Supplementary material 1: The recycling rate of LiB materials published by the Chinese government (Ministry of Industry and Information Technology of the People's Republic of China,

2019)										
	Nickel	Cobalt	Manganese	Lithium	Rare metal					
					and others					
Recycling rate	98%	98%	98%	85%	97%					

Ministry of Industry and Information Technology of the People's Republic of China, 2019. Standards to utilize waste driving battery from new energy vehicle (2019) [WWW Document]. URL http://www.miit.gov.cn/n1146295/n1652858/n1652930/n4509607/c7595282/content.html

			Battery type and research object																			
Affiliation (Cell)	Material	Subsititute material	Battery	Battery	Battery	Battery	Battery	Battery	-	Battery	Battery	Cell	Electrode	Electrode	Electrode	Cell	Cell	Battery	Battery	Battery	Moduel	Electrode
Annadon (Cen)					A LP NCA NCM							NCM										
				LFF	INCA	NCM111	NCM622	NCM811	-	-	-		NCM 111	NCM622	NCM811	NCM 523	-	-	NCM111	NCM111	NCM111	Waste batter
		Nickel	12.10%									9.64%	20.13%	36.07%	47.93%	12.00%	12.00%				5.30%	
Cathode		Cobalt	2.30%	23.75%	21.64%	25,17%	23.07%	22.15%	22.00%	20.00%		9.67%	20.21%	12.07%	6.02%	5.00%	3.00%	23.20%	25,17%	13.50%	5.60%	
Cauloue	-	Manganese	0.00%	23.1370	21.0470	23.1770	23.0770	22.1570	22.0070	20.0070	40.00%	9.03%	18.84%	11.26%	5.61%	7.00%	5.00%	23.20%	23.1770	15.50%	4.60%	
		Lithium	1.90%								40.00%	1.14%	7.86%	7.82%	7.79%	1.20%	2.00%				1.90%	5.75
Graphite	-	-	16.50%	12.24%		14.05%		14.68%	-	10.00%		17.20%	19.00%	20.70%	20.60%	-	-	9.40%	14.05%	12.50%	12.40%	-
Carbon	-	-	2.40%	1.60%	1.46%	1.70%	1.56%	1.23%	-	10.00%		6.04%	2.30%	2.10%	1.70%	-	-		1.70%	1.00%		3.04
Bonding material	Polyvinylidene fluoride (PVDF)	-	3.80%	1.98%	2.04%	2.15%		2.54%	25.00%		-	2.42%	2.90%	2.90%	3.60%	-	-	-	2.15%	1.00%	8.30%	
Copper	-	-	13.30%	10.10%	11.79%	11.42%		11.19%	-	8-13%	-	7.80%	16.40%	16.80%	15.70%	-	13.00%	8.30%	11.42%	5.30%	11%	
Aluminum	-		0.30%	5.48%	6.09%	5.94%	5.95%	5.87%	33.00%	2-3%	3.00%	5.26%	8.20%	8.40%	8.00%	-	12.00%	3.60%	5.94%	4.80%	10.50%	10.80
Electrolyte	Lithium hexafluorophosphate (LiPF6)			2.45%		1.61%		1.83%	-			4.86%	2.20%	2.20%	2.60%	-	-		1.61%	1.20%		-
Electrolyte	Ethylene carbonate		11.70%	6.84%	4.45%	4.50%	4.47%	5.12%	-	9-12%		1.21%	6.20%	6.30%	7.20%	-	-	12.00%	4.50%	10.50%	16.60%	-
Electrolyte	Dimethyl carbonate			6.84%	4.45%	4.50%	4.47%	5.12%	-		12.00%	-	6.20%	6.30%	7.20%	-	-		4.50%	10.50%		-
Plastic	Polypropylene			0.97%	1.13%	1.10%	1.09%	1.07%	-		12.00%		1.90%	1.90%	1.80%	-	-		1.10%			-
Plastic	Polyethylene		4.20%	0.22%	0.26%	0.25%		0.25%	-	1-3%		3.15%	0.30%	0.30%	0.30%	-	-	3.80%	0.25%	2.20%	6.60%	-
Plastic	Polyethylene terephthalate			0.22%	0.21%	0.21%	0.21%	0.22%	-				0.30%	0.30%	0.40%	-	-		0.21%		⊥	-
	Total		68.50%	48.96%	49.09%	47.44%	48.12%	49.11%	-	63.00%	15.00%	47.94%	67.04%	67.22%	67.35%	25.20%	47.00%	44.50%	72.61%	52.00%	82.80%	73.44
Affiliation (Module)																						
Copper	-	-	-	0.25%				0.28%	-		-	-	-	-	-	-	-		0.26%	1.00%		-
Aluminum	-	-	12.70%	4.63%	4.47%	4.38%	4.46%	4.53%	-		-	-	-	-	-	-	-		4.38%	-	16.60%	
Plastic	Polyethylene			0.09%	0.12%	0.11%		0.11%	-		-	-	-	-	-	-	-	17.00%	0.11%	17.00%	0.70%	-
Heat insulating material	-	Fiber	1.20%	0.06%	0.07%	0.07%	0.07%	0.07%	-	4.00%	-	-	-	-	-	-	-		0.07%	-	-	-
Electronic part			0.30%	0.55%	0.75%	0.68%		0.71%	-	3.00%	1.00%	-		-	-	-	-		0.68%	0.20%	-	-
	Total		14.20%	5.58%	5.72%	5.49%	5.67%	5.71%	-	7.00%	1.00%	-	-	-	-	-	-	-	5.49%	18.20%	17.30%	-
Affiliation (pack)																						
Copper	-	-	-	0.05%		0.05%		0.06%	-		-	-	-	-	-	-	-		0.05%	-	-	-
Aluminum	-	-	8.90%	12.98%	14.36%	13.53%		14.14%	-		10.50%	-		-	-	-	-	ao 17	13.53%	28.50%	-	-
Steel	-	-	0.10%	0.71%	0.62%	0.62%	0.62%	0.64%	-	30.00%		17.32%	-	-	-	-	-	20.10%	0.62%	1.30%	-	-
Heat insulating material	-	Fiber	-	0.40%	0.44%	0.42%		0.44%	-		-	-	-	-	-	-	-		0.42%	-	-	-
Coolant	Glycol	-	-	5.10%	4.76%	4.30%	4.63%	4.63%	-		-	-	-	-	-	-	-		4.30%	-	-	-
Electronic part	-	-	-	2.48%	3.31%	2.98%	3.23%	3.13%	-		3.00%	-	-	-	-	-	-	3.00%	2.98%	-	-	-
Others		-	8.30%	-	-	-	-	-	20.00%	-	-	-	-	-	-	-			-	-	-	-
	Total		17.30%	21.72%	23.56%	21.91%	23.14%	23.03%	-	30.00%	43.50%	17.32%	0.00%	0.00%	0.00%	-	-	-	21.91%	29.80%	-	-
	Total		100.00%	100.01%	100.01%	100.01%	100.00%	100.00%	-	-	99.50%	94.74%	-	-	-	-	-	100.40%	100.01%	100.00%	100.10%	
	Number		[1]			[2]			[3]	[4]	[5]	[6]		[7]		[8]	[9]	[10]	[11]	[12]	[13]	[14]

Supplementary material 2: LiB's composition estimated by previous studies.

Supplementary material 2 is made by reference to (Ambrose and Kendall, 2016; Chen, 2017; China Automotive Technology and Research Center and Panasonic Automotive Systems DaLian, 2018; Chubu Electric Power, 2019; Dai et al., 2018, 2019; Gaines et al., 2011, 2018; Kim et al., 2016; Li et al., 2014; Majeau-Bettez et al., 2011; Richa et al., 2014; Romare et al., 2017; Zhang et al., 2018).

Among all the references, No.1 was referenced from (Gaines et al., 2011), No.2 was referenced from (Dai et al., 2018), No.3 was referenced from (Ambrose and Kendall, 2016), No.4 was referenced from (Romare et al., 2017), No.5 was referenced from (Kim et al., 2016), No.6 was referenced from (Richa et al., 2014), No.7 was referenced from (Gaines et al., 2018), No.8 was referenced from (Chen, 2017), No.9 was referenced from (China Automotive Technology and Research Center and Panasonic Automotive Systems DaLian, 2018), No.10 was referenced from (Majeau-Bettez et al., 2011), No.11 was referenced from (Dai et al., 2019), No.12 was referenced from (Li et al., 2014), which demonstrated that during the manufacturing of cathode material for NCM 111, the input of nickel, cobalt and manganese is around 27% respectively compared to the input amount of nickel, cobalt, manganese and lithium, while the input of lithium equals to around 19% of the input of nickel, cobalt, manganese and lithium. No.13 was referenced from (Chubu Electric Power, 2019), No.14 was referenced

from (Zhang et al., 2018). It is clear to see that No.2 shows the most detailed composition of LiBs.

- Ambrose, H., Kendall, A., 2016. Effects of battery chemistry and performance on the life cycle greenhouse gas intensity of electric mobility. Transp. Res. Part D Transp. Environ. 47, 182–194. https://doi.org/10.1016/j.trd.2016.05.009
- Chen, M., 2017. Recycling of Automotive Products, Zheng, Y. (Ed.), ISBN: 978-7-313-14437-9/X. Shanghai Jiaotong University Press, Shanghai.
- China Automotive Technology and Research Center, Panasonic Automotive Systems DaLian, 2018. ANNUAL REPORT ON THE DEVELOPMENT OF NEW ENERGY VEHICLE POWER BATTERY INDUSTRY IN CHINA(2018), Yue, M. (Ed.), ISBN: 978-7-5201-2985-5. Social Science Academic Press (China), Beijing.
- Chubu Electric Power, 2019. Demonstration project on the reuse and recycling technology for EV's driving battery [WWW Document]. URL

http://www.env.go.jp/recycle/car/pdfs/h30_report01_mat06.pdf

- Dai, Q., Kelly, J.C., Dunn, J., Benavides, T.P., 2018. Update of Bill-of-materials and Cathode Materials Production for Lithium-ion Batteries in the GREET Model [WWW Document]. U.S. Dep. Energy. URL https://greet.es.anl.gov/publication-update_bom_cm (accessed 1.5.20).
- Dai, Q., Kelly, J.C., Gaines, L., Wang, M., 2019. Life cycle analysis of lithium-ion batteries for automotive applications. Batteries 5. https://doi.org/10.3390/batteries5020048
- Gaines, L., Richa, K., Spangenberger, J., 2018. Key issues for Li-ion battery recycling. MRS Energy Sustain. 5. https://doi.org/https://doi.org/10.1557/mre.2018.13
- Gaines, L., Sullivan, J.L., Burnham, A., 2011. Life-Cycle Analysis for Lithium-Ion Battery Production and Recycling Environmental Assessment of Geothermal Power Production View project Li-Ion Battery Recycling View project [WWW Document]. URL https://www.researchgate.net/publication/265158823 (accessed 10.20.19).
- Kim, H.C., Wallington, T.J., Arsenault, R., Bae, C., Ahn, S., Lee, J., 2016. Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis. Environ. Sci. Technol. 50, 7715–7722. https://doi.org/10.1021/acs.est.6b00830
- Li, B., Gao, X., Li, J., Yuan, C., 2014. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles. Environ. Sci. Technol. 48, 3047–3055. https://doi.org/10.1021/es4037786
- Majeau-Bettez, G., Hawkins, T.R., Strømman, A.H., 2011. Life Cycle Environmental Assessment of Lithium-Ion and Nickel Metal Hydride Batteries for Plug-In Hybrid and Battery Electric Vehicles. Environ. Sci. Technol. 45, 4548–4554. https://doi.org/10.1021/es103607c
- Richa, K., Babbitt, C.W., Gaustad, G., Wang, X., 2014. A future perspective on lithium-ion battery waste flows from electric vehicles. Resour. Conserv. Recycl. 83, 63–76. https://doi.org/10.1016/J.RESCONREC.2013.11.008
- Romare, M., Dahllöf, L., IVL Swedish Environmental Research Institute, 2017. The life cycle energy consumption and greenhouse gas emissions from lithium-ion batteries: A study with foucus on current technology and batteries for light-duty vehicles [WWW Document]. URL

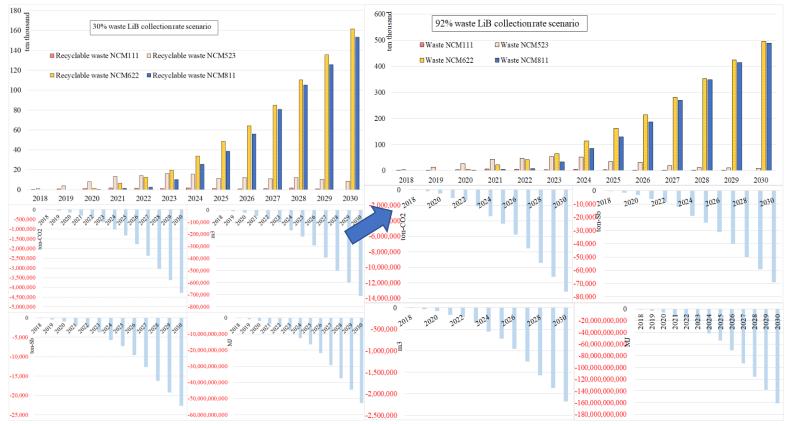
https://www.ivl.se/download/18.5922281715 bdaebede9559/1496046218976/C243 + The + life + cycle + energy + consumption + and + CO2 + emissions + from + lithium + ion + batility + consumption + and + CO2 + emissions + from + lithium + ion + batility + consumption + and + CO2 + emissions + from + lithium + ion + batility + consumption + and + CO2 + emissions + from + lithium + ion + batility + consumption + and + CO2 + emissions + from + lithium + ion + batility + consumption + and + CO2 + emissions + from + lithium + ion + batility + consumption + and + CO2 + emissions + from + lithium + ion + batility + consumption + and + CO2 + emissions + from + lithium + ion + batility + consumption + and + CO2 + emissions + from + lithium + ion + batility + consumption + and + CO2 + emissions + from + lithium + ion + batility + consumption + and + CO2 + emissions + from + lithium + ion + batility + consumption + and + CO2 + emissions + from + lithium + ion + batility + consumption + and + consumption +

teries+.pdf

Zhang, J., Hu, J., Zhang, W., Chen, Y., Wang, C., 2018. Efficient and economical recovery of lithium, cobalt, nickel, manganese from cathode scrap of spent lithium-ion batteries. J. Clean. Prod. 204, 437–446. https://doi.org/10.1016/j.jclepro.2018.09.033

	EV sales number in 2017	EV dealer name	Transportation distance between EV dealer to battery maker (km)
Zhejiang Province	56,545	Hangzhou Jinfeng Rongyue	180
Shandong Province	56,218	Shandong Shangrong Shangqirongwei	738
Beijing	55,532	Beijing Bolehengtong	1,122
Guangdong Province	43,320	Dongguan Weimingrongwei	1,357
Henan Province	31,105	Henan Mingwei Rongwei Gongchangdian	769
Tianjin	28,140	Tianjin Rongxintongrongwei	967
Shanghai	24,857	Shanghai Pujiangjinrongrongwei	257
Jiangsu Province	19,462	Hupeng Rongsheng	452
Fujian Province	18,238	Fuzhou Zhongyangrongwei	830
Hunan Province	16,601	Hunan Yujianrongwei	935

Supplementary material 3: Selected 16 EV dealers in China


Anhui	16,080	Hafai Zhangayahangwairangwai	252		
Province	10,080	Hefei Zhongguohongweirongwei	232		
Jiangxi	15 271	Cuan shui Vantan shan sautannan suusi	590		
Province	15,371	Guanghui Yuntonghonggutanrongwei			
Guangxi					
Zhuang	14,526	Guanghui Rongweihongwei	1,791		
Autonomous	14,520		1,791		
Region					
Hebei	13,541	Handan Dangwainanhuan	902		
Province	15,541	Handan Rongweinanhuan	902		
Hubei	12.097	Weber Dergine	(21		
Province	13,087	Wuhan Rongjue	631		
Chongqing	12,782	Chongqing Junweishangqirongwei	1,482		

Total EV sales in China in 2017 is 486,897 (China Automotive Technology and Research Center and China Association of Automobile Manufacturers., 2018).

China Automotive Technology and Research Center, China Association of Automobile Manufacturers., 2018. China Automotive Industry Yearbook, Yu, K., Dong, Y., Gao, H., Cheng, K. (Eds.), . ISBN: 9787807528548. Automotive Technology Information Research Institute, Tianjin, p. 148.

11 5	1 1 8	5 81				
Resource input	Weight (kg)	Resource output	Weight (kg)			
Electrode material	218	Nickel	20			
1mol/L Sodium hydroxide solution	20	Cobalt	20			
3mol/L Acetic acid solution	294	Lithium	12			
5mol/L Acetone solution	125	Manganese	20			
		Aluminum	17			
		Copper	33			
		Building materials	47			
Sum	657	Industrial waste acid	471			
		Industrial solid	10.5			
		Waste plastic	6.5			
		Sum	657			

Supplementary material 4: Resource input and output during waste LiB cell material recycling process (example on NCM111)

Supplementary material 5: Result of fleet-based sensitive analysis focusing on the collection rate of waste LiBs

The number and type of waste LiBs in China until 2030 was estimated by Wang and Yu (2020) (Wang and Yu, 2020).

Wang, S., Yu, J., 2020. Evaluating the electric vehicle popularization trend in China after 2020 and its challenges in the recycling industry. Waste Manag. Res. J. a Sustain. Circ. Econ. 0734242X2095349. https://doi.org/10.1177/0734242X20953495