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Science through computing is, 
at best, 

as credible as the software that produces it!
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The Success of Computational Science Creates 
the Challenges of Computational Science
• Positive feedback loop

– More complex codes, simulations 
and analysis

– More moving parts that need to interoperate
– Variety of expertise needed – the only tractable 

development model is through separation of concerns
– It is more difficult to work on the same software in different roles without a software 

engineering process

• Onset of higher platform heterogeneity
– Requirements are unfolding, not known a priori 
– The only safeguard is investing in flexible design and robust software engineering 

process

Better Scientific 
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More Hardware 
Resources

Supercomputers change fast
Especially now!
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Scientific Facilities Provide Valuable 
Resources

• Major supercomputers often cost O($100M)
• All cost millions more to operate, annually
• Significant allocations on large supercomputers can 

be worth millions
• Even if you don’t pay the $ you have to spend the 

time and effort to get the allocation
• Sponsors’ concern: Are you being a good steward 

of the resources?
• Your concern: Are you getting the most science 

possible out of your work (aka scientific 
productivity)?
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High-Consequence Software-Related Scientific Failures

Therac-25 (1985-1987)
• Computer-controlled radiation therapy system

• Poor software design, development and 
testing practices allowed flaws that let to at 
least six cases of substantial radiation 
overdoses, three fatal

Mars Climate Orbiter (1999)
• Incorrect trajectory adjustment caused loss of 

the orbiter as it was supposed to enter 
Martian orbit

• Discrepancy in the units used in two different 
software components

• One component didn’t follow specifications
• Inadequate testing at the interface

• Concerns raised earlier in the mission were 
ignored because they weren’t properly 
documented 

Just two of many examples



More Subtle Impacts on Scientific 
Productivity
• In 2005, the FLASH astrophysics team was 

offered a unique opportunity to access one 
of the biggest machines in the world at that 
time (BG/L) for a dedicated run

• Short notice to prepare
– < 1month to get ready for 1.5 week run

• Quick and dirty development of particle capability in code
• Error in tracking particles resulted in duplicated tags from round-off
• Had to develop post-processing tools to correctly identify trajectories

– 6 months to process results

FLASH had a software process in place. It was tested regularly. This was one 
instance when the full process could not be applied because of time constraints. 
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Technical Debt

Like monetary debt, the more you accumulate, the harder it is to pay off
• Increases cost of maintenance
• Parts of software may become unusable over time
• Inadequately verified software produces questionable results
• Increases ramp-up time for new developers
• Overall, reduces software and science productivity

The cost implied cost of additional rework caused by 
choosing an easy (limited) solution now instead of 

using a better approach that would take longer.
-- Wikipedia 
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Challenges Developing Scientific Applications Today

Technical
• All parts of the model and software 

system can be under research
• Requirements change throughout the 

lifecycle as knowledge grows
• Verification complicated by floating 

point representation
• Real world is messy, so is the 

software
• Increasing architectural diversity

Sociological
• Competing priorities and incentives

– Sponsors often care more about 
scientific publications than software 
per se

• Limited resources 
• Need for interdisciplinary interactions

– Many different kinds of expertise to be 
successful
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Good scientific process 
requires 

good software practices

Good software practices 
increase

scientific productivity

Software sustainability
increases

scientific productivity

Good software practices 
increase

software sustainability
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Best Practices for Scientific Software Development

Baseline
• Invest in extensible code design
• Use version control and automated 

testing
• Institute a rigorous verification and 

validation regime
• Define and enforce coding and testing 

standards
• Clear and well-defined policies for 

– Auditing and maintenance
– Distribution and contribution
– Documentation

Desirable
• Provenance and reproducibility
• Lifecycle management
• Open development and frequent 

releases

This tutorial will focus primarily on 
scientific software as distinct from 
more generic software engineering 
best practices
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Continual, Incremental Software Process Improvement

Target: your project should include “just enough” 
software engineering so that you can meet your 
short-term and longer-term scientific goals effectively

1. Identify your team’s “pain points” in your 
software development processes

2. Set a goal for something to improve
– Target processes and behaviors, not just tasks
– Pick something that you can address in a few 

months that will give you a noticeable benefit

3. Agree on a plan to address it, identify 
markers of progress and what is “done”

– Write them down

4. Work your plan, track your progress

5. When you are done, celebrate…

…then pick a new pain point to address

C
os

t

ProgressStart Finish

Old Process
New Process

The new process costs something to 
implement, but it pays off over time

Productivity and Sustainability Improvement Planning
https://bssw.io/psip

https://bssw.io/psip


Agenda
Time (Eastern US) Module Topic Speaker Time (UTC)

2:30pm-2:35pm 00 Introduction David E. Bernholdt, ORNL 19:30-19:35

2:35pm-2:45pm 01 Motivation and Overview of Best Practices in 
HPC Software Development

David E. Bernholdt, ORNL 19:35-19:45

2:45pm-3:15pm 02 Agile Methodologies Rinku Gupta, ANL 19:45-20:15

3:15pm-3:30pm 03 Git Workflows Patricia Grubel, LANL 20:15-20:30

3:30pm-4:00pm 04 Software Design Anshu Dubey, ANL 20:30-21:00

4:00pm-4:15pm 05 Software Testing 1 Rinku Gupta, ANL 21:00-21:15

4:15pm-4:35pm Break (live Q&A and demo of Kanban hands-on 
activities)

David E. Bernholdt and All 21:15-21:35

4:35pm-4:50pm 06 Software Testing 2 Anshu Dubey, ANL 21:35-21:50

4:50pm-5:35pm 07 Refactoring Anshu Dubey, ANL 21:50-22:35

5:35pm-5:50pm 08 Continuous Integration David E. Bernholdt, ORNL 22:35-22:50

5:50pm-6:05pm 09 Reproducibility Patricia Grubel, LANL 22:50-23:05

6:05pm-6:10pm 10 Summary David E. Bernholdt, ORNL 23:05-23:10

6:10pm-6:30pm Live Q&A and demo of CI hands-on activities David E. Bernholdt and All 23:10-23:30

Please evaluate us: https://submissions.supercomputing.org/?page=Submit&id=TutorialEvaluation&site=sc20
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