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Introduction
The evolution of aerobic metabolic processes, such as respiration 

and photosynthesis, has resulted in the production of Reactive Oxygen 
Species (ROS) in mitochondria, chloroplasts and peroxisomes. A 
common feature among different ROS types is oxidative damage to 
proteins, DNA and lipids [1]. Oxidative stress has been implicated in 
numerous chronic diseases, such as neurodegenerative, cardiovascular 
and diabetes ROS have been implicated in ageing and cancer [2-5]. 
ROS is a collective term describing oxygen-centred radicals, such as 
superoxide, hydroxyl and non-radical oxygen derivatives, namely 
hydrogen peroxide and singlet oxygen [6,7]. This oxidative stress could 
be decreased through the increased dietary intake of antioxidants. 
Antioxidants are defined as substances that delay or prevent the 
oxidation of lipids or other biomolecules or substrates. Antioxidant 
activity has been attributed to redox properties that function as 
reducing agents and act as hydrogen donors, singlet oxygen quencher 
and metal chelators [8]. A recent study of natural antioxidants showed 
that these molecules are ubiquitous in fruits and medicinal plants and 
can protect biomolecules from damage. The culinary properties of 
vegetables, herbs and spices have been attributed to several components 
and secondary metabolites known as phytochemicals. Among these, 
polyphenolics and phenolics, responsible for colour, flavour and taste, 
and flavonoids have been studied due to the effect of these molecules in 
reducing oxidative stress and several chronic and degenerative diseases 
[9–20]. The antioxidant properties of these secondary metabolites 
contribute to their anticancer, antimicrobial  and anti-inflammatory 
properties [21,22]. The reductive abilities of plant extracts could provide 
antioxidative protection through the donation of electrons to radicals, 
thus antioxidant properties protect cells from the adverse effects of 

oxidative stress through ROS [23]. The edible and aromatic culinary 
plants celery (Apium graveolens), coriander (Coriandrum sativum), 
epazote (Chenopodium ambrosioides), parsley (Petroselinum crispum) 
and watercress (Nasturtium officinale) are included in the human diet, 
and to the best of our knowledge, these vegetables have not been tested 
for genotoxicity on the somatic cells of Drosophila melanogaster.

The wing-spot assay in Drosophila melanogaster is a sensitive, 
efficient and reproducible in vivo assay extensively used to investigate 
the genotoxicity of different chemical and natural compounds alone 
or in mixtures. Comparisons between the response levels of ST and 
HB crosses are based on the high expression of  cytochrome P450 
enzymes , present in the latter and leading to the increased sensitivity 
of promutagens [24–26].

The carcinogenic drug Cyclophosphamide (CP) is nitrogen mustard 
alkylating agent that produce alkyl adducts on DNA via alkyl radicals. 
CP has been widely used as an immunosuppressor and antineoplastic 
drug. The therapeutic effects of CP have been well documented in a 
variety of disorders, such as systemic lupus erythematosus, rheumatoid 
arthritis, multiple sclerosis and cancer [27]. The carcinogenic compound 
and 4-Nitroquinoline n-Oxide (4NQO), a quinoline derivative, induces 
DNA lesions through ROS production, which are typically corrected 
through nucleotide excision repair. ROS induction might result from 
the enzymatic reduction of the nitro group [28]. 
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Abstract
It has been demonstrated that the juices from several vegetables, spices and herbs protect against certain carcinogens. The 

antioxidant capacity of several vegetables has been documented. The aims of the present study were to evaluate the genotoxicity 
of celery, coriander, epazote, parsley and watercress using the Somatic Mutation and Recombination Test (SMART) on the wings 
of Drosophila melanogaster using Standard (ST) and High Bioactivation (HB) crosses with regular and high levels of metabolizing 
cytochrome P450 enzymes, respectively. The protective effects of the extracts against 4-Nitroquinoline n-Oxide (4NQO) 4NQO, an 
oxidant compound, and Cyclophosphamide (CP), an alkylating agent, were evaluated. Both promutagens were employed alone as 
positive controls and in combination with the extracts. The majority of the extracts were non-genotoxic, although several positive 
results were observed. Parsley induced spots at all concentrations assayed in the ST cross and at the lowest concentration in the 
HB cross. Watercress, coriander and epazote produced some significant results in both crosses. CP in combination with the highest 
extract concentration exhibited a potentiation-synergistic effect while an inhibition-antagonic effect with 4NQO.  In addition, the 
radical-scavenging activities of the extracts were investigated using the colorimetrical DPPH oxidative assay. The radical scavenging 
activity order from the highest to the lower was watercress > parsley > coriander > celery > epazote.
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Antioxidation through plant extracts has been measured worldwide 
using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) oxidative assay, 
which quantifies the radical-scavenging activity, hence the capacity 
of biological reagents to scavenge the DPPH radicals [29]. Radical-
scavenging activities of edible plants and culinary herbs towards 
hydrophobic DPPH radicals are scarce.

Different studies have demonstrated that edible herbs and vegetable 
plants contain a variety of antioxidant compounds, and studies 
concerning the interaction of these compounds in the in vivo Drosophila 
melanogaster wing assay, which possesses the enzymatic machinery to 
activate environmental mutagens/carcinogens, are scarce. Therefore, 
the aims of the present study were to assess for the genotoxicity and 
antioxidant activities of several edible and aromatic culinary plants 
alone or in combination with the carcinogenic compounds CP and 
4NQO using the wing spot assay in Drosophila melanogaster. In 
addition, the radical-scavenging activity of these extracts was evaluated 
using the DPPH oxidative assay.

Materials and Methods	
Chemical compounds

Cyclophosphamide Monohydrate (CP, CAS number 6055-19-
2), 4-Nitroquinoline n-Oxide (4NQO, CAS number 56-57-5) and 1, 
1-Diphenyl-2-Picryl-Hydrazyl (DPPH) were purchased from Sigma 
Aldrich Chemical (St. Louis, MO, USA). Fresh herb and edible plants 
were purchased from the local market. Plants were determined by Rosa 
Maria Fonseca Juárez and vouchers were deposited at the Herbarium 
of the Sciences Faculty- UNAM (Universidad Nacional Autónoma de 
México)

Sample preparation of extracts from the herbs and edible 
plants

In order to eliminate possible contamination with pesticides the 
herbs and edible plants were thoroughly washed with tap water and 
later with distilled water. Senescent leaves were removed. Dried plants 
were stored at room temperature prior to experimentation. Fresh juices 
were obtained from a household juice Turmix extractor. The juice 
from each plant was centrifuged twice at 9000 g at 4°C for 20 minutes. 
The supernatants were clarified and sterilized using filtration through 
Whatman number 1 filter paper and maintained on ice for immediate 
use or stored at -80°C prior to testing. From these fresh extracts all 
concentrations assayed were prepared. To analyse the toxicity of the 
herb and plant extracts, a pilot study in which batches of 10 adult 
flare, Oregon-flare and mwh males per vial were treated with different 
percentage concentrations of each extract. Three replicas (independent 
repetitions) were performed. The number of surviving flies was counted 
at 24, 48 and 72 h after treatment. Only flies treated with epazote die at 
50 and 100 percentage concentrations.

Strains and crosses

Three Drosophila melanogaster strains were used: 

a)	 Flare-3 (flr3/In(3LR)TM3, ri pp sep l(3)89Aa bx34e and BdS), 

b)	 Oregon-flare-3 (ORR) flr3/In(3LR)TM3, ri pp sep l(3)89Aa 
bx34e and BdS) and 

c)	 Multiple wing hairs (mwh/mwh). For explanation of genetic 
symbols see Lindsley and Zimm [30].

Virgin females from flare and Oregon-flare strains were mated to 
mwh males, and Standard (ST) and High Bioactivation (HB) crosses 

were respectively performed [24–26]. The eggs from both crosses were 
independently collected in a thick layer of fermenting live Baker’s yeast, 
supplemented with sucrose and tap water, during 8 h in complete 
darkness at 25 °C and 60–80% relative humidity. After three days, the 
third instar larvae (72 ± 4 h) were washed out of the bottles using tap 
water (25 °C) through a fine meshed stainless steel strainer.

Wing spot assay and statistical analysis

Third instant larvae were placed in vials containing 5 g Drosophila 
instant medium rehydrated with 15 ml of the respective aqueous herb 
solution. Negative controls were prepared using water. Positive controls 
and co-treatments were performed using 4NQO (2 mM) dissolved 
in a solution of 1Tween 80: 3 absolute EtOH, CP (5 mM) dissolved 
in distilled water. Vials with larvae samples of negative and positive 
controls and treatments and co-treatments were cultivated at 25 °C 
and 65% humidity under dark conditions until imago emergence. The 
flies were collected and stored in 70% EtOH. The wings of wild-type 
flies (trans-heterozygous, mwh/flr3) of both sexes from the two crosses 
were mounted on microscope slides using Faure’s solution (30 g arabic 
gum, 20 ml glycerol, 50 g chloral hydrate and 50 ml water) and analysed 
microscopically at 40x [24]. For each treatment, 60 flies were analysed. 
The frequency of each type of spot (small and large single spots or twin 
spots) and the total frequency of spots per wing for each treatment 
were compared pair-wise with negative or positive mutagen control 
frequencies, or inversely, using the SMART computer programme based 
on the Kastenbaum–Bowman test (P < 0.05) [31]. The non-parametric 
Mann-Whitney and Wilcoxon U-tests (α = β = 0.05, one sided) were used 
to exclude false positive or negative diagnoses. The U-test considers the 
rank values in controls and treatments and considers over-dispersion 
in a non-normal distribution. Non-significant results suggest a lack of 
sensitivity or an absence of genotoxicity at the concentration tested in 
the wing spot test and significant results represent genotoxicity when 
the treatment frequencies are higher than the control [32]. 

The interaction between positive controls and the highest 
concentration of the plant extracts was calculated using the Interaction 
Factor (IF) following the criterion of Schlesinger et al. (1992) with 
modifications according to Katsifis et al. (1996) and Danesi et al. (2012) 
[33-35].

IF = G1G2G3 – G1 – G2 – G3 + C

Where IF= Interaction Factor; G1G2G3 = Frequency of mutant 
clones in the treatment with combination; G1- G2 = frequency of 
mutant clones obtained through each mutagen; G3 = frequency of 
each extract alone; and C = frequency of mutant clones obtained in the 
control. Interactions might be present in two forms: synergism, when 
the mixture produced an effect greater than the sum of the effects of the 
separate exposures (greater than additive); and antagonism, when the 
mixture yielded an effect less than the sum of the separate effects (less 
than additive), considering zero as additively [33].

Antioxidant assay

To detect the antioxidant and/or radical scavenging activity of 
the herb and plant extracts the method of Yen and Chen (1996) was 
used [36]. The capacity of the extracts to scavenge the lipid soluble 
2, 2-Diphenyl-1-Picrylhydrazyl (DPPH) radical, resulting in the 
bleaching of the purple colour exhibited through the stable DPPH 
radical was monitored at an absorbance of 517 nm: 1 mL of a 0.1 
mM DPPH ethanol solution plus 1 mL of ethanol and 50 µL of the 
sample solutions at different concentrations and reacted 30 minutes at 
room temperature under dark conditions [37-39]. After 30 minutes, 
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the sample was centrifuged at 1000 rpm for 2 minutes, and the first 
absorbance was measured. Three other lectures at 60, 90 and 120 min 
were measured the absorbance values were measured and converted 
into the percentage of Antioxidant Activity (AA) using the following 
the radical-scavenging activity on an equivalent phenolic content basis 
was calculated as follows:

Radical scavenging activity (%) = Abs 0 – Abs Sp/Abs 0 X 100%

Where Abs 0 = control, is the optical density of the blank and Abs 
Sp = sample, the optical density of the sample. Monitoring continued 
for 90 min. The assays were performed in triplicate, and the results were 
averaged. The values are expressed as the means ± standard deviation of 
the three measurements. Ascorbic acid was used as a standard positive 
control compound.

Results 
The objectives of the present study were to 

a) Assess for the genotoxicity of several vegetables, spices and
herb plants in ST and HB crosses

b) Evaluate whether edible plants have a protective effect against
the genotoxic damage induced through CP and 4NQO
promutagens assayed in both crosses, and

c) Determine the antioxidant activity of the plant water extracts.

The first group of experiments were conducted to detect whether
the plant and herb extracts induced genotoxic damage in the wing 
spot assay of Drosophila melanogaster. The assay was performed in 
two independent experiments. The data from each experiment were 
compared and statistically analysed, followed by pooling for statistical 
testing. The non-parametric Mann-Whitney and Wilson U-test were 
used to exclude false positive or negative diagnoses. The data presented 
in table 1 were obtained after the chronic treatment of flies with the 
five plant extracts assayed from the ST and HB crosses in the trans-
heterozygous mwh/flr3 wings from the Drosophila wing spot assay.  No 
significant differences were observed between the frequencies of mutant 
spots in flies treated with the four concentrations assayed compared 
with the negative control in both ST and HB crosses for celery and in 
the HB cross for coriander, epazote and watercress. Several positive 
results were obtained: coriander was positive for total spots at the 
higher concentration in the ST cross and for large spots at the lowest 
concentration in HB. Epazote showed a slightly positive result for large 
spots at the lower concentration assayed and for total spots at the higher 
concentration for the ST cross and was also positive for large spots at 
two concentrations in the HB cross. Parsley was clearly positive for 
small and total spots at all concentrations assayed in the ST cross and at 
the lowest concentration assayed in the HB cross. Watercress was also 
positive at the lowest concentration in the ST cross and also positive for 
large spots in the HB cross.

The second group of experiments, summarized in Table 2, was 
performed to analyse the genotoxicity of each positive control in the 
wing spot test induced through the alkylating agent CP and the oxidant 
4NQO. Both promutagens CP (5 mM) and 4NQO (2 mM) increased the 
frequencies of single, large and total spots in the ST cross and positive 
results were obtained for twin spots in the HB cross. The types of spots 
were completely different between promutagens and crosses. For CP, 
positive spot induction was observed in the ST cross for small, large and 
total spots, and the HB cross generated positive results for large spots 
with all vegetable extracts and twin spots were observed for epazote, 
parsley and watercress, while total spots for parley and watercress were 

significantly positive.  For 4NQO’s cotreatments, significant differences 
between the ST and HB cross in the induction of all types of spots 
were observed. Only celery, coriander and epazote generated a positive 
decrease of small spots in the ST cross, but an increase in large spots 
was observed for coriander. The effects of 4NQO were all negative for 
the HB cross. 

Co-treatment of the positive controls with the highest concentration 
of each vegetable extract showed the following results: in combination 
with CP, small, large and total spots were significantly increased in the 
ST cross compared with the alkylating agent alone. In the HB cross the 
results were significantly positive only for large spots in the experiments 
performed with celery and coriander, while epazote was positive for 
large and twin spots, watercress was positive for large, twin and total 
spots and the combined treatment with parsley showed positive 
increments in the frequencies of all types of spots. The combination of 
the extracts with 4NQO showed a statistically significant decrease in 
small and total spots in experiments performed with celery and small 
and large spots for coriander, while epazote showed a positive decrease 
in small spots in the ST cross. In experiments with the HB cross the 
analysis of the data showed that only epazote generated a significant 
decrease for small spots (Table 2). The wings of 3925 flies were analysed 
in the present study.

For a quantitative comparison of the effects of vegetable extracts 
against the genotoxic activity of the promutagens tested, the interaction 
factor was calculated for total spots after the co-administration of 
extracts with genotoxins in the two crosses employed, as shown in Table 
3. The results were compared, and the significance of any effect was
determined in the exposed groups compared with controls to assess the 
type and extent of any toxicological interaction, which occurred when
the effects of combined exposure were either significantly greater or
less than additive. The maximum synergistic effect for all types of spots 
induced through CP was observed for parsley, followed by watercress,
coriander, epazote and celery in the ST cross. For the HB cross,
parsley produced a higher synergistic effect followed by, watercress,
celery, coriander and epazote.  The synergistic values obtained with
the latter cross were lower than those obtained for the former cross.
However, after co-administration of the vegetable extracts with 4NQO,
maximum antagonism was observed for celery followed by epazote,
parsley, watercress, and coriander for the ST cross. Furthermore, celery 
was the only edible herb showing an antagonic effect in combination
with 4NQO for the HB cross. Surprisingly, the other four herbs did not 
reduce the effects induced with the oxidant.

A third group of experiments were performed to assess the 
antioxidant activity of the plant extracts based on the scavenging effect 
of stable DPPH. Radical scavenging activity of the vegetable extracts 
studied is shown in Table 4. All the extracts showed a tendency to 
quench the DPPH free radicals, as indicated through the concentration-
dependent increase of activity. The order of radical scavenging activity 
of the plant extracts from the highest to the lowest was watercress > 
parsley > coriander > celery > epazote, as shown in Figure 1.

Discussion
The consumption of vegetables, spices and herb plants in the 

human diet has been associated with healthy nourishment and is almost 
considered as safe, although, vegetables are complex mixtures that 
could also contain mutagenic and carcinogenic chemical compounds. 
Flavonoids are a group of polyphenolic compounds widely distributed 
in plants that possess different properties, such as antitumor, iron 
chelating and free radical scavenging and pro-oxidation involved in 
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Plant extract
and

concentra-
tion
(% )

Cross a
Number

of
flies

Spots per fly  (Number of spots)  Statistical diagnoses b

Spots
with
mwh
clone

Mean
number of

cell division
cycles

Small single
spots

(1-2 cells)
m = 2

Large single
spots

( > 2 cells)
m = 5

Twin spots
m = 5

Total
spots
m = 2

Solvent (water)
Control ST 56 0.24 (13) 0.00 (0) 0.00 (0) 0.24 (13) 13 1.08
Control HB 59 0.48 (28) 0.00 (0) 0.04 (2) 0.50 (30) 30 1.43

CELERY (CEL) ST
CELERY  12.5% 56 0.14 (8) - 0.04 (2) - 0.00 (0) - 0.18 (10) - 10 1.6
CELERY  25% 59 0.06 (4) - 0.00 (0) - 0.00 (0) - 0.06 (4) - 4 1
CELERY  50% 59 0.12 (7) - 0.02 (1) - 0.00 (0) - 0.14 (8) - 8 2
CELERY  100% 59 0.22 (13) - 0.06 (3) - 0.00 (0) - 0.28 (16) - 16 1.62
CELERY (CEL) HB
CELERY  12.5% 60 0.16 (10) - 0.06 (4) - 0 (0.00) - 0.24 (14) - 14 2.07
CELERY  25% 60 0.18 (11) - 0.06 (3) - 0.04 (2) - 0.26 (16) - 16 2.12
CELERY  50% 60 0.18 (11) - 0.06 (4) - 0 (0.00) - 0.24 (15) - 15 2.07
CELERY  100% 60 0.24 (14) - 0.06 (4) - 0 (0.00) - 0.30 (18) - 17 1.88

CORIANDER (COR) ST
COR 12.5% 60 0.22 (13) - 0.04 (2) - 0.00 (0) - 0.24 (15) - 15 1.53
COR 25% 58 0.32 (18) - 0.02 (1) - 0.00 (0) - 0.32 (19)- 19 1.26
COR 50% 57 0.28 (16) - 0.02 (1) - 0.00 (0) - 0.30 (17) - 17 1.35

COR 100% 59 0.40 (24) - 0.06 (4) - 0.00 (0) - 0.48 
(28) + 28 1.61

CORIANDER (COR) HB
COR 12.5% 60 0.20 (12) - 0.12 (7) + 0.00 (0) - 0.32 (19) - 19 2.68
COR 25% 60 0.24 (15) - 0.06 (3) - 0.04 (2) - 0.34 (20) - 19 2.32
COR 50% 60 0.24 (14) - 0.08 (5) - 0.06 (3) - 0.36 (22) - 21 2.14
COR 100% 60 0.22 (13) - 0.08 (5) - 0.02 (1) - 0.32 (19) - 19 2.79

EPAZOTE (EPA) ST
EPA 3.125% 58 0.28 (16) - 0.02 (1) + 0.00 (0) - 0.30 (17) - 17 1,24
EPA 6.25% 58 0.18 (10) - 0.04 (2) - 0.00 (0) - 0.20 (12) - 12 2.17
EPA 12.5% 58 0.18 (11) - 0.04 (2) - 0.00 (0) - 0.22 (13)- 13 1.85

EPA 25% 59 0.42 (25) - 0.06 (4) - 0.00 (0) - 0.50 
(29) + 29 1.52

EPAZOTE (EPA) HB
EPA 3.125% 60 0.48 (29) . 0.06 (3) - 0.04 (2) - 0.56 (34) - 32 1.62
EPA 6.25% 60 0.34 (20) - 0.08 (5) + 0.02 (1) - 0.44 (26) - 26 2.31
EPA 12.5% 60 0.36 (22) - 0.06 (3) - 0.04 (2) - 0.44 (27) - 27 1.7
EPA 25% 60 0.58 (35 ) - 0.08 (5) + 0.08 (5) + 0.74 (45) - 44 2.05

PARSLEY (PAR) ST

PAR 12.5% 59 0.66 (39) + 0.06 (3) - 0.00 (0) - 0.72 
(42) + 42 1.33

PAR 25% 59 0.54 (32) + 0.06 (3) - 0.00 (0) - 0.60 
(35) + 35 1.34

PAR 50% 59 0.50 (29) + 0.06 (3) - 0.00 (0) - 0.54 
(32) + 32 1.53

PAR 100% 59 0.52 (31) + 0.06 (3) - 0.00 (0) - 0.58 
(34) + 34 1.35

PARSLEY (PAR) HB

PAR 12.5% 60 0.74 (44) + 0.06 (3) - 0.04 (2) - 0.82 
(49) + 48 1.46

PAR 25% 60 0.30 (18) - 0.04 (2) - 0.00 (0) - 0.34 (20 
) - 20 1.65

PAR 50% 60 0.32 (19) - 0.04 (2) - 0.04 (2) - 0.38 (23) - 23 1.78
PAR 100% 60 0.24 (15) - 0.08 (5) + 0.04 (2) - 0.36 (22) - 22 2.55

WATER CREES (WA) ST

WA 12.5% 60 0.64 (38) + 0.06 (3) - 0.00 (0) - 0.68 
(41) + 41 1.39

WA 25% 57 0.34 (19) - 0.08 (4) - 0.00 (0) - 0.40 (23) - 23 1.61
WA 50% 59 0.24 (14) - 0.04 (2) - 0.00 (0) - 0.28 (16) - 16 1.5
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WA 100 % 58 0.28 (16) - 0.00 (0) - 0.00 (0) - 0.28 (16) - 16 1.19
WATER CREES (WA) HB

WA 12.5% 60 0.48 (29)- 0.08 (5) + 0.02 (1) - 0.58 (35) - 35 1.57
WA 25% 60 0.44 (26) - 0.04 (2) - 0.00 (0) - 0.46 (28) - 28 1.36
WA 50% 60 0.36 (22) - 0.04 (2) - 0.02 (1) - 0.42 (25) - 25 1.72

WA 100 % 60 0.48 (29) - 0.08 (5) + 0.00 (0) - 0.56 (34) - 34 1.76
aST standard cross; HB high bioactivation cross
b Statistical diagnoses according to Frei and Würgler (1988; 1995), m: minimal  riskmultiplication factor for the assesment of negative results. For the final statistical 
diagnoses of all outcomes: + = positive; - = negativewith the standard SMART software based in the conditional binomial test according  toFrei and Würgler (1988, 1995).
Table 1: Summary of results obtained in trans-heterozygous progeny of ST and HB crosses after chronic treatment of larvae with the plant extracts.

Treatment
and

concentra-
tion

(% ormM)

Cross a
Number

of
flies

Spots per fly  (Number of spots)  Statistical diagnoses b

Spots
with
mwh
clone

Mean
number of

celldivision
cycles

Small single
spots

(1-2 cells)
m = 2

Large single
spots

( > 2 cells)
m = 5

Twin 
spots
m = 5

Total
spots
m = 2

Control (water) ST 56 0.24 (13) 0.00 (0) 0.00 (0) 0.24 (13) 13 1.08
CP 5mM 60 2.24 (135)+ 0.14 (8)+ 0.02 (1)- 2.40 (144)+ 144 1.33

CEL 100%+CP 60 3.50 (210) + 0.56 (33) + 0.00 (0) - 4.06 (243) +↑ 243 1.56
COR100%+CP 60 4.60 (276) +↑ 1.68 (101) +↑ 0.00 (0) - 6.28 (377) +↑ 376 1.96
EPA 25% + CP 60 4.90 (294) +↑ 0.68 (41) +↑ 0.00 (0) - 5.58 (335) +↑ 335 1.54

PAR 100 % + CP 60 9.64 (578) +↑ 1.60 (96) +↑ 0.04 (2) - 11.26 (676) +↑ 674 1.54
WA 100% + CP 60 4.88 (293) +↑ 1.66 (100) +↑ 0.00 (0) - 6.56 (393) +↑ 393 1.95

Control (water) HB 59 0.48 (28) 0.00 (0) 0.04 (2) 0.50 (30) 30 1.43
CP 5 mM 60 5.76 (346) + 1.24 (75) + 0.48 (29) + 7.50 (450) + 444 1.83

CEL 100%+CP 60 6.66 (400) - 1.96 (117) + 0.36 (22) - 8.98 (539) - 528 1.89
COR100%+CP 60 5.36 (322) - 2.36 (142) +↑ 0.54 (32) - 8.26 (496) - 489 2.15

EPA 25% + CP 60 4.84 (290) - 2.08 (125) +↑ 0.84 (50) 
+↑ 7.74 (465) - 454 2.25

PAR 100 % + CP 60 8.62 (517) +↑ 3.66 (220) +↑ 1.06 (64) 
+↑ 13.36 (801)+↑ 775 2.11

WA 100% + CP 60 6.54 (392) - 3.48 (209) +↑ 1.04 (62) 
+↑ 11.06 (663) +↑ 633 2.21

Control (Tween 80-EtOH) ST 56 0.24 (13) 0.00 (0) 0.00 (0) 0.24 (13) 13 1.08
4-NQO  2mM 60 0.74 (45) + 0.18 (11) + 0.00 (0) - 0.94 (56) + 56 1.73

CEL 100%+4NQO 60 0.24 (15) +↓ 0.20 (12) - 0.00 (0) - 0.44 (27) +↓ 27 2.63
COR100%+4NQO 60 0.44 (26) +↓ 0.70 (42) +↑ 0.00 (0) - 1.14 (68) - 67 3
EPA 25% + 4NQO 60 0.38 (23) +↓ 0.32 (19) - 0.00 (0) - 0.70 (42) - 42 2.69

PAR 100 % + 4NQO 60 0.54 (32) - 0.26 (16) - 0.00 (0) - 0.80 (48) - 48 2.44
WA 100%  + 4NQO 60 0.46 (28) - 0.38 (23) - 0.00 (0) - 0.86 (51) - 51 2.63

Control (Tween 80-EtOH) HB 60 0.48 (29) 0.04 (2) 0.04 (2) 0.52 (31) 31 1.52
4-NQO  2mM 60 0.92 (55) + 0.74 (45) + 0.40 (24) + 2.06 (124) + 111 2.55

CEL 100%+4NQO 60 0.72 (43) - 0.58 (35) - 0.26 (16) - 1.56 (94) - 89 2.57
COR100%+4NQO 60 0.94 (57) - 0.84 (50) - 0.36 (22) - 2.16 (129) - 114 2.55
EPA 25% + 4NQO 60 1.12 (67)  - 0.82 (49) - 0.44 (27) - 2.38 (143) - 133 2.53

PAR 100 % + 4NQO 60 1.14 (68) - 0.90 (54 ) 0.40 (24) - 2.44 (146) - 135 2.57
WA 100%  + 4NQO 60 1.04 (63) - 0.94 (56)- 0.46 (28) - 2.46 (147) - 137 2.56

aST standard cross; HB high bioactivation cross
b Statistical diagnoses according to Frei and Würgler (1988; 1995), m: minimal risk  multiplicationfactor for the assessment of negative results. For the final statistical 
diagnoses of all outcomes: + = positive; - = negative; potentiation (+↑) and inhibition (+↓) with the standard SMART software based in the conditional binomial test 

according to Frei and Würgler (1988, 1995).

Table 2: SMART results after chronic treatment of larvae from ST and HB crosses with CP, 4NQO and in combination with the highest concentration of the plant extracts.

redox cycling processes [21,40-42]. The flavonoid content of the species 
analysed in the present study has been previously reported. According 
to Yang et al., parsley has a higher total flavonoid content (73.5 mg/100 

g), followed by watercress (37.5) coriander (8) and celery (3.4) [43]. 
To our knowledge, no data are available for the flavonoid content of 
epazote. The consensus is that the antioxidant activity of flavonoids 
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results from a combination of the iron chelating properties and free 
radical scavenging, but depending on the experimental conditions, 
these compounds also behave as pro-oxidant agents involved in redox 
cycling processes [41]. However, flavonoids exert pro-oxidant activity, 
including the formation of scavenging of radicals [21,44]. Several 
flavonoids, such as apigenin and naringenin, have been reported to 
induce an increase of 30–50 times in the formation of reactive oxidant 
species when incubated in the presence of GSH and peroxidases from 
thymus and bone marrow [45]. 

No significant differences were observed when the frequencies of 
mutant spots in flies treated with any of the four concentrations assayed 
for celery were compared with the negative control for both ST and HB 
crosses. These results could be associated with the phtalides from celery, 

which are the most significant bioactive compounds exhibiting many 
biological activities and health benefits, such as antifungal, antiplatelet, 
anticonvulsant and antiproliferative activity against two cancer lines, 
lymphoma and myeloid leukaemia, hence conferring protection against 
cancer [46]. Sedanolide, another compound isolated from celery oil 
seeds, induced higher activity of the detoxifying enzyme glutathione-
S-transferase. Vitamin C is a known immune system booster that 
reduces the free radical in the body [47]. The flavonoid apiin, one of the 
bioactive components of celery was analysed for antioxidant activity, 
measured through different in vitro and in vivo models showing 
excellent protection against oxidative stress in mice [48]. 

In addition, phenolic compounds also protect genomic stability, 
reflecting the biological properties of these compounds, including free 
radical scavenging [49].  However, some polyphenols might exhibit 
pro-oxidant effects, which could be associated the mutagenicity 
of coriander at the highest concentration in the ST cross [50,51].  
Recently, it was reported that linalool, an acyclic monoterpene alcohol, 
is the primary component of coriander, showing a pro-oxidant effect in 
sarcoma-180 solid tumour tissue and an antioxidant effect in the liver 
[52]. A positive correlation between the phenolic content of the roots 
of Coriander sativum was observed with the scavenging activities of 
DPPH [23]. Coriander was not mutagenic for Salmonella typhimurium 
strains TA98 and TA100 with and without S9 mix [53]. In the present 
study, parsley shows a clear positive genotoxic activity at the four 
doses assayed in the ST cross. Parsley extracts and the anticancer drug 
vincristine did not induce sex linked recessive lethals in Drosophila 
melanogaster either in single and in combined treatments but showed 
significant increase of cholinesterase enzyme activities within single 
and combination treatment [54]. In another study it was  demonstrated 
pro-oxidant tendencies of parsley extracts in a protein-based model 
and DNA-based in vitro model, the cytotoxic effect could reflect 
the generation of hydrogen peroxide from components within the 
culture media reacting with the phenolic components within the 
extract [55]. The main components of Chenopodium ambrosioides 
are monoterpenes with ascaridole, representing more than 70% of 
compounds as antiprotozoan agents against Trypanosoma cruzi, 
Plasmodium falciparum and Leishmania amazonensis [56–58]. These 
components also induced chromosomal aberrations (chromatid type), 
SCE and a decrease in the mitotic index in cultured human lymphocytes 
[59]. Epazote in the present in vivo study induced a positive genotoxic 
effect only at the highest dose assayed with ST.

CP is metabolized through P-450 enzymes in the liver via two 
pathways. In the first pathway, CP is catalysed through cytochrome 
P-450 2B and P-450 2C forming the DNA cross-linking agent, 
phosphoramide mustard, and the toxic metabolite, acrolein, producing 
superfluous ROS [60,61]. Phosphoramide mustard, forms DNA cross 
links between and within DNA strands at guanine N-7 positions. The 
effect is irreversible and leads to cell apoptosis. Alternatively, in trans, 

Cross Genotoxin
assayed Extract Interaction

Factor (IF)a

ST CP 5mM Celery 1.62
Coriander 3.64
Epazote 2.92
Parsley 8.52

Watercress 7.12

HB Celery 1.68
Coriander 0.78
Epazote 0.04
Parsley 6

Watercress 3.5

ST 4NQO 2mM Celery -0.54
Coriander -0.04
Epazote -0.5
Parsley -0.48

Watercress -0.12

HB Celery -0.3
Coriander 0.28
Epazote 0.08
Parsley 0.52

Watercress 0.34
a According to Schlesinger et al. (1992): IF negative =  antagonism; IF positive = 

sinergism; IF zero = additivity

Table 3: Interaction factor  calculated for total spots  after the co-administration of 
extracts with genotoxins in the two crosses employed.

RAS (Radical Scavenging Activity)a, b

Concentration 
(%) Celery Coriander Parsley Watercress Epazote

3.12% - - - - 39.09

6.25% - - - - 42.46

12.50% 0.47 48.22 38.19 68.07 46.71

25% 21.21 54.22 47.73 82.23 55.78

50% 46.49 64.64 55.08 85.62 -

100% 62.02 70.34 74.15 85.48 -
aCalculated by the formula RSA =  Abs control - Abs extract/ Abs control x100b 
Mean values; standard deviation was calculated and resulted negligible.

Table 4:  Radical scavenging activity of the vegetables, spices and herb plants 
analyzed.

'

Figure 1: Radical scavenging activity of the five vegetables, spices and herb 
plants assayed.
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the CYP3A4-mediated N-dechloroethylation of CP to 3-dechloroethyl 
cyclophosphamide generates the toxic by-product chloroacetaldehyde 
[62].  CP in mice and rats induced genotoxicity and also produced 
oxidative stress and inhibited the activities of the anti-oxidant enzymes 
CAT, SOD, and GSH [63]. The results with CP are not consistent with 
those of Spano et al. who showed that CP was equally genotoxic in both 
crosses, and the highest concentration reported in that study (5 mM) 
was toxic, and only some flies survived in the ST cross, while none 
survived in the HB cross [64]. In the present study, CP generated positive 
results alone in both crosses, although in the HB series, the increase was 
approximately three times higher than that obtained from the ST cross. 
CP was clearly positive in the ST cross, with all the extracts combined 
with the alkylating agent, generating a ranking order for the respective 
genotoxic effectiveness of parsley > watercress > coriander > epazote 
> celery.  Only positive results were obtained in the experiments run 
with parsley in combination with CP in the HB cross, in addition to
the recombinogenic effect induced, evidenced as the frequencies of
twin spots. Watercress had a protective effect against DNA damage
induced through CP in the bladder cells of mice [65]. CP showed a
uniformly toxic effect for solid tumour tissue and for the liver [52].
These results suggest that the higher response of the HB cross could
be associated with the constitutively high levels of cytochrome P450, 
particularly CYP6A2, and the genotoxic metabolites of CP.

Both 4NQO and the metabolite 4 hydroxyaminoquinoline 
1-oxide binds covalently to cellular macromolecules, such as nucleic 
acids and proteins [66]. In addition, 4NQO, a carcinogen that
increases ROS, is a UV-mimetic agent that produces purine adducts
through CYP450 metabolism [67,68]. In the present study, 4NQO
induced small, large and total spots in the ST cross, consistent with
the results reported in previous studies [25,69–72]. A significant
increase in the frequencies of twin spots indicates that both
recombinogenic activity and mutagenic effect were obtained with
the HB cross. These results are consistent with those obtained in
previous studies using the same promutagen [73,74].  Garcia-Rubio
et al.  showed that 4NQO causes synergistic increases of homologous 
recombination in Saccharomyces cerevisiae [75].

In the present study, extracts in combination with CP showed 
a potentiation effect, while in combination with 4NQO, inhibition 
activity was observed with the same juices/concentrations in the ST 
cross. Fernandes et al. showed this behaviour in the ethanol juice 
of propolis using the Drosophila wing somatic assay [51]. These 
authors suggested the presence of “Janus-type” substances that 
induce and prevent genotoxic effects.  The interaction factor showed 
that CP with the extracts in the ST cross showed a clear synergistic 
effect, while the synergistic effects were lower in the HB series. The 
combination of the extracts with 4NQO in the ST cross were clearly 
antagonic, while in the HB cross only celery showed an inhibition effect. 

DPPH is a free radical that is stable at room temperature and 
produces a purple solution in ethanol, with a colour that disappears in 
the presence of the radical scavenger in the reactive system and when 
the odd electron of nitrogen in the DPPH is paired. This reduction, 
in the presence of an antioxidant molecule, has been colorimetrically 
shown as a yellow coloured diphenyl-picryl hydrazine. The antioxidant 
strength of plant extracts analysed in the present study was dependent 
on the concentration. Hence, a direct relationship between the 
concentration of the vegetable extracts and radical scavenging activity 
was observed. We did not detect any correlation between the previously 
reported flavonoid content of the vegetables and plant extracts with the 
antioxidant activity observed in the present study [43].
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