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Definition: Refactoring is a disciplined 
technique for restructuring an existing 
body of code, altering its internal structure 
without changing its external behavior.
• Different from development

– You have a working code 
– You know and understand the behavior
– You have a baseline that you can use for 

comparison

What is Refactoring 
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Definition: Refactoring is a disciplined 
technique for restructuring an existing 
body of code, altering its internal structure 
without changing its external behavior.
• Different from development

– You have a working code 
– You know and understand the behavior
– You have a baseline that you can use for 

comparison

What is Refactoring 

• General motivations
– Modularity enhancement 

• Improve sustainability
– Release to outside users

• Easier to use and understand
– Port to new platforms

• Performance portability
– Expand capabilities

• Structural flexibility
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Refactoring

An example of workflow with testing
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Look at the Running Example
In the repository there 
are two versions
• One is a single file with 

monolithic code
• The other is 

modularized reusable 
maintainable code

• If we had only the first 
version, we would be 
refactoring to get to 
the second
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• Know why you are refactoring
– Is it necessary 
– Where should the code be after refactoring

Considerations for Refactoring

• In heat example version 1
– It is necessary because

• It is a monolithic code
• No reusability of any part of the code
• Devising tests is hard
• Limited extensibility

– Where do we want to be after refactoring
• Closer to the second version
• More modular, maintainable and extensible
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• Know the scope of refactoring
– How deep a change
– How much code will be affected

• In heat example
– No capability extension
– No performance consideration
– Cleaner, more maintainable code

Considerations for Refactoring

To convert the monolithic code
• Separate out utilities, generalize 

interfaces
• Put global definitions in a header file
• Create a general build function
• No new code or intrusive changes
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• Know your cost estimates
• Verification

– Check for coverage provided by 
existing tests

– Develop new tests where there are 
gaps

– Make sure tests exist at different 
granularities
• There should be demanding integration 

and system level tests

Before Starting
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• Know your cost estimates
• Verification

– Check for coverage provided by 
existing tests

– Develop new tests where there are 
gaps

– Make sure tests exist at different 
granularities
• There should be demanding integration 

and system level tests

Before Starting

• Know your bounds
– on acceptable behavior change
– error bounds

• bitwise reproduction of results unlikely 
after transition 

• Map from here to there

Incorporate testing overheads into refactoring cost estimates
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• Can be costly itself if the project is large
• Most projects do a terrible job of estimation

– Insufficient understanding of code complexity
– Insufficient provisioning for verification and obstacles
– Refactoring often overruns in both time and budget

• Factors that can help
– Knowing the scope and sticking to it

• If there is change in scope estimate again
– Plan for all stages of the process with contingency factors built-in
– Make provision for developing tests and other forms of verification

• Can be nearly as much or more work than the code change
• Insufficient verification incurs technical debt

The biggest potential pitfall

Cost estimation
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• Potential for branch divergence
• Policies for code modification

– Estimate the cost of synchronization
– Plan synchronization schedule and account for 

overheads

• Anticipate production disruption 
– From code freeze due to merges
– Account for resources for quick resolution of 

merge issues

This is where buy-in from the stake-holders 
is critical

When development and production co-exist

Cost estimation
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• Potential for branch divergence
• Policies for code modification

– Estimate the cost of synchronization
– Plan synchronization schedule and account for 

overheads

• Anticipate production disruption 
– From code freeze due to merges
– Account for resources for quick resolution of 

merge issues

This is where buy-in from the stake-holders 
is critical

When development and production co-exist

Cost estimation

• In the heat example
– No more than a few hours 

of developer time
– No disruption
– No need for a buy-in
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Exercise: Refactoring the Running Example
• Convert heatAll.C to the cleaner version with reusable code.

– Though a solution is there in the repo, your solution need not be identical
– Think about how you want your final product to be and then go through the exercise of 

refactoring

• Here as an example exercise, I am taking the clean solution and generalizing 
the update_solution interface
– Motivation: Do not want to change heat.C for adding another method
– For this exercise we will use “ftcs” and “upwind15” as alternative options
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• Run ./heat runame=“ftcs_results”
• Run gcov heat.C
• Examine heat.C.gcov

• A dash indicates non-executable line
• A number indicated the times the line 

was called
• ##### indicates line wasn’t exercised

Preparing for Refactoring – check coverage
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Preparing for Refactoring – get baselines
• Call to upwind15 not exercised

• Run ./heat alg=“upwind15” runame=“upwind_results

• We have baselines for ftcs and upwind
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Refactoring – The starting code 

• Interfaces are not identical
• crankn has an extra argument
• It also has an extra step in initialization
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Refactoring 

• Generalize the interface

• Modify the makefile
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Refactoring 

• Generalize the interface

• Modify the makefile
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Refactoring 

• Generalize the interface

• Modify the makefile
• Add null implementations of 

initialize_crank in ftcs and 
upwind15
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Refactoring 
• make heat1
• Run ./heat runame=“ftcs_results”
• Make heat2
• Run ./heat runame=“upwind_results”
• Verify against baseline
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Refactoring for Next Generation Hardware

A Real World Example: FLASH

AMReX - Lawrence Berkeley National Lab
• Designed for exascale
• Node-level heterogeneity
• Smart iterators hide parallelization

Goal: Replace Paramesh with AMReX

Plan: Getting there from here
• On ramping
• Design
• Intermediate steps
• Realizing the goal
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• Cost estimation
– Expected developer time 
– Extent of disruption in production 

schedules

• Get a buy-in from the 
stakeholders
– That includes the users
– For both development time and 

disruption

Considerations
• In FLASH

– Initial estimate at 6-12 months
– Took close to 12 months
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• Derive and understand principal definitions & 
abstractions

• Collect & understand Paramesh/AMReX
constraints
– Generally useful design due to two sets of constraints?

• Collect & understand physics unit requirements on 
Grid unit

• Design fundamental data structures & update 
interface

Sit, think, hypothesize, & argue

Phase 1 - design
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• Implement new data structures
– Evolve design/implementation by iterating between 

Paramesh & AMReX

• Explore Grid/physics unit interface
– simpleUnsplit Hydro unit
– A simplified implementation 

• No need to be physically correct
• Exercise the grid interface identically to the real solver

• Discover use patterns of data structures and 
Grid unit interface

• Adjust requirements & interfaces

Quick, dirty, & light

Phase 2 - prototyping
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• Derive & implement lessons learned
– Clean code & inline documentation

• Update Unsplit Hydro
• Intermediate step - Hybrid FLASH

– AMReX manages data
– Paramesh drives AMR

• Fully-functioning simulation with AMReX
• Prune old code

Toward quantifiable success & Continuous Integration

Phase 3 - implementation
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TO HAVE GOOD OUTCOME FROM REFACTORING
1. KNOW WHY
2. KNOW HOW MUCH
3. KNOW THE COST
4. PLAN
5. HAVE STRONG TESTING AND VERIFICATION
6. GET BUY-IN FROM STAKEHOLDERS


	Refactoring Scientific Software
	License, Citation and Acknowledgements
	What is Refactoring �
	What is Refactoring �
	Refactoring
	Look at the Running Example
	Considerations for Refactoring
	Considerations for Refactoring
	Before Starting
	Before Starting
	Cost estimation
	Cost estimation
	Cost estimation
	Exercise: Refactoring the Running Example
	Preparing for Refactoring – check coverage
	Preparing for Refactoring – get baselines
	Refactoring – The starting code 
	Refactoring 
	Refactoring 
	Refactoring 
	Refactoring 
	A Real World Example: FLASH
	Considerations
	Phase 1 - design
	Phase 2 - prototyping
	Phase 3 - implementation
	Slide Number 30

