
exascaleproject.org

Refactoring Scientific Software

Anshu Dubey
Argonne National Laboratory

Better Scientific Software Tutorial, SC20, November 2020

See slide 2 for 
license details



2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Patricia A. Grubel, Rinku K. 

Gupta, Better Scientific Software tutorial, in SC ‘20: International Conference for High Performance Computing, 
Networking, Storage and Analysis, online, 2020. DOI: 10.6084/m9.figshare.12994376

• Individual modules may be cited as Speaker, Module Title, in Better Scientific Software tutorial…

Acknowledgements
• Additional contributors include: Mike Heroux, Alicia Klinvex, Mark Miller, Jared O’Neal, Katherine Riley, David Rogers, Deborah Stevens, 

James Willenbring
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR), 

and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the 
National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department 
of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of 
Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National 
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S. 
Department of Energy under Contract No.89233218CNA000001

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and 
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for 
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.12994376


3

Definition: Refactoring is a disciplined 
technique for restructuring an existing 
body of code, altering its internal structure 
without changing its external behavior.
• Different from development

– You have a working code 
– You know and understand the behavior
– You have a baseline that you can use for 

comparison

What is Refactoring 



4

Definition: Refactoring is a disciplined 
technique for restructuring an existing 
body of code, altering its internal structure 
without changing its external behavior.
• Different from development

– You have a working code 
– You know and understand the behavior
– You have a baseline that you can use for 

comparison

What is Refactoring 

• General motivations
– Modularity enhancement 

• Improve sustainability
– Release to outside users

• Easier to use and understand
– Port to new platforms

• Performance portability
– Expand capabilities

• Structural flexibility



5

Refactoring

An example of workflow with testing



6

Look at the Running Example
In the repository there 
are two versions
• One is a single file with 

monolithic code
• The other is 

modularized reusable 
maintainable code

• If we had only the first 
version, we would be 
refactoring to get to 
the second



7

• Know why you are refactoring
– Is it necessary 
– Where should the code be after refactoring

Considerations for Refactoring

• In heat example version 1
– It is necessary because

• It is a monolithic code
• No reusability of any part of the code
• Devising tests is hard
• Limited extensibility

– Where do we want to be after refactoring
• Closer to the second version
• More modular, maintainable and extensible



8

• Know the scope of refactoring
– How deep a change
– How much code will be affected

• In heat example
– No capability extension
– No performance consideration
– Cleaner, more maintainable code

Considerations for Refactoring

To convert the monolithic code
• Separate out utilities, generalize 

interfaces
• Put global definitions in a header file
• Create a general build function
• No new code or intrusive changes



9

• Know your cost estimates
• Verification

– Check for coverage provided by 
existing tests

– Develop new tests where there are 
gaps

– Make sure tests exist at different 
granularities
• There should be demanding integration 

and system level tests

Before Starting



10

• Know your cost estimates
• Verification

– Check for coverage provided by 
existing tests

– Develop new tests where there are 
gaps

– Make sure tests exist at different 
granularities
• There should be demanding integration 

and system level tests

Before Starting

• Know your bounds
– on acceptable behavior change
– error bounds

• bitwise reproduction of results unlikely 
after transition 

• Map from here to there

Incorporate testing overheads into refactoring cost estimates



11

• Can be costly itself if the project is large
• Most projects do a terrible job of estimation

– Insufficient understanding of code complexity
– Insufficient provisioning for verification and obstacles
– Refactoring often overruns in both time and budget

• Factors that can help
– Knowing the scope and sticking to it

• If there is change in scope estimate again
– Plan for all stages of the process with contingency factors built-in
– Make provision for developing tests and other forms of verification

• Can be nearly as much or more work than the code change
• Insufficient verification incurs technical debt

The biggest potential pitfall

Cost estimation



12

• Potential for branch divergence
• Policies for code modification

– Estimate the cost of synchronization
– Plan synchronization schedule and account for 

overheads

• Anticipate production disruption 
– From code freeze due to merges
– Account for resources for quick resolution of 

merge issues

This is where buy-in from the stake-holders 
is critical

When development and production co-exist

Cost estimation



13

• Potential for branch divergence
• Policies for code modification

– Estimate the cost of synchronization
– Plan synchronization schedule and account for 

overheads

• Anticipate production disruption 
– From code freeze due to merges
– Account for resources for quick resolution of 

merge issues

This is where buy-in from the stake-holders 
is critical

When development and production co-exist

Cost estimation

• In the heat example
– No more than a few hours 

of developer time
– No disruption
– No need for a buy-in



14

Exercise: Refactoring the Running Example
• Convert heatAll.C to the cleaner version with reusable code.

– Though a solution is there in the repo, your solution need not be identical
– Think about how you want your final product to be and then go through the exercise of 

refactoring

• Here as an example exercise, I am taking the clean solution and generalizing 
the update_solution interface
– Motivation: Do not want to change heat.C for adding another method
– For this exercise we will use “ftcs” and “upwind15” as alternative options



16

• Run ./heat runame=“ftcs_results”
• Run gcov heat.C
• Examine heat.C.gcov

• A dash indicates non-executable line
• A number indicated the times the line 

was called
• ##### indicates line wasn’t exercised

Preparing for Refactoring – check coverage



17

Preparing for Refactoring – get baselines
• Call to upwind15 not exercised

• Run ./heat alg=“upwind15” runame=“upwind_results

• We have baselines for ftcs and upwind



18

Refactoring – The starting code 

• Interfaces are not identical
• crankn has an extra argument
• It also has an extra step in initialization



19

Refactoring 

• Generalize the interface

• Modify the makefile



20

Refactoring 

• Generalize the interface

• Modify the makefile



21

Refactoring 

• Generalize the interface

• Modify the makefile
• Add null implementations of 

initialize_crank in ftcs and 
upwind15



22

Refactoring 
• make heat1
• Run ./heat runame=“ftcs_results”
• Make heat2
• Run ./heat runame=“upwind_results”
• Verify against baseline



23

Refactoring for Next Generation Hardware

A Real World Example: FLASH

AMReX - Lawrence Berkeley National Lab
• Designed for exascale
• Node-level heterogeneity
• Smart iterators hide parallelization

Goal: Replace Paramesh with AMReX

Plan: Getting there from here
• On ramping
• Design
• Intermediate steps
• Realizing the goal



24

• Cost estimation
– Expected developer time 
– Extent of disruption in production 

schedules

• Get a buy-in from the 
stakeholders
– That includes the users
– For both development time and 

disruption

Considerations
• In FLASH

– Initial estimate at 6-12 months
– Took close to 12 months



27

• Derive and understand principal definitions & 
abstractions

• Collect & understand Paramesh/AMReX
constraints
– Generally useful design due to two sets of constraints?

• Collect & understand physics unit requirements on 
Grid unit

• Design fundamental data structures & update 
interface

Sit, think, hypothesize, & argue

Phase 1 - design



28

• Implement new data structures
– Evolve design/implementation by iterating between 

Paramesh & AMReX

• Explore Grid/physics unit interface
– simpleUnsplit Hydro unit
– A simplified implementation 

• No need to be physically correct
• Exercise the grid interface identically to the real solver

• Discover use patterns of data structures and 
Grid unit interface

• Adjust requirements & interfaces

Quick, dirty, & light

Phase 2 - prototyping



29

• Derive & implement lessons learned
– Clean code & inline documentation

• Update Unsplit Hydro
• Intermediate step - Hybrid FLASH

– AMReX manages data
– Paramesh drives AMR

• Fully-functioning simulation with AMReX
• Prune old code

Toward quantifiable success & Continuous Integration

Phase 3 - implementation



30

TO HAVE GOOD OUTCOME FROM REFACTORING
1. KNOW WHY
2. KNOW HOW MUCH
3. KNOW THE COST
4. PLAN
5. HAVE STRONG TESTING AND VERIFICATION
6. GET BUY-IN FROM STAKEHOLDERS


	Refactoring Scientific Software
	License, Citation and Acknowledgements
	What is Refactoring �
	What is Refactoring �
	Refactoring
	Look at the Running Example
	Considerations for Refactoring
	Considerations for Refactoring
	Before Starting
	Before Starting
	Cost estimation
	Cost estimation
	Cost estimation
	Exercise: Refactoring the Running Example
	Preparing for Refactoring – check coverage
	Preparing for Refactoring – get baselines
	Refactoring – The starting code 
	Refactoring 
	Refactoring 
	Refactoring 
	Refactoring 
	A Real World Example: FLASH
	Considerations
	Phase 1 - design
	Phase 2 - prototyping
	Phase 3 - implementation
	Slide Number 30

