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1. Classification design

1.1. Simulation design

As in Section 3.1 of the Main Article, we propose a simulation study with p = 1600 covariates
and sample size n = 60. The response variable Y is binary: Y = 1 for n

2 subjects, and Y = 0

for n
2 subjects. The covariates X = (X(k))k=1,...,4 are clustered into four independent clusters,

each of them containing pk = 400 covariates. For this, before to model the dependence with
the outcome Y , we generate for each cluster k, a preliminary vector X̃(k) that is a gaussian
400-vector, with mean 0 and non-diagonal variance-covariance matrix Σ(k). The correlation
between the covariates of X̃(k) inside the cluster k is designed by a factor analysis model, as in
the Section 3.1 of the Main article. More precisions on the factor analysis model can be found
in [3]. Now, we create the dependence between X and Y in perturbing some component of X̃.
This simulation design is inspired from the toys-data of [5]. The outcome Y is linked with 240
influential covariates in X, the others being noise covariates. The links between the influential
covariates and the response variable Y have different intensities. More precisely, the 10 first
covariates of each cluster are the most strongly linked with the response variable Y and the
strength of the link is decreasing in the successive groups of 10 influential covariates.

More precisely, let us define the simulation model by giving the conditional distribution of
Xi given the value y of Y : in each cluster k = 1, . . . , 4, and for i = 1, . . . , 400,

X
(k)
i = X̃

(k)
i + δ

(k)
i (y)

where δi(y) is a random variable.

• The relevant covariates are the m1 = 60 first covariates of each cluster. The distribution

of the δ
(k)
i (y) leading to the links between the relevant covariates and Y is given in Table

1.
• The m0 = 340 remaining covariates of each cluster are independent of Y : δ

(k)
i (y) = 0

whatever y for i = 61, . . . , 400.

We can remark that this design respects the covariance matrix given in Figure 1 of the
Main Article. This design differs a little bit from the model of Equation (1) of the Main Article,
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because δ
(k)
i (Y ) is a random function of Y . Note that in real data analysis, we don’t know the

model from which they are generated. It is why it is interesting to analyse the performance of
our method on different kinds of simulated data.

1.2. Interest of our data pretreatment

In order to emphasize the interest of our data pretreatment, we compare the results of a Wilcoxon
test after three different data pretreatments:

Procedure 1: nothing is done on the dataset X.
Procedure 2: the covariates X are decorrelated, taking Y into account, with the factor analysis proce-

dure of [1, 4], implemented in the R package FAMT. This gives a new dataset X†Y .
Procedure 3: the 4 clusters are estimated with the procedure of [2], implemented in the R package

ClustOfVar; then the covariates are decorrelated in each cluster, taking Y into account,
with the factor analysis procedure of [1, 4], implemented in the R package FAMT. This gives
a new dataset X∗Y obtained by the concatenation of the decorrelated clusters.

Remark: our data pretreatment is the Procedure 3. We have supposed that the number of
clusters is known. If that is not the case, the user can choose its own number of clusters by
using the graphical tools of the ClustOfVar procedure (plots of the dendrogram).

Our objective is to find out the differently expressed covariates in the two groups (groups
Y = 0 and Y = 1) with sample sizes n

2 = 30. For this, we perform Wilcoxon tests on each

of the p pretreated covariates of the dataset (that is X for Procedure 1, X†Y for Procedure
2, X∗Y for Procedure 3), given a three sets of p p-values. For each of these procedures, the
selected covariates are those with p-values lower than 0.05. We compare these procedures on
N = 500 runs of (X, Y ). For the comparison, we count the number of influential covariates that
are correctly detected (this number is noted TP, for True Positive), this indicator gives an idea
of the sensibility of the test after the procedure. To assess the specificity, we count the number
of non-influential detected covariates (this number is noted FP, for False Positive). Note that
the perfect method would detect all the influential covariates (that is 240 in this study) and
no False Positive. However, according to the detection threshold chosen for the p-value, the
expected number of FP is 68 = 5%× (1600− 240). The results are shown in Figure 1.

If we analyse the results given by Figure 1, we can see that Procedure 1 is in fact the
one that has the lowest rate of FP but its power is also the poorest whatever the design. Our
Procedure reduces the mean and the variability of the distributions of the false positive rates,
in comparison to the Procedure 2 (i.e. the FAMT procedure). The power of our Procedure
is comparable with Procedure 2. This results show the interest of our proposed pretreatment
before performing selection.

1.3. Results of the whole method (pretreatment and selection)

In order to describe the performances of our method, we show in Figure 2 the mean ARMADA
scores obtained on the N = 500 runs of (X, Y ). The scores are given for all the covariates
individually, and also by group of influential and noise covariates (the groups of influential
covariates are noted by ”(0.7,3)”, ”(0.7,2)”, ”(0.7,1)”, etc.; the group of noise covariates is
noted by ”-”).

We can see on the Figure 2 that the scores give a clear ranking of the covariates, according
to the strength of their link with the response variable Y . The highest scores are obtained by the
covariates which are the most strongly linked with the response variable Y . The method is not
so performant as in the design presented in Section 3.1 of the Main Article, probably because we
are note exactly in the model of the study (Equation (1) of the Main Article) but also because
the strength of the link with Y is low excepted for the two first groups of covariates that have
scores which are well separated from the others by the selection method. We can precise that
around 95% of the noise covariates obtained an ARMADA score that was exactly 0.
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1.4. Comparison with other selection methods

We propose the following selection criterion in our procedure: the selected covariates are those
with scores greater or equal to 1.

We compare this selection procedure with two other selection methods:

• the Wilcoxon test: the selected covariates are those with raw-pvalues (i.e. p-values without
any correction) lower than 0.05,
• the FAMT procedure [1]: the selected covariates are those with adjusted p-values lower

than 0.05.

To compare the three selection methods, the Table 2 gives the rates of selection for each
group of influential covariates, and for the group of noise covariates. The rates of selection have
been computed on N = 500 runs of (X, Y ). We can see that our method respect the expected
rate of false positives that is not the case for the FAMT method which exhibits a greater rate
of 10 %. Our method is competitive with the FAMT procedure for the detection of influential
covariates, but again FAMT procedure has more false positives than ours.

Finally, we can conclude with the ROC curves given in Figure 3 that our method out-
performs the two others selection methods (the ordinates of the points of the ARMADA
ROC curve are all higher than the ordinates of the points of the two other ROC curves).
Note that the ROC curves give the impression that our method is not competitive with the
two others, but this is only caused by the fact that we have traced a solid line between the
points (1-specificity, sensibility)ARMADA score=0 and (1-specificity, sensibility)ARMADA score=1.
The ROC curves have been obtained by the mean of the N = 500 ROC curves obtained in
the N = 500 runs of (X, Y ).

2. Regression design

In this section, we give results of simulations to study the behavior of our algorithm to select
covariates linked with a continuous variable of interest (like survival time here). We simulate
X̃ = (X̃(k))k=1,...,4 as in Section 1, and Y as a standard gaussian variable. Now, we create the

dependence with outcome Y in perturbing some component of X̃: in all cluster k = 1, . . . , 4,
and for all i = 1, . . . , 400:

X
(k)
i = X̃

(k)
i + δiY (1)

where δ = (δj)j=1,...,400 = (1, 0.8, 0.6, 0.4, 0.2, 0, 0, . . . , 0). Only the first 5 covariates of each
cluster are linked with Y .

As in Section 1, we show the interest of our pretreatment, comparing the three procedures
detailed in Section 1. As Y is a gaussian variable, we use the Pearson correlation test (instead
of the Wilcoxon test used in Section 1). We produce N = 500 runs of (X, Y ) and count the
number of false and true positive, and the ARMADA scores (shown in Figures 4 and 5).

Similarly to the classification studies presented in Section 1 of this Supplemental Material,
and in Section 3 of the Main Article, our Procedure reduces the mean and the variability of the
distributions of the false positive rates, in comparison to the Procedure 2 (i.e. the FAMT pro-
cedure), and the power of our Procedure is comparable with Procedure 2.

The Figure 5 shows the ARMADA scores obtained on these N = 500 runs of (X, Y ). Again,
similarly to the Section 1, the scores give a ranking of the covariates, according to the intensity
of their link with respect to the response variable Y . The true covariates are clearly separated
of the noise covariates. We can also precise that 96% of the noise covariates obtained a score
that was 0.

As in Section 1, the Table 3 and the ROC curve in Figure 6 allow us to compare our method
with the Pearson test and the FAMT procedure. Our method seems to be a good compromise
to have quite good detection rates for the true covariates, but small detection rates for the
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noise covariates. Even though true covariates are not always enough detected, compared to the
FAMT procedure, detection rate of noisy covariates is lower than FAMT. The Pearson test has
the lowest levels of detection rates, and the true covariates with a small link with Y are not
well detected. On the whole, our method seems to be appropriate for sparse models particularly
when the goal is to avoid false positive detections.

3. Simulations when the factor modelling fails

We show here the performances of our method to select variable when the factor modelling fails
inside the independent clusters. The principle of the simulated model is the following: for each
independent block, we generate the latent factors Z(k), some of them have direct influence on
the outcome Y and have also influence on a few number of covariates and no influence on the
others. The other latent factors creates correlation between all the covariates of the cluster.
In path analysis, we will say that there is an indirect correlation from some covariates on the
outcome through the latent factors while in the model (1) of the Main Article, the correlation
between the influential covariates and the outcome is direct. We describe the simulation design
in the following section.

3.1. Simulation design

The idea behind the following model is inspired from biological models: some latent factors
govern particular biological functions. We note them Z = (Z1, . . . , ZQ). The variable Y is
directly linked with some factors Zi, i ∈ {1, . . . , Q}. The covariates X are also related to
Z, via a factor model. More precisely, as in the previous simulation designs, the covariates
X = (X(k))k=1,...,4 are clustered into four independent clusters, each of them containing pk = 400

covariates. Inside each cluster, the correlation between the covariates of X(k) is designed by a
factor analysis model described in Equation (2) of the Main Article. The dimension of the latent
factors Z(k) in each cluster are (q1, . . . , q4) = (4, 6, 8, 10). Then, the whole set of latent factors
Z = (Z(k))k=1,...,4 is composed of Q =

∑
k qk = 28 latent factors. We simulate data with common

variances ComVar(k) equal to 0.8 in each cluster (recall that the common variance is defined in
Equation (5) of the Main Article). Now, our simulation design is the following:

Y =

4∑
k=1

2∑
i=1

Z
(k)
i (2)

X
(k)
i = b

(k)
i Z(k) + ε

(k)
i , for i = 1, . . . , pk (3)
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where b
(k)
i is a qk vector, corresponding to the ith row of a pk × qk matrix B(k) simulated as in

the previous simulation study, but with the following contraints:

B(k) =



1.5 1.5 B1,3 . . . B1,qk
...

...
...

...
...

1.5 1.5 B5,3 . . . B5,qk

1 1 B6,3 . . . B6,qk
...

...
...

...
...

1 1 B10,3 . . . B10,qk

0.75 0.75 B11,3 . . . B11,qk
...

...
...

...
...

0.75 0.75 B15,3 . . . B15,qk

0.5 0.5 B16,3 . . . B16,qk
...

...
...

...
...

0.5 0.5 B20,3 . . . B20,qk

0 0 B21,3 . . . B21,qk
...

...
...

...
...

0 0 Bpk,3 . . . Bpk,qk



(4)

In other words, Y is linked with two latent factors of each cluster, noted Z
(k)
1 and Z

(k)
2 . Whereas,

in each cluster, Z
(k)
1 and Z

(k)
2 are highly linked with the covariates X

(k)
i for i = 1, . . . , 20 (and the

intensity of the link decreases with i), and are independant of the other covariates X
(k)
i for i =

21, . . . , pk. We then have an indirect link between Y and the covariates
(
X

(k)
i

)
i=1,...,20;k=1,...,4

,

through the latent factors
(
Z

(k)
1 , Z

(k)
2

)
k=1,...,4

. Clearly, this simulation design differs from the

model (1) of the Main Article.

3.2. Results

Figures 7 show the interest of the pretreatment of the covariates, and again, our pretreatment is
a good compromise between the true positive (TP) rate (that is better than that of Procedure 1)
and the False Positive rate (that is better than that of Procedure 2). Figures 8 show the scores
of the covariates: the median score is around four and six for the group of significants covariates
and is zero for the covariates with no link with the outcome. We see that the variability of the
scores is larger when the link with the outcome is lower. The ROC curve and Table 4 show that
our method is not the best one but it stays specific with a score of two.

4. Simulations when the gaussian hypothesis fails

In this section we investigate another scenario when the modelling fails because of the gaussian
hypothesis of the factors. We propose a Student with three degrees of freedom for each of them,
it is known to have a heavy tail.

4.1. Simulation design

We simulate X = (X(k))k=1,...,4 with four independent clusters, each of them containing pk = 100
covariates. As in Section 2.1 of the main article, the dependence in each cluster of covariates is
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modeled with a factor model:

X
(k)
i = δiY + b

(k)
i Z(k) + ε

(k)
i , for i = 1, . . . , pk, (5)

but now the factors Z(k) are a qk-Student centered vector with covariance matrix given by the
identity matrix S = Iqk , and with 3 degrees of freedom. The number of factors in the four
clusters are respectively q1 = 4, q2 = 6, q3 = 8, q4 = 10. As in our preceding simulation in the
regression case, Y is a standard gaussian variable. The dependence between X and the outcome
Y is given by δ = (δi)i=1,...,400 = (1, 0.8, 0.6, 0.4, 0.2, 0, 0, . . . , 0). In other words, only the first 5
covariates of each cluster are linked with Y .

4.2. Results

The results are similar as those obtained in a normal case (cf Figures 10, 11, 12 and Table 5).
This first result is encouraging to apply our method, even on non-normal data.

5. Check of the covariance structure

In this section, we propose a way to check that the data support the covariance structure given in
Figure 1 and by Equations (2-3) of the Main Article. One way to check the covariance structure
is to map the heatmap of the data: before clustering, after clustering, and after decorrelation
into clusters by FAMT. We give here a pedagogical exemple, with only p = 880 covariates,
which correspond to peptide data, observed on n = 62 patients with non-small cell lung cancer,
who received a treatment developed by the Transgene society. The variable of interest is Y : the
outcome of the treatment. Among the 62 patients who received treatment, 27 died before 12
months (Y = 1), and 35 survived to 12 months (Y = 0). In that study, our method detects 4
clusters. We can see on the Figure 13 that the peptide data respect our proposed correlation
structure.

In our article, the dimension of the datasets of the two proposed applications (Sections 4.1
and 4.2 of the Main Article) are of the order of 50,000 covariates, and then of the order of 6,000
after an initial filtering. It is impossible to represent a heatmap of the correlation matrix for
such a large dimension. That is why, and only to illustrate (even it is partial) the correlation
structure of our data, we sub-sampled in the covariates, in order to reduce the dimension: for the
first application (Section 4.1), we took 800 covariances at random, among the 6,810 covariates of
the Transgene dataset. On that smaller dataset, our method detects two clusters. The heatmaps
of the correlation matrix are given in the Figure 14. As for the peptide dataset, we can check
the correlation structure by clusters. For the second application (Section 4.2), we took the 277
covariates discussed in Figure 8 of the Main Article, to illustrate the correlation structure for
the ERa66+ dataset. The heatmaps of the correlation matrix are given in the Figure 15. Again,
we can check the correlation of the data, structured by clusters.

6. Lung cancer real dataset: bootstrap analysis

As the number of patients n = 37 is small compared to the number of covariates even after
filtering (p = 6810), we have checked our results with a bootstrap study. We have calculated the
C-scores and R-scores of each covariates on B = 100 bootstrap samples and the mean of the B
results. We give the distribution of the bootstrapped means according to the original scores for
the original dataset (Figure 16). We can see that the distributions of the bootstrapped means of
the scores have a quite small dispersion and faithfully reproduce the original scores. The same
conclusion holds for the bootstrapped median scores (shown in Tables 6 and 7).

Moreover, we can emphasis that our method is robust to detect the most important covari-
ates (for instance, the 10 covariates that have a C-score equal to 7, or the 6 covariates that have
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an R-score greater than 7): their corresponding bootstraped means of scores are also high, and
their corresponding bootstraped median scores are greater than 5.

7. Biological material for the study of ERα36 in breast cancer

We analysed the biological network involving ERα36 through the use of 4 sets of Affymetrix
transcriptomic data obtained from breast tumors of different molecular subtypes: the triple
negative (noted TN), ER66+, PR+ and PR- datasets:

• the TN dataset corresponding to Affymetrix transcriptomic comprehensive data from
17 patients derived xenografts (PDX) breast tumors was extracted from the XentechTM

database with the permission of Olivier Déas and Stefano Cairo (MTA CXT-295 Xentech
SAS/University of Lorraine ; [7]).
• the 3 other datasets (46 tumors ER66+, 29 tumors PR+, 16 tumors PR-) were part of those

from the Carte d’Identité des Tumeurs Program (CIT) from the Ligue Nationale Contre
le Cancer described in [6]. Transcriptomic raw data were kindly provided by Aurélien
De Reynies and Jacqueline Métral. One microgram of cDNAs from each tumor sample
gathered at the Oncogenetics laboratory, INSERM U735, Institut Curie-Hôpital-Centre
René Huguenin, St Cloud, France was also kindly provided by Ivan Bieche to measure
ERα36 expression.

The measurement of ERα36 expression in each tumor (Step 1: clinical data completion)
has been done as described in [8]. Total RNA extraction of PDX samples and qPCR analy-
ses were performed. The following primers were used for qRT-PCR : GAPDH forward (Fw)
5’-TGC-ACC-ACC-AAC-TGC-TTA-GC -3’, GAPDH reverse (Rev) 5’-GGC-ATG-GAC-TGT-
GGT-CAT-GAG -3’, ERα36 forward (Fw) 5’- ATG-AAT-CTG-CAG-GGA-GAG-GA-3’, ERα36
reverse (Rev) 5’- GGC-TTT-AGA-CAC-GAG-GAA-ACC-3’. Assays were performed at least in
triplicate, and the mean values were used to calculate expression levels, using the ∆∆C(t)
method referring to GAPDH housekeeping gene expression.
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Figure 1. Number of true positive tests (top), false positive tests (bottom) in the classification design according to the

different pretreatment procedures (1: Nothing, 2: FAMT, 3: clustering followed by FAMT in each cluster). Dotted lines:
expected number of FP. Boxplots are calculated on N = 500 runs.
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Figure 2. Top: mean of the ARMADA scores obtained by all the covariates. Bottom: boxplot of the scores of the covariates,

ranked by levels of link with Y . Means and boxplots are calculated on N = 500 runs. Simulation in the classification design.
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Figure 3. ROC curves for the three selection methods in the classification design. The ROC curves have been obtained
by the mean of the N = 500 ROC curves obtained in the N = 500 runs of (X, Y ).
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Figure 4. Number of: true positive tests (top), false positive tests (bottom) in the regression design. Boxplots are calcu-
lated on N = 500 runs.
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Figure 5. Top: mean of the ARMADA scores obtained by all the covariates. Bottom: boxplot of the scores of the covariates,

ranked by levels of link with Y . Means and boxplots are calculated on N = 500 runs. Simulation in the regression design.
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Figure 6. ROC curves for the three selection methods, in the case of regression design. The ROC curves have been
obtained by the mean of the N = 500 ROC curves obtained in the N = 500 runs of (X, Y ).

1 2 3

5
0

7
0

Procedure

N
b

 o
f 

T
P

1 2 3

0
1

0
0

2
5

0

Procedure
N

b
 o

f 
F

P

Figure 7. Number of: true positive tests (top), false positive tests (bottom) in the ”out of factor modelling” design.

Boxplots are calculated on N = 500 runs.
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Figure 8. Top: mean of the ARMADA scores obtained by all the covariates in the ”out of factor modelling” design.
Bottom: boxplot of the scores of the covariates, ranked by levels of link with Y . Means and boxplots are calculated on

N = 500 runs. Simulation in the regression design.
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Figure 9. ROC curves for the three selection methods, in the ”out of factor modelling” design. The ROC curves have
been obtained by the mean of the N = 500 ROC curves obtained in the N = 500 runs of (X, Y ).
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Figure 11. Left: mean of the ARMADA scores obtained by all the covariates. Right: boxplot of the scores of the covariates,

ranked by levels of link with Y . Means and boxplots are calculated on N = 500 runs. Regression design, with non-normal
covariates (factors Z are Student vectors).
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Figure 12. ROC curves for the three selection methods. The ROC curves have been obtained by the mean of the N = 500

ROC curves obtained in the N = 500 runs of (X, Y ). Regression design, with non-normal covariates (factors Z are Student
vectors).

Figure 13. Heatmap of the correlation matrix of the 880 peptide covariates: before clustering, i.e. on the original dataset

(left), after clustering and sorting the covariates according to their clusters (middle), and after decorrelation into the clusters

(right).

Figure 14. Heatmaps of the correlation matrix of 800 covariates of the Transgene dataset: before the application of our

procedure (left), after clustering and sorting the covariates according to their clusters (middle), and after decorrelation into
the clusters (right).
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Figure 15. Heatmaps of the correlation matrix of 277 covariates of the ERa66+ dataset: before the application of our

procedure (left), after clustering and sorting the covariates according to their clusters (middle), and after decorrelation into

the clusters (right).
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Figure 16. Distribution of the bootstraped mean of C-scores (resp. R-scores), i.e. means of C-(or R-)scores obtained on

B = 100 bootstrap samples, according to the corresponding C-scores (resp. R-scores) in the original dataset for all the
p = 6810 covariates.

Table 1. Links between the relevant covariates and

Y in the classification design. The notation δ
(k)
i ∼

0.7N (3y, 1) + 0.3N (0, 1) means that, with probabil-

ity 0.7, δ
(k)
i ∼ N (3y, 1), and with probability 0.3,

δ
(k)
i ∼ N (0, 1).

i model for δki

for i = 1, . . . , 10 δ
(k)
i ∼ 0.7N (3y, 1) + 0.3N (0, 1)

for i = 11, . . . , 20 δ
(k)
i ∼ 0.7N (2y, 1) + 0.3N (0, 1)

for i = 21, . . . , 30 δ
(k)
i ∼ 0.7N (y, 1) + 0.3N (0, 1)

for i = 31, . . . , 40 δ
(k)
i ∼ 0.3N (3y, 1) + 0.7N (0, 1)

for i = 41, . . . , 50 δ
(k)
i ∼ 0.3N (2y, 1) + 0.7N (0, 1)

for i = 51, . . . , 60 δ
(k)
i ∼ 0.3N (y, 1) + 0.7N (0, 1)
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Table 2. Results of the N = 500 runs in the clas-
sification design: rates of selection of the different

groups of influential and noise covariates by the AR-

MADA method, the Wilcoxon test and the FAMT
procedure. The corresponding standard deviations

are given in brackets.

ARMADA Wilcoxon FAMT

(0.7-3) 0.99 (0.08) 0.99 (0.08) 0.99 (0.04)
(0.7-2) 0.92 (0.27) 0.92 (0.27) 0.96 (0.17)
(0.7-1) 0.45 (0.49) 0.43 (0.49) 0.58 (0.49)
(0.3-3) 0.54 (0.49) 0.41 (0.49) 0.61 (0.48)
(0.3-2) 0.33 (0.47) 0.28 (0.45) 0.42 (0.49)
(0.3-1) 0.13 (0.32) 0.12 (0.32) 0.20 (0.40)

- 0.06 (0.24) 0.05 (0.22) 0.10 (0.31)

Table 3. Results of the N = 500 runs in the
regression design: rates of selection of the differ-

ent groups of influential and noise covariates by
the ARMADA method, the Pearson correlation

test and the FAMT procedure. The correspond-

ing standard deviations are given in brackets.

ARMADA Pearson FAMT

1 1 (0) 1 (0) 1 (0)
0.8 1 (0.02) 1 (0) 1 (0)
0.6 0.99 (0.06) 0.99 (0.08) 1 (0.02)
0.4 0.97 (0.17) 0.84 (0.36) 0.98 (0.12)
0.2 0.63 (0.48) 0.32 (0.47) 0.74 (0.44)
- 0.07 (0.26) 0.05 (0.22) 0.10 (0.30)

Table 4. Results of the N = 500 runs in the

”out of factor modelling” design: rates of selection
of the different groups of influential and noise co-

variates by the ARMADA method, the Pearson

correlation test and the FAMT procedure. The
corresponding standard deviations are given in

brackets.

ARMADA Pearson FAMT

1.5 0.92 (0.26) 0.96 (0.17) 0.97 (0.15)
1 0.88 (0.32) 0.93 (0.24) 0.96 (0.18)

0.75 0.83 (0.37) 0.87 (0.33) 0.94 (0.24)
0.5 0.73 (0.44) 0.69 (0.46) 0.86 (0.34)
- 0.06 (0.25) 0.05 (0.22) 0.09 (0.29)

Table 5. Results of the N = 500 runs in the
non-normal design: rates of selection of the dif-
ferent groups of influential and noise covariates
by the ARMADA method, the Pearson correla-

tion test and the FAMT procedure. The corre-
sponding standard deviations are given in brack-

ets.

ARMADA Pearson FAMT

1 1 (0.03) 0.98 (0.13) 1 (0.02)
0.8 1 (0.04) 0.95 (0.22) 1 (0.05)
0.6 0.99 (0.10) 0.84 (0.36) 0.99 (0.06)
0.4 0.95 (0.21) 0.55 (0.50) 0.96 (0.19)
0.2 0.59 (0.49) 0.19 (0.39) 0.64 (0.48)
- 0.08 (0.27) 0.04 (0.22) 0.09 (0.28)
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Table 6. Distribution of the boostraped median C-scores of the p = 6810 covariates,

obtained on B = 100 boostrap samples, versus the corresponding C-scores.

ARMADA C-score
Bootstraped median C-score 0 1 2 3 4 5 6 7

0 2698 53 0 0 0 0 0 0
0.5 11 1 0 0 0 0 0 0
1 108 315 29 1 0 0 0 0

1.5 0 19 5 0 0 0 0 0
2 9 162 308 76 5 0 0 0

2.5 0 2 28 14 0 0 0 0
3 1 1 87 321 55 2 0 0

3.5 0 0 1 29 12 1 0 0
4 0 0 2 155 922 218 1 0

4.5 0 0 0 0 19 6 0 0
5 0 0 0 0 157 644 221 2

5.5 0 0 0 0 0 0 6 0
6 0 0 0 0 0 17 78 8

Table 7. Distribution of the boostraped median R-scores of the p = 6810 covariates,

obtained on B = 100 boostrap samples, versus the corresponding R-scores.

ARMADA C-score
Bootstraped median R-score 0 1 2 3 4 5 6 7 8

0 3773 29 11 0 0 0 0 0 0
0.5 20 2 5 0 0 0 0 0 0
1 67 22 17 0 0 0 0 0 0

1.5 8 1 9 0 0 0 0 0 0
2 109 32 243 40 1 0 0 0 0

2.5 4 0 22 8 2 0 0 0 0
3 7 3 147 295 80 2 0 0 0

3.5 0 0 0 14 13 2 0 0 0
4 0 0 2 149 788 210 0 0 0

4.5 0 0 0 0 10 14 0 0 0
5 0 0 0 3 90 462 85 5 0

5.5 0 0 0 0 0 1 0 0 0
6 0 0 0 0 0 1 1 0 1
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