $=0 \times r_0 + \frac{1}{4}r_1 + \frac{1}{2}r_2.$ 

(2.3)

(2.5)

 Our *r* coefficients have more uses. For example, we can calculate the probability of a homozygous genotype A<sub>1</sub>A<sub>1</sub> when we know both the allele frequency and the coefficient of inbreeding  $P(A_1A_1) = P(A_1A_1|0 \text{ alleles IBD})P(0 \text{ alleles IBD})$  $+ P(A_1A_1|1 \text{ allele IBD})P(1 \text{ allele IBD})$  $+ P(A_1A_1|2 \text{ alleles IBD})P(2 \text{ alleles IBD})$ (2.6)

Or, in our  $r_0$ ,  $r_1$ ,  $r_2$  notation:

 $P(A_1A_1) = P(A_1A_1|0 \text{ alleles IBD})r_0$ +  $P(A_1A_1|1 \text{ alleles IBD})r_1$ +  $P(A_1A_1|2 \text{ alleles IBD})r_2$  (2.7)

- If our individuals share 0 alleles IBD, then probability that they are A<sub>1</sub>A<sub>1</sub> is:
- If our individuals share 1 allele IBD, then shared allele is of type A<sub>1</sub> with probability p, and other, non-IBD allele is A<sub>1</sub> with probability p<sup>2</sup>
- If our individuals share 2 allele IBD, then shared allele is of type A<sub>1</sub> with probability p<sup>2</sup>, because if one individual is homozygous A<sub>1</sub>, both are

 $P(A_1A_1|0 \text{ alleles IBD}) = p^2 \times p^2$ 

 $P(A_1A_1|1 \text{ alleles IBD}) = p \times p^2$ 

 $P(A_1A_1|2 \text{ alleles IBD}) = p^2$ 

 $P(A_1A_1) = P(A_1A_1|0 \text{ alleles IBD})r_0$ +  $P(A_1A_1|1 \text{ alleles IBD})r_1$ +  $P(A_1A_1|2 \text{ alleles IBD})r_2$  (2.7)

simplifies to:

 $P(A_1A_1) = p^4 r_0 + p^3 r_1 + p^2 r_2$ (2.8)



Estimated IBD r1

- In a scrub jay population, pedigree information has been kept for decades.
- Estimates of r<sub>1</sub> and r<sub>2</sub> match theoretical predictions and pedigree well

| Relationship $(i,j)^*$ | P(i&j 0 IBD) | P(i&j 1  IBD) | P(i&j 2 IBD) | P(I&J IBD) |
|------------------------|--------------|---------------|--------------|------------|
| Relationship $(i,j)^*$ | $r_0$        | $r_1$         | $r_2$        | $F_{ij}$   |
| parent-child           | 0            | 1             | 0            | 1/4        |
| full siblings          | $^{1/4}$     | $^{1/2}$      | $^{1/4}$     | 1/4        |
| Monozygotic twins      | 0            | 0             | 1            | 1/2        |
| $1^{st}$ cousins       | 3/4          | $^{1/4}$      | 0            | $^{1/16}$  |







- Plot of expected chromosome sharing of two cousins with their shared grandmother
- Purple regions are IBD
- Companies like 23&me look for such blocks of IBD and use their cumulative extent and length to predict relatedness of individuals





genome in

your Great.

- With 3<sup>rd</sup> cousins, there is less IBD from the shared great, great grandmother
- IBD blocks are also shorter due • to the increased number of meioses
- Beyond this level of relatedness, IBD can be difficult to detect due to short block lengths

## Coop, Chapter 2: 2.2.1

#### Allele and Genotype Frequencies

Inbreeding



- Inbred: an individual whose parents are more closely related to each other than two random individuals drawn from a population
- Inbred individuals can have 2 alleles that are IBD, homozygous by descent through 2 paths in the pedigree
- Increased likelihood of being homozygous due to non-random mating → inbreeding



 Remember, the probability of two alleles being IBD is the coefficient of kinship

$$arF_{ij} = 0 imes r_0 + rac{1}{4}r_1 + rac{1}{2}r_2.$$

• The only way an individual can be heterozygous is to not be IBD (1 - F)

$$f_{12} \ (1-F)2pq$$

An individual could be an  $A_1A_1$  homozygote in one of two ways:

 They have two A<sub>1</sub> alleles that are not IBD but happen to both be A<sub>1</sub>

$$(1-F)p^2$$

• The two alleles are IBD

$$Fp$$
.

An individual could be an  $A_2A_2$  homozygote in one of two ways:

 They have two A<sub>2</sub> alleles that are not IBD but happen to both be A<sub>2</sub>

$$(1 - F)q^2$$

• The two alleles are IBD

 This leads to the generalized Hardy-Weinberg Form with Inbreeding:

$$egin{array}{cccc} f_{11} & f_{12} & f_{22} \ \hline (1-F)p^2 + Fp & (1-F)2pq & (1-F)q^2 + Fq \end{array}$$





- Up until now, we've talked about single loops of inbreeding within a pedigree, but there can often be many more
- More loops increases probability of IBD and inbreeding
- Charles II of Spain is a classic example: his inbreeding coefficient was calculated at 0.254, the equivalent of full sib mating
- Expression of recessive disease alleles might have explained Charles II's poor health

## Coop, Chapter 2: 2.2.2 Allele and Genotype Frequencies

Calculating inbreeding coefficients from genetic data



Assuming Hardy-Weinberg...

$$\widehat{F} = 1 - \frac{f_{12}}{2pq} = \frac{2pq - f_{12}}{2pq}$$
(2.12)

Assuming Hardy-Weinberg...

$$\widehat{F} = 1 - \frac{f_{12}}{2pq} = \frac{2pq - f_{12}}{2pq}$$
(2.12)

Where...

 $\hat{F}$  = estimated inbreeding coefficient

Assuming Hardy-Weinberg...

$$\widehat{F} = 1 - \frac{f_{12}}{2pq} = \frac{2pq - f_{12}}{2pq}$$
(2.12)

Where...

 $\hat{F}$  = estimated inbreeding coefficient

 $f_{12}$  = observed frequency of heterozygotes (also referred to as  $H_0$ )

Assuming Hardy-Weinberg...

$$\widehat{F} = 1 - \frac{f_{12}}{2pq} = \frac{2pq - f_{12}}{2pq}$$
(2.12)

Where...

 $\hat{F}$  = estimated inbreeding coefficient

 $f_{12}$  = observed frequency of heterozygotes (also referred to as  $H_0$ )

2pq = expected frequency of heterozygotes under HWE ( $H_E$ )

Which can be reduced to

$$\widehat{F} = \frac{H_E - H_O}{H_E} = 1 - \frac{H_O}{H_E}$$
(2.13)

Where...

 $H_E$  = expected frequency of heterozygotes under HWE  $H_O$  = observed frequency of heterozygotes under HWE

<u>*Reminder:*</u> What deviation from HWE do we expect when a population is inbred? What do you expect  $\hat{F}$  to be when a population is inbred?

$$\widehat{F} = \frac{H_E - H_O}{H_E} = 1 - \frac{H_O}{H_E}$$
(2.13)

<u>Important</u>: This equation measures deviation of heterozygote frequency from the expected frequency under random mating (HWE)

- Genetic markers are commonly used in conservation genetics to gauge inbreeding in species of concern like Mexican wolves
- The deficit of heterozygotes in Mexican wolves suggested substantial inbreeding:

$$H_E$$
=0.18,  $H_O$ =0.12  
 $\hat{F} = 1 - \frac{H_O}{H_E}$   
 $\hat{F} = 0.33$ 

• 33% of Mexican wolves' genome was homozygous due to inbreeding



Genomic blocks of homozygosity: a product of inbreeding



For each progressive generation, there is an additional crossing-over event

Runs of homozygosity (ROH) decrease in size

Genomic blocks of homozygosity: a product of inbreeding



ROH: Runs of homozygosity

Inbreeding increases the frequency of ROH by increasing the likelihood of homozygosity by descent (HBD)

#### Genomic blocks of homozygosity: a product of inbreeding



Fig. 2.21

Genomic blocks of homozygosity: a product of inbreeding



ROH: Runs of homozygosity HBD: Homozygosity by descent F<sub>ROH</sub>: Frequency of ROH

## Notice the different shapes of the curves:

- Doberman Pinscher has more large ROH > recent inbreeding
- English Bulldog has more short ROH > older inbreeding



Fig. 2.22