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The rapid growth in the generation of single-cell RNA-seq 
(scRNA-seq) data highlights the need for scalable computational 
platforms to extract useful information from this data, such as gene 
expression estimates and the corresponding uncertainty information, 
that can be used in downstream applications. We present a flexible 
time- and memory-efficient framework for processing various types 
of scRNA-seq data that accounts for multi-mapping sequencing 
reads and that estimates the quantification uncertainty inherent in 
the gene counts. This uncertainty arises from gene-ambiguous UMIs 
that are particularly problematic, as they tend not to arise randomly, 
but instead arise preferentially from sequence-similar gene families. 
Alevin, and the new extension, alevin-fry, support a principled 
approach for estimating this expression uncertainty using a cell-level 
bootstrapping procedure. Alevin-fry is a framework that processes 
the mapping information generated by alevin, constructs an 
intermediate cell-level representation of the interactions among 
reads, UMIs, and genes called parsimonious UMI graphs (PUGs), and 
exposes multiple strategies, ranging from trivial to sophisticated, for 
resolving PUGs into gene-level counts. We observe that alevin and 
alevin-fry are capable of processing tagged-end single-cell data 
accurately, quickly and with very low memory requirements (usually 
~2GB).  Alevin is written in C++14 and is available as part of salmon at 
https://github.com/COMBINE-lab/salmon. Alevin-fry is written in 
Rust and is available at https://github.com/COMBINE-lab/alevin-fry.

Background

Alevin-fry (Figure 2) provides an efficient foundation for 
memory-constrained, highly-parallel, raw data processing and UMI 
resolution. It exposes multiple (simple & complex) resolution algorithms that 
can be paired with alevin or other upstream alignment tools via BAM 
conversion.

Alevin-fry pipeline overview
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Efficient single cell Data Storage format

  

Quantification uncertainty in downstream 
analysis

A typical single-cell preprocessing pipeline generates a cell-by-gene 
count matrix which is used for virtually all downstream analyses, for 
example differential expression studies, pseudotime analysis etc. 
Matrix market format (mtx) is a standard format to store the sparse 
count matrices. However, being a textual representation, the mtx is 
not particularly compact, though compressing the file helps. The 
characteristics of these matrices — sparsity and typically low 
magnitude counts — can be exploited to design more efficient 
formats for storage and transfer. We introduce the EDS (efficient data 
storage) format which is not only smaller in size compared to mtx, it 
is also faster to load and requires less memory. The EDS format 
matrices can be read into R directly using the fishpond [5] package.

Figure 7: This plot demonstrate how the proposed compression of inferential replicates retains the ability to cover 
the true gene abundance at least as well as the original inferentical replicates. The coverage ratio obtained by using 
all the inferential replicates are displayed in the left plot, while the right plot shows the coverage ratios obtained using 
draws from the fit Negative Binomial.  In both cases, genes are stratified by their average (across cells) “tier” to 
demonstrate the effect of the level of uncertainty on coverage.

Figure 1: The size of the the gene x cell count matrix for the MantonBM1 (~4k cells, chromimum v2 chemistry) and 
pbmc 10k (~10k cells, chromium v3 chemistry) datasets in matrix market (coordinate) format, gzipped matrix market 
(coordinate) format and EDS (efficient data storage) format.

Time and memory resource usage  of 
different single-cell methods

Figure 5: The effect of using different numbers of threads on the mapping time of different tools. STAR and alevin 
using selective-alignment are compute-bound and continue to scale to 24 threads. We start the scaling where the 
first of the tested tools saturates its performance on this dataset; kallisto mapping time staturates at 4 threads and 
remains relatively constant at around 300s. In sketch mode, alevin mapping time reduces up to 12 threads, and then 
remains relatively constant at around 130s, at which point data ingestion limits seem to become the bottleneck. All 
timing was taken using a warm cache.

Figure 5 shows how the runtime of different methods scales with 
respect to the number of threads used for mapping. Since alignment 
and selective-alignment [6] based methods are compute-bound, 
they continue to scale to large numbers of threads, eventually 
approaching the other methods. Kallisto [4] and alevin [2] in sketch 
mode reach minimal runtimes at ~4 and ~12 threads respectively, 
with alevin sketch taking about 43% of the time of kallisto.

Figure 2: An overview of the alevin-fry pipeline showing the various ways in which the data can be processed.  Each yellow box 
shows an input / output (some outputs are inputs to subsequent stages of the pipeline), while each blue box represents a processing 
component of the pipeline.  The pipeline can be roughly divided into the three phases of mapping / alignment, pre-processing and 
resolution into a quantification matrix.  The quantification matrix itself can be just of estimated gene counts, or can also include 
inferential replicates. It is also possible to produce a count matrix of UMI-deduplicated gene-level equivalence classes by cells, 
representing the gene-level mapping ambiguity directly, perhaps after parsimony or frequency-based resolution, rather than the 
estimated per-gene UMI counts.

Figure 6: The 75 percentile of p-values derived from inferential replicates (red) reduces the false discovery rate of 
null genes compared to p-values derived from the Alevin point estimates (black). In this analysis the 
uncertainty-aware p-values of 10 (out of 15) null genes falls below the FDR cutoff of 0.01.

Just like accounting for uncertainty in transcript-level quantification 
in bulk RNA-seq can improve transcript-level differential testing, 
accounting for uncertainty in gene-level quantification in 
tagged-end, single-cell RNA-seq can improve downstream 
analyses, like differential testing of genes between divergent 
branches of a trajectory (Figure 6).

In a single-cell experiment, the burden of propagating inferential 
replicates can be quite high ( proportional to # inf replicates  x # cells 
x # genes ).  Fortunately, propagating just the mean and variance of 
the inferential replicates allows the fitting of a parametric (Negative 
Binomial) approximation to the posterior distribution that is both 
efficient to store and transfer, and that can be sampled from on 
demand to generate pseudo-inferential replicates.  These 
pseudo-inferential replicates cover the true posterior gene 
abundances to a similar degree as the inferential replicates 
themselves (Figure 7) allowing for their use as an efficient proxy to 
the full inferential replicates [1].

Figure 4 : The time (A) and memory (B) resource usage of different pipelines when processing the PBMC10k 
(chromium v3 chemistry) dataset using 16 threads. In panel B, note the break in the y-axis at 10-26G.

Concordance of quantification between methods
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The time and memory requirements for different tools when 
processing the PBMC 10k (chromium v3) dataset (Figure 4 A, B). 
When all tools are given 16 threads, alevin-fry with 
selective-alignment takes the most time to complete and alevin-fry 
in sketch mode the least — STARSolo [3] is the second fastest tool, 
but at a lower thread count would become slower than kallisto. 
Alevin-fry (depending on resolution algorithm) uses a maximum of 
2-3G of RAM; kallisto uses 9-10G (depending on if the kb-tools 
wrapper is used), and STARSolo uses the most memory at ~32G.

There’s agreement across methods, yet substantial differences exist. 
Selective-alignment is most concordant with STARSolo, particularly when 
paried with simple resolution algorithms. Probabilistic assignment of 
multimappers — rather than discarding — generally reduces concordance 
(as may be expected since STARSolo discards these); the effect is 
particularly pronounced when paired with sketch mapping.

Learn more about alevin 

and alevin-fry! 

A B

Figure 3: Spearman correlation (A) and MARD (b) of  different tool combinations compared to STARSolo [3] .  Each data point is a cell-level 
measurement over all genes within that cell.  The cells considered were those in the intersection of cells quantified by all approaches.


