
exascaleproject.org

Git Workflows

Patricia Grubel
Los Alamos National Laboratory

James M. Willenbring
Sandia National Laboratories

Jared O’Neal
Argonne National Laboratory

Better Scientific Software Tutorial, SC20, November 2020

See slide 2 for
license details LA-UR-20-27704

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Patricia A. Grubel, Rinku K.

Gupta, Better Scientific Software tutorial, in SC ‘20: International Conference for High Performance Computing,
Networking, Storage and Analysis, online, 2020. DOI: 10.6084/m9.figshare.12994376

• Individual modules may be cited as Speaker, Module Title, in Better Scientific Software tutorial…

Acknowledgements
• Additional contributors include: Mike Heroux, Alicia Klinvex, Mark Miller, Jared O’Neal, Katherine Riley, David Rogers, Deborah Stevens,

James Willenbring
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR),

and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department
of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S.
Department of Energy under Contract No.89233218CNA000001

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.12994376

3

Content

• Brief explanation of Version Control with Git
• Git Workflow Mechanisms for Collaboration

– Branches
– Pull Requests
– Forks

• Exposure to workflows of different complexity
• What to think about when evaluating different workflows
• Extra: Heat Equation Example Workflow

4

Goal

Development teams would like to use version control to
collaborate productively and ensure correct code.

5

First Workflow

This process of collaborating via Git is called the Centralized Workflow
• See Atlassian/BitBucket for more information
• “Simple” to learn and “easy” to use
• Leverages local vs. remote repo dimension

– Integration in local repo when local repos interact with remote repo

• What if you have many team members?
• What if developers only push once a month?

– Lengthy development efforts without integrating
– Occasional contributors

• What if team members works on different parts of the code?
• Working directly on master

Local repo
Alice

Local repo
Bob

Remote repo

https://www.atlassian.com/git/tutorials/comparing-workflows

6

Git Workflow Mechanisms for Collaboration

• Branches
– Enable separate development for features or fixes on the same repo
– Enables different types of Workflows

• Pull Requests
– Enables code review and testing before merge

• Forks
– Enables outside contributors that have read access only
– Controls on original repo remains with the team

7

Branches
Branches are independent lines of development
• Use branches to protect master branch
• Feature branches

– Organize a new feature as a sequence of related
commits in a branch

• Branches are usually combined or merged
• Develop on a branch, test on the branch, and

merge into master
• Integration occurs at merge commits

8

Control Project Branch Complexity

• Workflow policy is needed
– Project supported branches and workflows should not be unnecessarily complex
– Individuals and sub-teams can leverage more complex models when advantageous
– Descriptive names or linked to issue tracking system
– Where do branches start and end?

9

Feature Branches

Extend Centralized Workflow

• Remote repo has commits A & B

• Bob pulls remote to synchronize local repo to remote

• Bob creates local feature branch based on commit B

• Commit C pushed to remote repo

• Alice pulls remote to synchronize local repo to remote

• Alice creates local feature branch based on commit C

• Both develop independently on local feature branches

10

Feature Branch Divergence

Alice integrates first without issue
• Alice does fast-forward merge to local master
• Alice deletes local feature branch
• Alice pushes master to remote
• Meanwhile, Bob pulls master from remote and

finds Alice’s changes
• Merge conflict between commits D and E

11

Feature Race Condition

Integration occurs on Bob’s local repo

• Bob laments not having fast-forward merge

• Bob rebases local feature branch to latest commit on master
– E based off of commit B
– E’ based off of Alice’s commit I
– E’ is E integrated with commits C, D, F, G, I

• Merge conflict resolved by Bob & Alice on Bob’s local branch
when converting commit E into E’

• Can test on feature branch and merge easily and cleanly

• See Atlassian/BitBucket for a richer Feature Branch
Workflow

https://www.atlassian.com/git/tutorials/comparing-workflows

12

More Branches
Branches with infinite lifetime
• Base off of master branch
• Exist in all copies of a repository
• Each provides a distinct environment

– Development vs. pre-production

13

Pull Requests

• Review and testing before merge
– Alerts others about changes in branch before merge
– Discussions ensue with possible follow up commits
– Can request reviewer

• Set policies for merge

14

GitHub Forks

• A “fork” of a repository is a complete copy of another repository, inside a different
GitHub account.
– Forking requires read access to the main (often referred to as “upstream”) repository

• Forks of public repositories are public
• Other users can be granted write access to your fork
• You cannot fork a fork

– Does not copy issues or pull requests
– Use branches within your fork (do not modify master)
– A pull request (GitLab uses “merge request”) can be used to suggest changes to the upstream

repository
• Added benefit: pull requests from forks prevent huge numbers of branches on the upstream

repository

15

Git Workflow Models of Different complexity

• Git Flow
• Github Flow
• Gitlab Flow
• Trilionos Workflow

16

Git Flow
• Full-featured workflow
• Increased complexity
• Designed for SW with official releases
• Feature branches based off of develop
• Git extensions to enforce policy
• How are develop and master

synchronized?
• Where do merge conflicts occur and how

are they resolved?
Author: Vincent Driessen
Original Blog: https://nvie.com/posts/a-successful-git-branching-model/
License: Creative Commons

https://github.com/nvie/gitflow
https://nvie.com/posts/a-successful-git-branching-model/

17

GitHub Flow

http://scottchacon.com/2011/08/31/github-flow.html
– Published as viable alternative to Git Flow
– No structured release schedule
– Continuous deployment & continuous integration allows for simpler workflow

Main Ideas
1. All commits in master are deployable
2. Base feature branches off of master

3. Push local repository to remote constantly

4. Open Pull Requests early to start dialogue

5. Merge into master after Pull Request review

http://scottchacon.com/2011/08/31/github-flow.html

18

GitLab Flow

https://docs.gitlab.com/ee/workflow/gitlab_flow.html
– Published as viable alternative to Git Flow & GitHub Flow
– Semi-structured release schedule
– Workflow that simplifies difficulties and common failures in synchronizing infinite

lifetime branches

Main Ideas
• Master branch is staging area

• Mature code in master flows downstream into pre-production & production infinite
lifetime branches

• Allow for release branches with downstream flow
– Fixes made upstream & merged into master.
– Fixes cherry picked into release branch

https://docs.gitlab.com/ee/workflow/gitlab_flow.html

19

Current Trilinos Workflow

Test-driven workflow

• Feature branches start and end with develop

• All changes to develop must come from GitHub
pull requests

• Feature branches are merged into develop only
after passing pull request test suite

• Change sets from develop are tested daily for
integration into master

Workflow designed so that

• All commits in master are in
develop

• Merge conflicts exposed when
integrating into develop

• Merge conflicts never occur
when promoting to master

develop

master

Issue 1 Issue 2

develop -> master testing

Pull request testing

20

Considerations for Choosing a Git Workflow

Want to establish a clear set of polices that

• results in correct code on a particular branch (usually master),

• ensures that a team can develop in parallel and communicate well,

• minimizes difficulties associated with parallel and distributed work, and

• minimizes overhead associated with learning, following, and enforcing policies.

Adopt what is good for your team

• Consider team culture and project challenges

• Assess what is and isn’t feasible/acceptable

• Start with simplest and add complexity where and when necessary

21

Extra: Demo for Heat Equation Example Workflow

• Fork repository (once)
• Clone the fork (once)
• Create and checkout branch

– Base branch on current development or other appropriate version for each feature

• Modify and commit code
• Push change to fork
• Issue pull request to upstream repository
• Review pull request
• CI testing (covered in upcoming module)

22

Git Workflow for the Heat Equation Example

• Developers
– Work on feature branches in their forks

• Using forks requires contributors to have only read-access to primary repository
– Issue pull requests for changes

• Natural opportunity to review and test all changes

• Pull requests
– Are reviewed by at least one developer (not the author)
– Undergo CI testing prior to merging

23

Fork the Repository

24

Find the Path to Clone

25

Clone the fork; Create and Checkout a New Branch

26

Modify and Commit Code

27

Push Change to Fork

28

Issue Pull Request to Upstream Repository

29

Issue Pull Request to Upstream Repository

30

Review Pull Request

31

CI Testing for PR

This will be covered in the CI module

	Git Workflows
	License, Citation and Acknowledgements
	Content
	Goal
	First Workflow
	Git Workflow Mechanisms for Collaboration
	Branches
	Control Project Branch Complexity
	Feature Branches
	Feature Branch Divergence
	Feature Race Condition
	More Branches
	Pull Requests
	GitHub Forks
	Git Workflow Models of Different complexity�
	Git Flow
	GitHub Flow
	GitLab Flow
	Current Trilinos Workflow
	Considerations for Choosing a Git Workflow
	Extra: Demo for Heat Equation Example Workflow
	Git Workflow for the Heat Equation Example
	Fork the Repository
	Find the Path to Clone
	Clone the fork; Create and Checkout a New Branch
	Modify and Commit Code
	Push Change to Fork
	Issue Pull Request to Upstream Repository
	Issue Pull Request to Upstream Repository
	Review Pull Request
	CI Testing for PR

