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Abstract. We consider the estimation of the boundary of a set when it is known to be
sufficiently smooth, to satisfy certain shape constraints and to have an additive structure.
Our proposed method is based on spline estimation of a conditional quantile regression and
is resistant to outliers and/or extreme values in the data. This work is a desirable exten-
sion of Martins-Filho and Yao (2007) and Wang et al. (2020) and can also be viewed as an
alternative to existing estimators that have been used in empirical analysis. The results of
a Monte Carlo study show that the new method outperforms the existing methods when
outliers or heterogeneity are present. Our theoretical analysis indicates that our proposed
boundary estimator is uniformly consistent under a set of standard assumptions. We illus-
trate practical use of our method by estimating two production functions using real-world
data sets.
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The supplementary document contains additional real data application of the proposed

method. It also includes the relevant lemmas and detailed proofs of the theorems presented

in the main paper.

U.S. high technology firm data

Data on U.S. high technology firms from Wharton Research Data Services are considered as

another example. The main objective of this analysis is to evaluate the relative performance

of high-tech firms in the United States. The data we consider are from 2017, and the high

technology firms are defined as firms whose four-digit SIC code are in the following lists:

biotechnology (2833-2836 and 8731-8734), computer (3570-3577 and 7371-7379), electron-

ics (3600-3674), telecommunication (4810-4841) and Computer Programming, Data Process

(7370) (Klobucnik and Sievers, 2013). We exclude all firms with sales greater than 5000

million dollars, which guarantees that the data are not too sparse. In addition, we only

consider firms that reported sales in 2016. Eventually, this leaves us with 256 individual

firms. For convenience, four input variables are considered: the number of employees (X1),

the research and development expenses (X2), the total net property, plant and equipment

(X3) value, and operating expenses (X4). The output variable (Y ) is sales, which represents

a firm’s revenues. All the units are measured in millions. The relationships between output

and each input variables are plotted in Figure 1. Obviously, firms’ revenues increase as in-

puts increase. However, different from the previous example, there is no clear evidence to

support concavity. Therefore, we consider an additive frontier with the monotone constraint

to quantify the maximum revenue for U.S high tech firms.

In addition to MCRS and MCQS, both URS and UQS are used for comparison purposes

to estimate the unknown frontier functions. The number of interior knots is set to be the

integer part of n1/(2p+3) and the knot sequence is equally spaced in the quantile range of

each input variable. Figures 2(a) and 2(b) show the estimates from the regression spline

and quantile spline estimators, respectively. The circles are pseudo observations, the dashed
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lines correspond to the estimates with the unconstrained method, while the long-dashed

line corresponds to the estimates with the monotone constrained method. It also plots the

95% point-wise confidence intervals (dotted lines) from 100 bootstrapped samples using the

unconstrained method. All input variables except for the research and development expense

have monotone effects on firms’ revenues. Overall, the quantile method is more robust to

outliers than the mean regression. Note also that as research and development expenses in-

crease, the pseudo observations of firm revenue in the unconstrained model slightly decreases,

which affects the results of a firm’s efficiency estimation.

Furthermore, to assess the production efficiency of each firm, we estimate the frontier for

U.S. high technology firms. In order to ensure the accuracy and robustness of our empirical

analysis, we implement the outliers deletion in our frontier’s estimates. Figure 3 plots both

the estimated maximum revenue and the estimated kernel density of the relative efficiencies.

It can be seen that the results are very similar for URS (solid), MCRS (dotted), UQS (dot-

dashed) and MCQS (long-dashed). Most firms have high efficiencies with values above 0.95.

As the revenue increases, the firm’s production efficiency will increase correspondingly, which

emphasizes the fact that the stronger the sales ability, the more efficient the asset utilization.

It is important to note that the smaller efficiency observed from the MCQS method compared

to the MCRS method could be due to the fact that the firm’s revenue is slightly decreasing

as the research and development expense increases.

In addition, we explore potential factors, or “environmental variables”, that drive the

firm’s production efficiency. We use the long term debt ratio (DLTTR), market-to-book ratio

(M-B), market value (MKVALT), age (AGE) and region (REG) as explanatory variables

to examine the determinants of firm efficiency. Firm’s efficiencies are obtained using the

MCQS method. Table 1 reports the effects of firm other resources on the firm performance.

Generally, all explanatory variables have a positive effect on firms’ efficiencies. A firm with

more long-term debt ratio is likely to be more efficient than its peers, which is consistent

with the fact that firms with higher revenues are also predicted to have more long-term debt
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(Albuquerque and Hopenhayn, 2004). We also consider the effect of with/without long term

debt on firm’s production efficiency, and find that firms with long term debt are more efficient

in their production than the ones without long term debt (p value ≈ 0). In addition, as a

firm is getting more experienced and mature, its production efficiency steadily improves (p

value = 0.6). Neither market-to-book ratio nor market value are significantly associated with

production efficiency. In the end, we use one-way ANOVA analysis to check whether there

are regional (i.e., West, MidWest, South and East) differences in firm productive efficiency.

However, the result shows that the difference is not significant with p-value of 0.154.

In this example, we use four variables as inputs to explain U.S. high tech firms revenue.

Definitely, four inputs are not enough to explain a firm’s capital structure and its productive

efficiency. This may affect the results of our analysis. An extension to the case of more

inputs should be accomplished for those who are interested in the study of firm efficiency.

Insert Figures 1, 2, 3 and Table 1 here.

Lemmas and Proofs

A.1 Lemmas

Lemma 1. Proof. Let ‖m‖22 = E (m2(X)) for any square integrable additive function m(x).

According to Theorem 1 in Horowitz and Lee (2005), sup
x∈[0,1]d

|m̃τ (x)−mτ (x)| = Op (Nn/
√
n)

as n→∞, which implies that ‖m̃τ (x)−mτ (x)‖2 = Op (Nn/
√
n). Furthermore, by Lemma

1 of Xue and Yang (2006), one has ‖m̃l,τ (xl)−ml,τ (xl)‖2 = Op (Nn/
√
n) for l = 1, · · · , d.

Therefore, for each l = 1, · · · , d, there exists x0l ∈ [0, 1], such that |m̃l,τ (x0l )−ml,τ (x0l )| =

Op (Nn/
√
n) . For any xl ∈ [0, 1], let x∗ =

(
x01, · · · , x0l−1, xl, x0l+1, · · · , x0d

)T ∈ [0, 1]d. Then,

sup
xl∈[0,1]

|m̃l,τ (xl)−ml,τ (xl)| = sup
xl∈[0,1]

∣∣∣m̃τ (x
∗)−mτ (x

∗)−
∑
l′ 6=l

[
m̃l′,τ (x

0
l′)−ml′,τ (x

0
l′)
]∣∣∣

≤ sup
x∗∈[0,1]d

∣∣m̃τ (x
∗)−mτ (x

∗)
∣∣+
∑
l′ 6=l

∣∣m̃l′,τ (x
0
l′)−ml′,τ

(
x0l′
) ∣∣

= Op(Nn/
√
n) +Op(Nn/

√
n) = Op(Nn/

√
n).
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The proof of (12) in Lemma 1 follows similarly.

Lemma A.1 For any function α ∈ Cp+1[0, 1] that is strictly monotone increasing with

α(1)(x) ≥ c > 0, for x ∈ [0, 1], then there exists a monotone increasing spline function

g ∈ Gp such that ‖α− g‖∞ ≤ c
∥∥α(p+1)

∥∥
∞ /N

p+1
n , and

∥∥α(1) − g(1)
∥∥
∞ ≤ c

∥∥α(p+1)
∥∥
∞ /N

p
n for

some constant c > 0 and large enough Nn.

Proof. Corollary 6.21 of Schumaker (2007) entails that there exists a spline function g ∈ Gp

such that

‖α(x)− g(x)‖∞ ≤ c‖α(p+1)‖∞/Np+1
n ,

and ∥∥α(1)(x)− g(1)(x)
∥∥
∞ ≤ c‖α(p+1)‖∞/Np

n.

Therefore, g(1)(x) ≥ c− c‖α(p+1)‖∞/Np
n ≥ c/2 > 0 and g is monotone increasing when Nn is

large enough.

Following the notation in He and Shi (1998), for any 1 ≤ l ≤ d and 1 ≤ k ≤ Nn+1, define

interval I lnk = (vl,k−1, vl,k] and denote v∗l,k as the midpoint of I lnk. Let δln = (vl,k − vl,k−1) /2 ∼

1/2 (Nn + 1). In addition, let m̌l,τ be the one-step backfitted unconstrained estimator of

ml,τ and β̌l be the corresponding regression coefficients. Note that for xl ∈ I lnk, any B-

spline function BT
l (xl)βl can be expressed as ϕTlk(xl)αlk (βl) for some αlk ∈ Rp+1, where

ϕlk(xl) =
(
1, (xl − v∗lk)/δ

l
n, · · · , ((xl − v∗lk)/δ

l
n)p
)T

, and α̌lk is a function of β̌l under this

re-expression.

By Assumption (A5), there exists α∗lk ∈ Rp+1 such that for xl ∈ I lnk, sup
xl∈Ilnk

|rln(xl)| =

O
(
N
−(p+1)
n

)
, where rln(xl) = ml,τ (xl) − ϕTlk(xl)α∗lk. In addition, one has the following error

decomposition

ml,τ (xl)− m̌l,τ (xl) = ϕTlk(xl) (α∗lk − α̌lk) + rln(xl). (A.1)

From model (1) in the main paper, the conditional quantile function of order τ ∈ [0, 1] of Yi
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given Xi can be written as

Yi = g (Xi)µRτ + g (Xi) εi = mτ (Xi) + g (Xi) εi,

where the error term εi = Ri − µRτ satisfies Qτ (εi|Xi) = 0. The only difference between

εi and Ri is that the locations of their distributions are different. Then when xil ∈ I lnk, for

pseudo response Yi,−l = Yi − m̃0,τ −
∑

l′ 6=l m̃l′,τ (Xil′), one has the error decomposition

Yi,−l −ϕTlk (Xil) α̌lk = g(Xi)εi −ϕTlk(Xil)(α̌lk −α∗lk) + rlni + ei,−l,

with ei,−l = m0,τ − m̃0,τ +
∑

l′ 6=l (ml′,τ (Xil′)− m̃l′,τ (Xil′)), and rlni = rln (Xil).

Assume there is a perturbation to the k-th component of β̌l, which causes changes to p+1

vectors ofαlk (i.e., αl,k−p, · · · ,αl,k). Define θlk (βl) =
(
(αl,k−p (βl)−α∗l,k−p)T , · · · , (αl,k(βl)−

α∗l,k)
T
)T

, φlk(xl) =
(
ϕTl,k−p(xl), · · · ,ϕTl,k(xl)

)T
and θ̌lk = θlk

(
β̌l
)
. Let Ck be the linear space

of θlk, which is formed by perturbing the k-th component. Then θ̌lk is an inner point of

Ck. Let Slnk = {i : xil ∈ (vl,k−p−1, vl,k]}, and M l
nk be the number of data points in Slnk, with

M l
nk = #Slnk. Define M l

n = supkM
l
nk. Under Assumptions (A1) and (A3), M l

n ∼ n/Nn.

Furthermore, for any perturbed coefficients θlk ∈ Ck, define

Alnk (θlk) =
∑
i∈Slnk

Ψ
(
g (Xi) εi − zTilθlk + rlni + ei,−l

)
zil,

with Ψ(u) = 1/2− I(u < 0) and zil = φlk (Xil). The term Alnk (θl) quantifies the directional

first order derivative of the objective function in the traditional polynomial spline method

when the k-th component of β̌l is perturbed, and we have the following result.

Lemma A.2 For l = 1, · · · , d, define Ql
nk =

(
fε(0)/M l

nk

)∑
i∈Slnk

zilz
T
il/g(Xi) to be a matrix

of dimension (p + 1)2 × (p + 1)2, where fε is the density function of error term ε. Under

Assumptions (A1)-(A5), for any constant K > 0,

E
[
Alnk (θlk) |X

]
= −M l

nkQ
l
nkθlk +Op

(
nN−(p+2)

n +
√
n
)
, (A.2)

uniformly for θlk ∈ Θlk
K =

{
θlk : θlk ∈ R(p+1)2

, |θlk| ≤ K
√
Nn log n/M l

nk

}
and 1 ≤ k ≤
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Nn + 1. Here, X = (XT
1 , . . . ,X

T
n )T .

Proof. By the definition of Alnk (θlk), for any θlk ∈ Θlk
K ,

E
[
Alnk (θlk) |X

]
= E

[ ∑
i∈Slnk

Ψ
(
g(Xi)εi − zTilθlk + rlni + ei,−l

)
zil|X

]
=

∑
i∈Slnk

zilE
[
1/2− I

(
g (Xi) εi < zTilθlk − rlni − ei,−l

)
|X
]

=
∑
i∈Slnk

zil

[
1/2− Fε

(
zTilθlk − rlni − ei,−l

g (Xi)

)]

=
∑
i∈Slnk

zil

{
1

2
− Fε (0)− zTilθlk − rlni − ei,−l

g (Xi)
fε (0)− 1

2
f (1)
ε (ξ)

(
zTilθlk − rlni − ei,−l

g (Xi)

)2
}

=
∑
i∈Slnk

{
− fε (0)

g (Xi)
zilz

T
ilθlk +

fε (0)
(
rlni + ei,−l

)
g (Xi)

zil −
1

2
f (1)
ε (ξ) zil

(
zTilθlk − rlni − ei,−l

g (Xi)

)2
}

= −

fε (0)

M l
nk

∑
i∈Slnk

zilz
T
il

g (Xi)

M l
nkθlk +

∑
i∈Slnk

fε (0)
(
rlni + ei,−l

)
g (Xi)

zil

−
∑
i∈Slnk

1

2
f ′ε (ξ) zil

(
zTilθlk − rlni − ei,−l

g (Xi)

)2

= −M l
nkQ

l
nvθlk + I1k + II2k (θlk) ,

where ξ is a value between 0 and θlk, I1k =
∑

i∈Slnk
[fε(0)(rlni+ei,−l)/g(Xi)]zil and II2k(θlk) =

−
∑

i∈Slnk
1
2
f ′ε (ξ) zil

(
zTilθlk−r

l
ni−ei,−l

g(Xi)

)2
. For term I1k, by the definition,

ei,−l = m0,τ − m̃0,τ +
∑
l′ 6=l

(
ml′,τ (Xil′)− m̃l′,τ (Xil′)

)
.

According to Lemma 1, we have

sup
i
|ei,−l| = sup

i

∣∣∣∣∣m0,τ − m̃0,τ +
∑
l′ 6=l

(ml′,τ (Xil′)− m̃l′,τ (Xil′))

∣∣∣∣∣
≤ |m0,τ − m̃0,τ |+

∑
l′ 6=l

sup
xl′∈[0,1]

|ml′,τ (xl′)− m̃l′,τ (xl′)| = Op

(
Nn/
√
n
)
.

Since both fε(0) and g(xi) are bounded, sup
i

∣∣rlni∣∣ = Op

(
N
−(p+1)
n

)
and sup

i
|ei,−l| = Op (Nn/

√
n),
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one has

sup
k
|I1k| = sup

k

∣∣∣∣∣∣
∑
i∈Slnk

f (0)
(
rlni + ei,−l

)
g (Xi)

zil

∣∣∣∣∣∣ = Op

(
M l

nN
−(p+1)
n +M l

nNn/
√
n
)

= Op

(
nN−(p+2)

n +
√
n
)
.

Similarly, we have

sup
k

sup
θlk∈Θlk

K

|II2k (θlk)| = sup
k

sup
θlk∈Θlk

K

∣∣∣∣∣∣−
∑
i∈Slnk

1

2
f (1)
ε (ξ) zil

(
zTilθlk − rlni − ei,−l

g (Xi)

)2
∣∣∣∣∣∣ = Op

(
nN−(p+2)

n +
√
n
)
.

Since M l
n ∼ n/Nn uniformly for 1 ≤ k ≤ Nn + 1 and θlk ∈ Θlk

K , one has,

E
[
Alnk (θlk) |X

]
= −M l

nkQ
l
nkθlk+op

(
M l

nkN
−(p+1)
n +M l

nkNn/
√
n
)

= −M l
nkQ

l
nkθlk+op

(
nN−(p+2)

n +
√
n
)
.

A.2 Proof of Theorem 1

To prove Theorem 1, it is enough to show that sup
k

∣∣θ̌lk∣∣ = Op

(
Nn

√
log n/n

)
. By Lemma A.3

of He and Shi (1998), one has sup
k

sup
θlk∈Θlk

K

∣∣Alnk (θlk)− E
[
Alnk (θlk) |X

]∣∣ = Op

(√
M l

nNn log n
)

=

Op(
√
n log n) for any fixed K. Together with Lemma A.2, for θlk ∈ Θlk

K , one has

Alnk (θlk) = −M l
nkQ

l
nkθl +Op

(
nN−(p+2)

n +
√
n+

√
n log n

)
. (A.3)

We first define Gl
nk (θlk) = −θTlkAlnk (θlk), which is a convex function in θlk. Similarly,

following the proof of Theorem 1 in He and Shi (1998), we have

inf
k

inf
|θlk|>K

√
Nn logn/M l

nk

∣∣Alnk (θlk)
∣∣ ≥ inf

k
inf

|θlk|=K
√
Nn logn/M l

nk

Gl
nk (θlk) / |θlk|

= inf
k

inf
|θlk|=K

√
Nn logn/M l

nk

[
M l

nkθ
T
lkQ

l
nkθlk/ |θlk|+Op

(
nN−(p+2)

n +
√
n+

√
n log n

)]
≥ inf

k

[
KM l

nkλ(Ql
nk)
√
Nn log n/M l

nk

]
+Op

(
nN−(p+2)

n +
√
n+

√
n log n

)
≥ c

√
n log n (1 + op (1)) , (A.4)
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where c > 0 is an arbitrary constant. The last step in (A.4) follows from the fact that

infkM
l
nk = Op (n/Nn), and there exists a constant c such that λ

(
Ql
nk

)
, the smallest eigen-

value of Ql
nk, satisfies that infk λ

(
Ql
nk

)
> c. Therefore when |θlk| > K

√
Nn log n/M l

nk,

the term infk
∣∣Alnk (θlk)

∣∣ diverges to infinity with probability approaching one as sample size

increases.

Furthermore, according to Lemma A.1 in He and Shi (1998), we can infer that Alnk
(
θ̌lk
)

=

Op (1). Therefore the inequality in (A.4) indicates that
∣∣θ̌lk∣∣ = Op

(√
Nn log n/M l

nk

)
=

Op

(
Nn

√
log n/n

)
uniformly for k = 1, · · · , Nn+1. Thus sup

k
|α̌lk −α∗lk| = Op

(
Nn

√
log n/n

)
.

Since m̌l,τ (xl)−ml,τ (xl) = ϕTlk(xl) (α̌lk −α∗lk)−rln(xl) and sup
xl∈Ilnk

|ϕlk(xl)| ≤
√
p+ 1 uniformly

in xl ∈ I lnk and k = 1, · · · , Nn + 1, one has,

sup
xl∈[0,1]

|m̌l,τ (xl)−ml,τ (xl)| = sup
k=1,··· ,Nn+1

sup
xl∈Ilnk

∣∣ϕTlk(xl) (α̌lk −α∗lk)− rln(xl)
∣∣

≤ sup
k=1,··· ,Nn+1

sup
xl∈Ilnk

∣∣ϕTlk(xl)∣∣ |α̌lk −α∗lk|+ sup
xl∈[0,1]

∣∣rln(xl)
∣∣

≤ sup
k=1,··· ,Nn+1

√
p+ 1 |α̌lk −α∗lk|+O

(
N−(p+1)
n

)
= Op

(
Nn

√
log n/n+N−(p+1)

n

)
.

By Assumption (A5) and de Boor (2001) p.115, for l = 1, · · · , d and x ∈ I lnk, taking the

first order derivative in Equation (A.1), one has

m̌
(1)
l,τ (xl)−m(1)

l,τ (xl) = ϑTlk(xl) (α̌lk −α∗lk)− r̃ln(xl),

where ϑlk(xl) =
(
0, 1, 2 (xl − v∗lk) /δ

l
n · · · , p

(
(xl − v∗lk) /δ

l
n

)p−1 )T
/δln, and sup

xl∈[0,1]

∣∣r̃ln(xl)
∣∣ =

O
(
(δln)p

)
= O(1/Np

n). Then, we have

sup
xl∈[0,1]

∣∣∣m̌(1)
l,τ (xl)−m(1)

l,τ (xl)
∣∣∣ = sup

k=1,··· ,Nn+1
sup
xl∈Ilnk

∣∣ϑTlk(xl) (α̌lk −α∗lk)− r̃ln(xl)
∣∣

≤ sup
k=1,··· ,Nn+1

sup
xl∈Ilnk

∣∣ϑTlk(xl)∣∣ |α̌lk −α∗lk|+ sup
xl∈[0,1]

∣∣r̃ln(xl)
∣∣

= Op

(
Nn

δln

√
log n/n

)
+Op

(
N−pn

)
= Op

(
N2
n

√
log n/n+N−pn

)
.
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Consequently,

sup
xl∈[0,1]

∣∣∣m̌(1)
l,τ (xl)−m(1)

l,τ (xl)
∣∣∣ = Op

(
N2
n

√
log n/n+N−pn

)
.

The rate of convergence for m̌
(2)
l,τ follows similarly by using

ϑ∗lk(xl) =
(
0, 0, 2, · · · , p(p− 1)

(
(xl − v∗lk) /δln

)p−2 )T
/
(
δln
)2

in above arguments. �

A.3 Proof of Theorem 2

Whenml is monotone increasing, condition (C6) and Theorem 1 imply that minxl∈[0,1] m̌
(1)
l (xl) >

c3/2 > 0 with probability approaching one. That is, the unconstrained spline estimator m̌(1)

is monotone increasing asymptotically. In addition, when p ≤ 3, Lemma A.1, together with

Lemma 3 in Wang and Xue (2015) show that the linear constraints given in Section 3.1

are necessary and sufficient conditions for a spline function to be monotone. Therefore, the

unconstrained and constrained estimators are asymptotically equivalent and enjoy the same

asymptotic properties for p ≤ 3. For ml that is concave, results follow similarly from (C6*)

and Theorem 1.

The rates convergence for µ̂Rτ and ĝ follow from similar arguments as the proof of Theorem

2 in Wang et al. (2020) and Theorem 2 in Martins-Filho and Yao (2007). In particular,

note that
∣∣µ̂Rτ − µRτ ∣∣ = µ̂RτµRτ

∣∣µ̂−1Rτ − µ−1Rτ ∣∣ = µ̂Rτ

∣∣∣max
i

[mτ (Xi)Ri/m̂τ (Xi)]− 1
∣∣∣, where

µ̂−1Rτ =
{

max
i

[Yi/m̃ (Xi)]
}−1

= Op(1), and∣∣∣∣max
i

mτ (Xi)Ri

m̂τ (Xi)
− 1

∣∣∣∣ ≤ ∣∣∣∣max
i

[
mτ (Xi)

m̂τ (Xi)
(Ri − 1)

]∣∣∣∣+

∣∣∣∣max
i

mτ (Xi)

m̂τ (Xi)
− 1

∣∣∣∣
≤

∣∣∣∣max
i

mτ (Xi)

m̂τ (Xi)

∣∣∣∣ ∣∣∣max
i

(Ri − 1)
∣∣∣+

∣∣∣∣max
i

mτ (Xi)

m̂τ (Xi)
− 1

∣∣∣∣ ,
where Lemma 11 of Wang et al. (2020) entails that max

i
(Ri−1) = Op(n

−1) and the first part

of this theorem gives that
∣∣∣max

i

mτ (Xi)
m̂τ (Xi)

∣∣∣ = Op(1) and
∣∣∣max

i

mτ (Xi)
m̂τ (Xi)

− 1
∣∣∣ = Op(Nn

√
log(n)/n +

N−p−1n ). Therefore
∣∣µ̂Rτ − µRτ ∣∣ = Op(Nn

√
log(n)/n+N−p−1n ). Finally the convergence of ĝ

9



follows from the fact that

ĝ (x)− g (x) = m̂τ (x) /µ̂Rτ −mτ (x) /µRτ

= m̂τ (x)
(
µ̂−1Rτ − µ

−1
Rτ

)
+ µ−1Rτ [m̂τ (x)−mτ (x)] .�

A.4 Proof of Theorem 3

The proof is similar to the proof of Theorem 2.
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Figure 1: Scatter plot of the firm’s revenue against each input variable for U.S. high tech
firms.
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Table 1: The estimated regression coefficients with standard errors in parentheses.
DLTT M-B MKVALT AGE

Coefficient 0.0240(0.0112)** 0.0000(0.0000) 0.0002(0.0006) 0.0002(0.0001)*
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(b) Quantile Regression

Figure 2: Panel (a) plots the nonparametric estimate of the mean revenue, where the cir-
cles are pseudo observations with respect to each input, the dashed ( ) and long-dashed
( ) lines denote the results from URS and MCRS, respectively, and the dotted ( ) lines
describes the 95% point-wise confidence interval from 100 bootstrap samples based on the
URS method. While Panel (b) shows the nonparametric estimates of the median revenue
using UQS and MCQS.
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(a) Frontier
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Figure 3: Panel (a) plots the estimated maximum revenue for U.S. high tech firms, while
Panel (b) gives the kernel densities of the relative efficiency estimates, where the solid ( )
, dotted ( ) , dot-dashed ( ) and long-dashed ( ) lines represent the density estimated
using URS, MCRS, UQS and MCQS, respectively. The solid circles in Fig. (a) are the true
revenues.
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