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Content

• Brief explanation of Version Control with Git
• Git Workflow Mechanisms for Collaboration

– Branches
– Pull Requests
– Forks

• Exposure to workflows of different complexity
• What to think about when evaluating different workflows
• Extra:  Heat Equation Example Workflow



4

Goal

Development teams would like to use version control to 
collaborate productively and ensure correct code.
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First Workflow

This process of collaborating via Git is called the Centralized Workflow
• See Atlassian/BitBucket for more information
• “Simple” to learn and “easy” to use
• Leverages local vs. remote repo dimension

– Integration in local repo when local repos interact with remote repo

• What if you have many team members?
• What if developers only push once a month?

– Lengthy development efforts without integrating
– Occasional contributors

• What if team members works on different parts of the code?
• Working directly on master

Local repo
Alice

Local repo
Bob

Remote repo

https://www.atlassian.com/git/tutorials/comparing-workflows
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Git Workflow Mechanisms for Collaboration

• Branches
– Enable separate development for features or fixes on the same repo
– Enables different types of Workflows

• Pull Requests
– Enables code review and testing before merge

• Forks
– Enables outside contributors that have read access only
– Controls on original repo remains with the team
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Branches
Branches are independent lines of development
• Use branches to protect master branch
• Feature branches

– Organize a new feature as a sequence of related 
commits in a branch

• Branches are usually combined or merged
• Develop on a branch, test on the branch, and 

merge into master
• Integration occurs at merge commits
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Control Project Branch Complexity

• Workflow policy is needed
– Project supported branches and workflows should not be unnecessarily complex
– Individuals and sub-teams can leverage more complex models when advantageous
– Descriptive names or linked to issue tracking system
– Where do branches start and end?
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Feature Branches

Extend Centralized Workflow

• Remote repo has commits A & B

• Bob pulls remote to synchronize local repo to remote

• Bob creates local feature branch based on commit B

• Commit C pushed to remote repo

• Alice pulls remote to synchronize local repo to remote

• Alice creates local feature branch based on commit C

• Both develop independently on local feature branches
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Feature Branch Divergence

Alice integrates first without issue
• Alice does fast-forward merge to local master
• Alice deletes local feature branch
• Alice pushes master to remote
• Meanwhile, Bob pulls master from remote and 

finds Alice’s changes
• Merge conflict between commits D and E
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Feature Race Condition

Integration occurs on Bob’s local repo

• Bob laments not having fast-forward merge

• Bob rebases local feature branch to latest commit on master
– E based off of commit B
– E’ based off of Alice’s commit I
– E’ is E integrated with commits C, D, F, G, I

• Merge conflict resolved by Bob & Alice on Bob’s local branch 
when converting commit E into E’

• Can test on feature branch and merge easily and cleanly

• See Atlassian/BitBucket for a richer Feature Branch 
Workflow

https://www.atlassian.com/git/tutorials/comparing-workflows
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More Branches
Branches with infinite lifetime
• Base off of master branch
• Exist in all copies of a repository
• Each provides a distinct environment

– Development vs. pre-production
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Pull Requests

• Review and testing before merge
– Alerts others about changes in branch before merge
– Discussions ensue with possible follow up commits
– Can request reviewer

• Set policies for merge
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GitHub Forks

• A “fork” of a repository is a complete copy of another repository, inside a different 
GitHub account.
– Forking requires read access to the main (often referred to as “upstream”) repository

• Forks of public repositories are public
• Other users can be granted write access to your fork
• You cannot fork a fork

– Does not copy issues or pull requests
– Use branches within your fork (do not modify master)
– A pull request (GitLab uses “merge request”) can be used to suggest changes to the upstream 

repository
• Added benefit: pull requests from forks prevent huge numbers of branches on the upstream 

repository
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Git Workflow Models of Different complexity

• Git Flow
• Github Flow
• Gitlab Flow
• Trilionos Workflow
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Git Flow
• Full-featured workflow
• Increased complexity
• Designed for SW with official releases
• Feature branches based off of develop
• Git extensions to enforce policy
• How are develop and master 

synchronized?
• Where do merge conflicts occur and how 

are they resolved?
Author: Vincent Driessen
Original Blog: https://nvie.com/posts/a-successful-git-branching-model/
License: Creative Commons 

https://github.com/nvie/gitflow
https://nvie.com/posts/a-successful-git-branching-model/
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GitHub Flow

http://scottchacon.com/2011/08/31/github-flow.html
– Published as viable alternative to Git Flow
– No structured release schedule
– Continuous deployment & continuous integration allows for simpler workflow

Main Ideas
1. All commits in master are deployable
2. Base feature branches off of master

3. Push local repository to remote constantly

4. Open Pull Requests early to start dialogue

5. Merge into master after Pull Request review 

http://scottchacon.com/2011/08/31/github-flow.html
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GitLab Flow

https://docs.gitlab.com/ee/workflow/gitlab_flow.html
– Published as viable alternative to Git Flow & GitHub Flow
– Semi-structured release schedule
– Workflow that simplifies difficulties and common failures in synchronizing infinite 

lifetime branches

Main Ideas
• Master branch is staging area

• Mature code in master flows downstream into pre-production & production infinite 
lifetime branches

• Allow for release branches with downstream flow
– Fixes made upstream & merged into master.
– Fixes cherry picked into release branch

https://docs.gitlab.com/ee/workflow/gitlab_flow.html


19

Current Trilinos Workflow

Test-driven workflow

• Feature branches start and end with develop

• All changes to develop must come from GitHub 
pull requests

• Feature branches are merged into develop only 
after passing pull request test suite

• Change sets from develop are tested daily for 
integration into master

Workflow designed so that

• All commits in master are in 
develop

• Merge conflicts exposed when 
integrating into develop

• Merge conflicts never occur 
when promoting to master

develop

master

Issue 1 Issue 2

develop -> master testing

Pull request testing
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Considerations for Choosing a Git Workflow

Want to establish a clear set of polices that

• results in correct code on a particular branch (usually master),

• ensures that a team can develop in parallel and communicate well,

• minimizes difficulties associated with parallel and distributed work, and

• minimizes overhead associated with learning, following, and enforcing policies.

Adopt what is good for your team

• Consider team culture and project challenges

• Assess what is and isn’t feasible/acceptable

• Start with simplest and add complexity where and when necessary
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Extra: Demo for Heat Equation Example Workflow

• Fork repository (once)
• Clone the fork (once)
• Create and checkout branch

– Base branch on current development or other appropriate version for each feature

• Modify and commit code
• Push change to fork
• Issue pull request to upstream repository
• Review pull request
• CI testing (covered in upcoming module)
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Git Workflow for the Heat Equation Example

• Developers
– Work on feature branches in their forks

• Using forks requires contributors to have only read-access to primary repository
– Issue pull requests for changes

• Natural opportunity to review and test all changes

• Pull requests
– Are reviewed by at least one developer (not the author)
– Undergo CI testing prior to merging
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Fork the Repository
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Find the Path to Clone
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Clone the fork; Create and Checkout a New Branch
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Modify and Commit Code
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Push Change to Fork
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Issue Pull Request to Upstream Repository
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Issue Pull Request to Upstream Repository
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Review Pull Request
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CI Testing for PR

This will be covered in the CI module
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