
exascaleproject.org

Improving Reproducibility Through Better
Software Practices

Patricia Grubel
Los Alamos National Laboratory

David E. Bernholdt, David Rogers
Oak Ridge National Laboratory

Michael A. Heroux
Sandia National Laboratories

Better Scientific Software Tutorial, SC20, November 2020

See slide 2 for
license details LA-UR-20-27821

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Patricia A. Grubel, Rinku K.

Gupta, Better Scientific Software tutorial, in SC ‘20: International Conference for High Performance Computing,
Networking, Storage and Analysis, online, 2020. DOI: 10.6084/m9.figshare.12994376

• Individual modules may be cited as Speaker, Module Title, in Better Scientific Software tutorial…

Acknowledgements
• Additional contributors include: Mike Heroux, Alicia Klinvex, Mark Miller, Jared O’Neal, Katherine Riley, David Rogers, Deborah Stevens,

James Willenbring
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR),

and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department
of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S.
Department of Energy under Contract No.89233218CNA000001

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.12994376

3

Terminology

A few of the terms used when talking about this topic…
Reproducibility

Replicability
Reliability

Correctness
Accuracy

Transparency
Credibility

They don’t mean exactly the same thing…
…but for the purposes of this presentation, the differences don’t really matter

4

Reproducible vs Replicable: A Special Note

• Historically different communities have
defined these two differently

• With the increased focus, there has also been
an effort to unify the language

• Consensus around the definitions of
Claerbout, et al.
– Others are in the process of switching their

terminology to match, i.e., ACM

• Reproducible: Another team is able to obtain
the same result using the authors’
experimental environment

• Replicable: Another team is able to obtain
consistent results using a different
experimental environment

https://www.nap.edu/catalog/25303
/reproducibility-and-replicability-in-
science

https://cfwebprod.sandia.gov/
cfdocs/CompResearch/docs/
SAND2018-11186.pdf

https://www.nap.edu/catalog/25303/reproducibility-and-replicability-in-science
https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/SAND2018-11186.pdf

5

Why Reproducibility is Important

6

Transparency &
Reproducibility

• NY Times highlights “problems”.
• Only one of many cited

examples.
• Computational science had been

spared this “spotlight”.

http://www.nytimes.com/2015/08/28/science/many-social-science-findings-not-as-strong-as-claimed-study-says.html

http://www.nytimes.com/2015/08/28/science/many-social-science-findings-not-as-strong-as-claimed-study-says.html

7

Computational Science Example

• Behavior of pure water just above homogeneous
nucleation temperature (~ - 40 C/F).

• Debenedetti/Princeton (2009):
– 2 possible phases: High or low density.

• Chandler/Berkeley (2011):
– Only 1 phase: High density.

• No sharing of details across teams until 2016:
– Chandler in Nature: “LAMMPS codes used in refs 5 and 12 are

standard and documented, with scripts freely available upon request.”
– Debenedetti with colleague Palmer: ”Send us your code.”
– Received code after requests and appeal to Nature.

Source: https://physicstoday.scitation.org/do/10.1063/PT.6.1.20180822a/full/

8

Computational Science Example

• Palmer located bug/feature in Berkeley code.
• Used to speed up LAMMPS execution.
• Replaced with more standard approach.
• Obtained result similar to Debenedetti 2009.
• Resolution took 7 years.

For Palmer, the ordeal exemplifies the importance of transparency in scientific
research, an issue that has recently drawn heightened attention in the science
community. “One of the real travesties,” he says, is that “there’s no way you
could have reproduced [the Berkeley team’s] algorithm—the way they had
implemented their code—from reading their paper.” Presumably, he adds, “if
this had been disclosed, this saga might not have gone on for seven years.”

Source: https://physicstoday.scitation.org/do/10.1063/PT.6.1.20180822a/full/

9

A Recent Example: Python Behaves Differently on Different
Platforms
• Scripts for analyzing experimental nuclear magnetic resonance (NMR) data
• Scripts use Python's glob module (listing filenames matching a pattern)
• Module ordered results differently in Linux and Mac Mojave
• Results depended on the

order in which files were
processed

• Casts doubt on results in
150 papers.

• Would a unit test have
caught this?

https://arstechnica.com/information-technology/2019/10/chemists-discover-cross-platform-python-scripts-not-so-cross-platform/

10

Science through computing is,
at best,

as credible as the software that produces it!

11

(Additional) Incentives for Paying Attention to Reproducibility

Common statement: “I would love to do a better job on my software, but I need to:
• Get this paper submitted
• Complete this project task
• Do something my employer values more

Goal: Change incentives to include valuing of better software, better science

12

Supercomputer Cycles are Scarce Resources
• No one wants to spend their precious allocation running

simulations two or three times to be confident of the
results
– Though this ends up happening more than most people admit
– And it could still be wrong!

• But lots of people need to have confidence in your
results
– You
– Your project lead or boss
– Your sponsor
– Your reviewers or referees
– Your readers

• Need to think about how to build credibility without
repeating runs

13

Reproducibility and Transparency Initiatives and Requirements

• Data management plans for research funding
– Example NSF policy on dissemination of results and sharing data

• Fair data principles for maximum use of research data

• Reproducibility and transparency Initiatives by Publications
– Increasing requirements for publications (SC, ACM and more)

See Appendix:
Requirement Initiatives for Data Management and Publication

14

Creating a Virtuous Cycle

Transparency &
Reproducibility
Requirements

Productivity &
Sustainability
Investments

Demand

Enable

Reproducibility is, ultimately, based on good software
development practices and good experimental practices

15

How to Improve Reproducibility

16

Strategies for Improving Reproducibility During Development (1/2)

• Solid versioning practices are fundamental to reproducibility
• Version control of code, documentation, and other artifacts

– Frequent commits (perhaps to a separate development branch)

• Provide versioning information in key output(s)
– Version numbers (i.e., semantic versioning) are useful, but when do you increment them?
– Automatic identifiers (i.e., git commit hash) are less ambiguous, but may not be as meaningful
– Is the code you’re building modified from the version in the repository? (Not often done in

practice)

• Maintaining documentation (and other artifacts) in sync with code
– You’ll forget
– Or you won’t have (make) time to go back to it

17

Strategies for Improving Reproducibility During Development (2/2)
• Build in quality from the start
• Define and follow coding standards

– Not just code style
– Expectations for kinds and extent of documentation, types and rigor of tests

• Develop tests as you code
– Write tests while the code is fresh in your mind
– Test Driven Development (TDD) means write tests before code, then code to pass the tests

• Require increasingly rigorous testing as the code becomes more “public”
– Testing has costs, need to balance level of risk against cost of creating and executing tests
– Also think about frequency of tests at different levels of cost (c.f. continuous integration)

• Practice peer code review
– Per commit – should meet standards, and be understood and judged correct by reviewer
– Pair experienced reviewers with less experienced coders to help ensure quality
– Retrospective if you have a lot of existing unreviewed code

18

Strategies for Improving Reproducibility After Development
• Testing, testing, and more testing!
• Add “regression tests”

– If you fix a bug, add a test to make sure that bug doesn’t creep back in

• Add more tests
– Be creative
– Think about common cases, then corner cases
– Think about misuse (unintentional or intentional)
– Think about synthetic tests with synthetic data
– Think about low-cost tests that can be “always on” (even if they’re not so stringent)
– Can you detect silent data corruption?

• Test your tests!
– Make sure tests fail when they’re supposed to!

• Thoroughly verify the code
– Does the code do what you intended it to do?
– On all relevant platforms (compilers, hardware, etc.)

• Test regularly
– To identify and document where changes to the underlying

platform change code behavior/results

19

Strategies for Improving Reproducibility During Experiments (1/3)
• What are you going to do, why, and how?
• Plan your experiments thoroughly

– If you’re in a team, designate one person to coordinate the experimental campaign
– Know what you need (in the code, as inputs, as outputs to capture/analyze, etc.)
– Know how you’re going to process or analyze the results
– Know what to expect (in results, performance/cost, etc.)
– How will you convince yourself that your results are trustworthy?

• Perform pilot/test runs to build confidence in correctness, performance, scaling
– Often useful to pursue an incremental/layered strategy

• Ensure that you have the resources to store and/or analyze the outputs
– What can you afford to archive?
– What will you need to process and delete?
– What will you need to process during execution or stream?

20

Strategies for Improving Reproducibility During Experiments (2/3)

• Can you reproduce the code used for each and every experiment?
– Three years later?

• Use only well-defined versions of code (i.e., official “releases”, tags, etc.)
– Master or development branches are often moving targets
– Capture the exact version of the code used for each experiment

• Is the code you’re building exactly what’s in the version control repo?
– Don’t change versions during a related series of experiments (unless you have to)
– If you have to change versions, know exactly what changed

• Capture the exact version of the code used for each experiment

• Continue to use regular testing to identify changes due to the underlying platform
– E.g., compiler release introduces a new optimization that changes numerical results

• Use only versions of code that have been thoroughly verified
• Consider capturing version information of key libraries, compilers, and other

dependencies used to build code
– Not often done, in practice

21

Strategies for Improving Reproducibility During Experiments (3/3)

• Be thorough in capturing provenance
– Agents (codes), entities (inputs, outputs, etc.), activities (the transformation)

• Capture code version
• Capture all inputs/configuration information for each experiment
• Use multiple systems to ensure that you can correctly associate inputs, outputs,

and code versions
– Systematic directory and file naming conventions
– Separate written notes (paper notebook, electronic notebook)

• Lab notebooks aren’t just for people who literally work in a laboratory!
– Scripts to orchestrate experiments (versioned and captured)
– Version control (if data is not too large)

• Capture important outputs (as feasible)

22

Strategies for Improving Reproducibility After Experiments

• Continue provenance capture through data analysis/reduction process
– Agents (codes), entities (inputs, outputs, etc.), activities (the transformation)

• Script as much of your analysis/reduction as possible
– Prefer scriptable tools over those requiring human interaction
– Keep them under version control

• Document your process thoroughly
– Separately from scripts, etc.
– E.g., paper or electronic notebook
– Especially where human interaction is required

• Capture key intermediates in the reduction process
– The more you capture, the more you have to verify (and find problems) later

• Capture the data (in machine-readable form) used to produce graphs and tables
– Expected by basic data management plans
– And an increasing number of publishers

23

Tools May Help with Reproducibility

Just a small sampling…
• Containers to capture the software
• Resources for finding, understanding, and debugging floating point math

problems: http://fpanalysistools.org/
• Cloud platforms to publish and reproduce research code and data

– E.g., https://CodeOcean.com

• DOIs and hosting of data, code, documents, etc.
– E.g., https://zenodo.org/, https://FigShare.com

Make sure to test and understand your tools thoroughly before using them
for something important!

http://fpanalysistools.org/
https://codeocean.com/
https://zenodo.org/
https://figshare.com/

24

Summary

• The credibility of your science derives from the credibility of your code (and
process)

• Science stakeholders are ratcheting up expectations for reproducibility
• There are strategies to improve reproducibility in all phases of the scientific

process
– During development
– After development
– During experiments
– After experiments

• They amount to better software development practices
– The same kinds of practices advocated for reasons of productivity, sustainability,

maintainability, etc.

25

Appendix

Requirement Initiatives for Data Management and Publication

26

Setting Expectations for Your Data

Data Management Plans
• Most research sponsors require data

management plans as part of proposals

• Example: NSF policy on Dissemination and
Sharing of Research Results
– Promptly publish with appropriate authorship
– Share data, samples, physical collections, and

supporting materials with others, within a
reasonable time frame

– Share software and inventions
– Investigators can keep their legal rights over

their intellectual property, but they still have to
make their results, data, and collections
available to others

– Policies will be implemented via
• Proposal review
• Award negotiations and conditions
• Support/incentives

FAIR Data Principles
• Address data producers and publishers to

promote maximum use of research data

• Findability
– Data and supplementary materials have sufficiently

rich metadata and a unique and persistent identifier.

• Accessibility
– Metadata and data are understandable to humans

and machines. Data is deposited in a trusted
repository.

• Interoperability
– Metadata use a formal, accessible, shared, and

broadly applicable language for knowledge
representation.

• Reusability
– Data and collections have a clear usage licenses

and provide accurate information on provenance.

https://www.nsf.gov/bfa/dias/policy/dmp.jsp

27

ACM TOMS Reproducible Computational Results (RCR)
• Submission: Optional RCR option
• Standard reviewer assignment: Nothing changes
• RCR reviewer assignment:

– Concurrent with standard reviews
– As early as possible in review process
– Known to and works with authors during the RCR process

• RCR process:
– Multi-faceted approach, Bottom line: Trust the reviewer

• Publication:
– Reproducible Computational Results Designation
– The RCR referee acknowledged
– Review report appears with published manuscript

• Incentives:
– Journal: raises the credibility/quality/rigor of papers it publishes
– Authors: badging indicates additional credibility/quality/rigor of paper
– Reviewer: companion publication

28

SC20 Transparency and Reproducibility Initiative

• Two appendices:
– Artifact description (AD).

• Blue print for setting up your computational experiment.
• Makes it easier to rerun computations in future.
• AD appendix is mandatory for paper submissions (since SC19).
• Largely auto-generated from submission information.

– Artifact Evaluation (AE).
• Targets “boutique” environments.
• Improves trustworthiness when re-running hard, impossible.
• Remains optional

• Details:
– https://sc20.supercomputing.org/submit/transparency-reproducibility-initiative/

https://sc20.supercomputing.org/submit/transparency-reproducibility-initiative/

29

Increasing Attention on Reproducibility
• More publication venues are adding reproducibility recognition or requirements
• ACM Replicated Reproducible Computational Results (RCR)

– ACM TOMS, TOMACS
– http://toms.acm.org/replicated-computational-results.cfm

• ACM Badging
– Functional, reusable, available, replicated, reproduced
– https://www.acm.org/publications/policies/artifact-review-badging

• These conferences have artifact evaluation appendices:
– CGO, PPoPP, PACT, RTSS and SC
– http://fursin.net/reproducibility.html

• NISO Committee on Reproducibility and Badging
– https://www.niso.org/niso-io/2019/01/new-niso-project-badging-scheme-reproducibility-

computational-and-computing
– Publishers: ACM, IEEE, figshare, STM, Reed Elsevier, Springer Nature

http://toms.acm.org/replicated-computational-results.cfm
https://www.acm.org/publications/policies/artifact-review-badging
http://fursin.net/reproducibility.html
https://www.niso.org/niso-io/2019/01/new-niso-project-badging-scheme-reproducibility-computational-and-computing

30

Other resources

• The FAIR Guiding Principles for Scientific Data Management and Stewardship.
Mark D. Wilkinson, et al. https://doi.org/10.1038/sdata.2016.18

• Editorial: ACM TOMS Replicated Computational Results Initiative. Michael A.
Heroux. 2015. ACM Trans. Math. Softw. 41, 3, Article 13 (June 2015), 5 pages.
DOI: http://dx.doi.org/10.1145/2743015

• Enhancing Reproducibility for Computational Methods. Victoria Stodden, Marcia
McNutt, David H. Bailey, Ewa Deelman, Yolanda Gil, Brooks Hanson, Michael A.
Heroux, John P.A. Ioannidis, Michela Taufer Science (09 Dec 2016), pp. 1240-
1241

• Simple experiments in reproducibility and technical trust by Mike Heroux and
students (work in progress), https://betterscientificsoftware.github.io/Trust-Tools/

https://doi.org/10.1038/sdata.2016.18
http://dx.doi.org/10.1145/2743015
https://betterscientificsoftware.github.io/Trust-Tools/

31

Digression – “Physics” (or Math)-Based Testing Strategies

• Use what you know (or can construct) about the model you’re studying to
test its implementation

• Synthetic operators with known properties
– Spectrum (huge diagonals)
– Rank (by construction)

• Invariance principles
– Translational, rotational, etc.
– Physical symmetries
– Mathematical symmetries

• Conservation rules
– Fluxes, energy, mass, etc.

• …

32

Digression – Design by Contract Programming

• Building testing into your routines
– To complement, not replace, other testing

• The interface to a routine can be thought of as a contract between caller and the
callee (the routine)
– What does the routine expect on input? preconditions
– What does the routine guarantee at completion? postconditions
– What does the routine leave unchanged? invariants

• Given valid inputs (preconditions satisfied) a routine should guarantee valid
outputs (postconditions satisfied, invariants maintained)
– If the preconditions are not satisfied, the routine should return an error
– Emphasize low-costs tests that can be always-on
– May need to be able to switch enforcement of expensive tests on/off (but try not to!)

• Making the contract explicit facilitates correct use of routines
– Especially when routine is reused in another context
– Especially by those not intimately familiar with them

	Improving Reproducibility Through Better Software Practices
	License, Citation and Acknowledgements
	Terminology
	Reproducible vs Replicable: A Special Note
	Why Reproducibility is Important
	Transparency & Reproducibility
	Computational Science Example
	Computational Science Example
	A Recent Example: Python Behaves Differently on Different Platforms
	Slide Number 10
	(Additional) Incentives for Paying Attention to Reproducibility
	Supercomputer Cycles are Scarce Resources
	Reproducibility and Transparency Initiatives and Requirements
	Creating a Virtuous Cycle
	How to Improve Reproducibility
	Strategies for Improving Reproducibility During Development (1/2)
	Strategies for Improving Reproducibility During Development (2/2)
	Strategies for Improving Reproducibility After Development
	Strategies for Improving Reproducibility During Experiments (1/3)
	Strategies for Improving Reproducibility During Experiments (2/3)
	Strategies for Improving Reproducibility During Experiments (3/3)
	Strategies for Improving Reproducibility After Experiments
	Tools May Help with Reproducibility
	Summary
	Appendix
	Setting Expectations for Your Data
	 ACM TOMS Reproducible Computational Results (RCR)
	SC20 Transparency and Reproducibility Initiative
	Increasing Attention on Reproducibility
	Other resources
	Digression – “Physics” (or Math)-Based Testing Strategies
	Digression – Design by Contract Programming

