Refactoring the formicamycin biosynthetic gene cluster to make high-level producing strains and new molecules

Rebecca Devine, Hannah McDonald, Zhiwei Qin, Corinne Arnold, Katie Noble, Govind Chandra, Barrie Wilkinson* and Matthew I. Hutchings*

Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, UK, NR4 7UH.

*Correspondence to <u>barrie.wilkinson@jic.ac.uk</u> and <u>matt.hutchings@jic.ac.uk</u>

Structure determination of new fasamycin and formicamycin congeners

Structures were assigned based on our published data ⁴. The substituent variations including chlorination and *O*-methylations were determined by 2D HSQC and NOESY NMR.

Formicamycin R

Molecular formula: $C_{29}H_{23}O_8CI_5$ Isolated yield: 16.5 mg UV (PDA): $\lambda_{max} = 245$ and 290 nm Specific rotation: $[\alpha]_D^{20} = 305.1$ HRMS (ESI) *m/z*: calculated [M - H]⁻ = 672.9763, observed [M - H]⁻ = 672.9759, Δ = -0.59 ppm NMR (Methanol-d4; 600 MHz & 125 MHz): ¹H, ¹³C, HSQC, HMBC, NOESY

Table 1: Structural determination of Formicamycin R

Position	δ _c ppm	δ _H ppm (no. of protons, multiplicity, J in Hz)	НМВС	NOESY
1	134.5		25	
2	119.4		25	
3	153.3		29	
4	115.8			
5	150.8			
6	130.0		24, 25	
7	140.6		24	
8	124.5		20, 24	
9	195.3		19	
10	80.4		19, 20	
11	199.9		19	
12	115.0			
13	160.8			
14	108.9			
15	161.5			
16	109.9			

17	147.1		19, 26, 27	
18	41.3		19, 20, 26, 27	
19	51.3	2.5 (1H, dd, 10.16, 6.09)	20, 26, 27	20, 26, 27
20	20.2	2.8 (1H, dd, 18.86, 10.16)		10
20	50.5	3.7 (1H, dd, 18.86, 6.09)		19
21	143.4		20	
22	122.7		20, 24	
23	160.4		24, 28	
24	115.6	6.8 (1H, s)		25, 28
25	18.3	2.0 (3H, s)		24
26	27.3	1.7 (3H, s)	27	19, 20, 27
27	29.3	1.9 (3H, s)	19, 26	19, 26
28	57.5	4.0 (3H, s)		24
29	61.3	3.5 (3H, s)		

Formicamycin S

Molecular formula: $C_{30}H_{25}O_8CI_5$ Isolated yield: 7.0 mg UV (PDA): $\lambda_{max} = 240$ and 292 nm Specific rotation: $[\alpha]_{12}^{20} = 278.0$ HRMS (ESI) *m/z*: calculated [M - H]⁻ = 686.9919, observed [M - H]⁻ = 686.9918, Δ = -0.15 ppm NMR (Methanol-d4; 600 MHz & 125 MHz): ¹H, ¹³C, HSQC, HMBC, NOESY

Table 2: Structural determination of Formicamycin S

Position	δ _c ppm	δ _H ppm (no. of protons, multiplicity, J in Hz)	НМВС	NOESY
1	135.5		25	
2	121.8		25	
3	153.7		29	
4	116.2			
5	153.7		30	
6	135.1		24, 25	
7	140.1		24	
8	124.3		20, 24	
9	195.4		19	
10	80.4		19, 20	
11	199.5		19	
12	126.2			
13	161.6			
14	108.9			
15	161.7			
16	109.5			
17	146.9		19, 26, 27	
18	41.3		19, 20, 26, 27	
19	51.3	2.5 (1H, dd, 9.81, 5.54)	20, 26, 27	20, 26, 27
20	30.3	2.8 (1H, dd, 18.91, 9.81)		19

		3.7 (1H, dd, 18.08, 5.54)		
21	143.5		20	
22	122.9		20, 24	
23	160.5		24, 28	
24	115.1	6.9 (1H, s)		25, 28
25	18.2	2.0 (3H, s)		24
26	27.3	1.7 (3H, s)	27	19, 20, 27
27	29.3	1.9 (3H, s)	19, 26	19, 26
28	57.5	3.92 (3H, s)		24
29	61.4	3.5 (3H, s)		
30	61.2	3.90 (3H, s)		

Fasamycin L

Molecular formula: $C_{28}H_{21}O_7Cl_3$ Isolated yield: 45.8 mg UV (PDA): $\lambda_{max} = 249, 290, 350$ and 419 nm Specific rotation: $[\alpha]_D^{20} = 6.8$ HRMS (ESI) *m/z*: calculated [M + Na]⁺ = 597.0245, observed [M + Na]⁺ = 597.0254, Δ

= 1.51 ppm

NMR (Methanol-d4; 600 MHz & 125 MHz): ¹H, ¹³C, HSQC, HMBC, NOESY

Position	δ _c ppm	δ _H ppm (no. of protons, multiplicity, J in Hz)	НМВС	NOESY
1	135.6		25	
2	113.7		4, 25	
3	157.1		4, 28	
4	98.6	6.5 (1H, s)		28
5	153.9		4	
6	126.6		4, 24, 25	
7	138.8			
8	118.8		20, 24	
9	166.7			
10	108.1		20	
11	191.6			
12	107.5		16	
13	162.0			
14	109.1		16	
15	162.5		14, 16	
16	107.2	6.8 (1H, s)		26, 27
17	153.2		16, 26, 27	
18	40.2		16, 20, 26, 27	
19	148.0		20, 26, 27	
20	112.5	7.9 (1H, s)		26, 27
21	139.0		20	
22	114.3		20, 24	
23	156.0		24	
24	122.1	6.8 (1H, s)		25
25	18.4	2.0 (3H, s)		24
26	35.0	1.7 (3H, s)	27	
27	35.0	1.7 (3H, s)	26	
28	56.3	3.6 (3H, s)		4

Table 3: Structural determination of Fasamycin L

Fasamycin M

Molecular formula: $C_{28}H_{21}O_7Cl_3$ Isolated yield: 2.3 mg UV (PDA): $\lambda_{max} = 249, 289, 352$ and 413 nm Specific rotation: $[\alpha]_D^{20} = 29.1$ HRMS (ESI) m/z: calculated $[M + Na]^+ = 597.0245$, observed $[M + Na]^+ = 597.0246$, Δ = 0.17 ppm NMR (Methanol-d4; 600 MHz & 125 MHz): ¹H, ¹³C, HSQC, HMBC, NOESY

Table 4: Structural determination of Fasamycin M

Position	δ _c ppm	δ _H ppm (no. of protons, multiplicity, J in Hz)	НМВС	NOESY
1	134.7		25	
2	119.1		25	
3	150.6			
4	114.9			
5	153.0			
6	132.1		24, 25	
7	137.2			
8	118.2		20, 24	
9	165.7			
10	108.4		20	
11	191.7			
12	108.6		14, 16	
13	167.2			
14	102.4	6.2 (d, 2.22)	16	
15	167.4		14, 16	
16	107.7	6.7 (d, 2.22)	14	26, 27
17	156.0		26, 27	
18	40.4		16, 20, 26, 27	
19	148.7		20, 26, 27	
20	112.5	7.9 (1H, s)		26, 27
21	138.7			
22	115.0		20, 24	

23	156.4			
24	122.4	6.8 (1H, s)		25, 28
25	18.3	2.0 (3H, s)		24
26	35.0	1.8 (3H, s)	27	16, 20
27	35.1	1.8 (3H, s)	26	16, 20
28	60.9	3.5 (3H, s)		24

Fasamycin N

Molecular formula: $C_{28}H_{21}O_7Cl_3$ Isolated yield: 10.7 mg UV (PDA): $\lambda_{max} = 253, 293, 365$ and 424 nm Specific rotation: $[\alpha]_D^{20} = 3.9$ HRMS (ESI) *m/z*: calculated [M + Na]⁺ = 597.0245, observed [M + Na]⁺ = 597.0262, Δ = 2.85 ppm NMR (Methanol-d4; 600 MHz & 125 MHz): ¹H, ¹³C, HSQC, HMBC, NOESY

Table 5: Structural determination of Fasamycin N

Position	δ _c ppm	δ _H ppm (no. of protons, multiplicity, J in Hz)	НМВС	NOESY
1	135.6		25	
2	113.7		4, 25	
3	157.1		4, 28	
4	98.6	6.5 (1H, s)		28
5	153.9		4	
6	126.6		4, 24, 25	
7	139.1			
8	118.4		20, 24	
9	166.0			
10	106.9		20	
11	191.8			
12	109.4		14	
13	164.0		14	
14	103.9	6.5 (1H, s)		
15	166.0		14	
16	114.0			
17	151.1		26, 27	
18	41.4		20, 26, 27	
19	150.1		26, 27	
20	113.3	7.9 (1H, s)		26, 27
21	138.9			
22	114.0		20, 24	

23	155.9		24	
24	122.1	6.8 (1H, s)		25
25	18.4	2.0 (3H, s)		24
26	30.7	2.1 (3H, s)	27	20
27	30.8	2.1 (3H, s)	26	20
28	56.3	3.6 (3H, s)		4

Fasamycin O

Molecular formula: $C_{29}H_{23}O_7CI_3$ Isolated yield: 3.2 mg UV (PDA): $\lambda_{max} = 252$, 292, 336 and 420 nm Specific rotation: $[\alpha]_D^{20} = 3.0$ HRMS (ESI) m/z: calculated $[M - H]^- = 587.0437$, observed $[M - H]^- = 587.0463$, Δ = 4.43 ppm NMR (Methanol-d4; 600 MHz & 125 MHz): ¹H, ¹³C, HSQC, HMBC, NOESY

 Table 6: Structural determination of Fasamycin O

Position	δ _c ppm	δ _H ppm (no. of protons, multiplicity, J in Hz)	НМВС	NOESY
1	135.7		25	
2	113.8		4, 25	
3	157.1		4, 28	
4	98.6	6.5 (1H, s)		29
5	157.1		4, 29	
6	126.8		4, 25	
7	138.1			
8	119.5		20	
9	170.2			
10	108.4		20	
11	191.1			
12	107.9		16	
13	166.6			
14	108.2			
15	164.9			
16	108.4	6.8 (1H, s)		26, 27
17	153.0		26, 27	
18	40.2		16, 20, 26, 27	
19	148.3		26, 27	
20	112.5	8.0 (1H, s)		26, 27
21	139.5			
22	116.7		20	

23	not detected			
24	117.4	7.0 (1H, s)		25, 28
25	18.5	2.0 (3H, s)		24
26	35.0	1.7 (3H, s)	27	16, 20
27	35.0	1.7 (3H, s)	26	16, 20
28	57.4	4.0 (3H, s)		24
29	56.3	3.6 (3H, s)		4

Fasamycin P

Molecular formula: $C_{28}H_{20}O_7Cl_4$ Isolated yield: 2.3 mg UV (PDA): $\lambda_{max} = 253$, 294, 360 and 419 nm Specific rotation: $[\alpha]_D^{20} = 41.7$ HRMS (ESI) *m/z*: calculated [M - H]⁻ = 606.9890, observed [M - H]⁻ = 606.9903, Δ = 2.14 ppm

NMR (Methanol-d4; 600 MHz & 125 MHz): ¹H, ¹³C, HSQC, HMBC, NOESY

Table 7: Structural determination of Fasamycin P

Position	δ _c ppm	δ _H ppm (no. of protons, multiplicity, J in Hz)	НМВС	NOESY
1	134.8		25	
2	119.1		25	
3	not detected			
4	114.9			
5	153.0		28	
6	132.1		24, 25	
7	138.9			
8	117.9		20, 24	
9	165.0			
10	107.3		20	
11	191.4			
12	115.2			
13	not detected			
14	104.2	6.4 (1H, s)		
15	166.2		14	
16	108.5		14	
17	151.6		26, 27	
18	41.4		20, 26,27	
19	149.7		26, 27	
20	113.4	7.9 (1H, s)		26, 27
21	137.2			
22	114.7		20, 24	

23	155.9		24	
24	122.2	6.8 (1H, s)		25, 28
25	18.3	2.0 (3H, s)		24
26	30.7	2.1 (3H, s)	27	20
27	30.7	2.1 (3H, s)	26	20
28	60.9	3.5 (3H, s)		24

Fasamycin Q

Molecular formula: C₂₈H₂₀O₇Cl₄

Isolated yield: 5.0 mg

UV (PDA): λ_{max} = 254, 293, 361 and 429 nm

Specific rotation: $[\alpha]_D^{20} = 21.3$

HRMS (ESI) m/z: calculated [M - H]⁻ = 606.9890, observed [M - H]⁻ = 606.9897, Δ

= 1.15 ppm

NMR (Methanol-d4; 600 MHz & 125 MHz): 1 H, 13 C, HSQC, HMBC, NOESY

Table 6. Structural determination of Fasamychi G
--

Position	δ _c ppm	δ _H ppm (no. of protons, multiplicity, J in Hz)	нмвс	NOESY
1	135.6			
2	113.7		4	
3	157.1		4	
4	98.6	6.5 (1H, s)		28
5	153.9		4	
6	126.7		4, 24	
7	138.8		24	
8	118.5		20, 24	
9	165.6			
10	107.0		20	
11	190.5			
12	116.5			
13	161.5			
14	109.9			
15	not detected			
16	107.1			
17	151.1			
18	41.2		20, 26, 27	
19	147.2			
20	113.2	7.8 (1H, s)		26, 27
21	138.9			
22	114.0		20, 24	

23	155.6		24	
24	121.9	6.7 (1H, s)		25
25	18.5	2.0 (3H, s)		24
26	30.8	2.1 (3H, s)		20
27	30.9	2.1 (3H, s)		20
28	56.3	3.6 (3H, s)		4

¹H NMR Spectra

Figure 1. ¹H NMR spectrum for formicamycin R. CD₃OD, 600 MHz.

Figure 2. ¹³C NMR spectrum for formicamycin R. CD₃OD, 150 MHz.

Figure 3. HSQC spectrum for formicamycin R. CD₃OD.

Figure 4. HMBC spectrum for formicamycin R. CD₃OD.

Figure 5. NOESY spectrum for formicamycin R. CD₃OD.

Figure 6. ¹H NMR spectrum for formicamycin S. CD₃OD, 600 MHz.

Figure 7. ¹³C NMR spectrum for formicamycin S. CD₃OD, 150 MHz.

Figure 8. HSQC spectrum for formicamycin S. CD_3OD .

Figure 9. HMBC spectrum for formicamycin S. CD₃OD.

Figure 11. ¹H NMR spectrum for fasamycin L. CD₃OD, 600 MHz.

Figure 12. ¹³C NMR spectrum for fasamycin L. CD₃OD, 150 MHz.

Figure 13. HSQC spectrum for fasamycin L. CD₃OD.

Figure 14. HMBC spectrum for fasamycin L. CD₃OD.

Figure 15. NOESY spectrum for fasamycin L. CD₃OD.

Figure 16. ¹H NMR spectrum for fasamycin M. CD₃OD, 600 MHz.

Figure 17. ¹³C NMR spectrum for fasamycin M. CD₃OD, 150 MHz.

Figure 18. HSQC spectrum for fasamycin M. CD₃OD.

Figure 19. HMBC spectrum for fasamycin M. CD₃OD.

Figure 20. NOESY spectrum for fasamycin M. CD₃OD.

Figure 21. ¹H NMR spectrum for fasamycin N. CD₃OD, 600 MHz.

Figure 22. 13 C NMR spectrum for fasamycin N. CD₃OD, 150 MHz.

Figure 23. HSQC spectrum for fasamycin N. CD₃OD.

Figure 24. HMBC spectrum for fasamycin N. CD₃OD.

Figure 25. NOESY spectrum for fasamycin N. CD₃OD.

Figure 26. ¹H NMR spectrum for fasamycin O. CD₃OD, 600 MHz.

Figure 27. ¹³C NMR spectrum for fasamycin O. CD₃OD, 150 MHz.

Figure 28. HSQC spectrum for fasamycin O. CD₃OD.

Figure 29. HMBC spectrum for compound 6. CD₃OD.

Figure 30. NOESY spectrum for fasamycin O. CD₃OD.

Figure 31. ¹H NMR spectrum for fasamycin P. CD₃OD, 600 MHz.

Figure 32. ¹³C NMR spectrum for fasamycin P. CD₃OD, 150 MHz.

Figure 33. HSQC spectrum for fasamycin P. CD₃OD.

Figure 34. HMBC spectrum for fasamycin P. CD₃OD.

Figure 35. NOESY spectrum for fasamycin P. CD₃OD.

Figure 36. ¹H NMR spectrum for fasamycin Q. CD₃OD, 600 MHz.

Figure 37. ¹³C NMR spectrum for fasamycin Q. CD₃OD, 150 MHz.

Figure 38. HSQC spectrum for fasamycin Q. CD₃OD.

Figure 39. HMBC spectrum for fasamycin Q. CD₃OD.

Figure 40. NOESY spectrum for fasamycin Q. CD₃OD.