
exascaleproject.org

Motivation and Overview of Best
Practices in HPC Software Development

David E. Bernholdt
Oak Ridge National Laboratory

Anshu Dubey, Katherine M. Riley
Argonne National Laboratory

Better Scientific Software Tutorial, SC20, November 2020

See slide 2 for
license details

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Patricia A. Grubel, Rinku K.

Gupta, Better Scientific Software tutorial, in SC ‘20: International Conference for High Performance Computing,
Networking, Storage and Analysis, online, 2020. DOI: 10.6084/m9.figshare.12994376

• Individual modules may be cited as Speaker, Module Title, in Better Scientific Software tutorial…

Acknowledgements
• Additional contributors include: Mike Heroux, Alicia Klinvex, Mark Miller, Jared O’Neal, Katherine Riley, David Rogers, Deborah Stevens,

James Willenbring
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR),

and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department
of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S.
Department of Energy under Contract No.89233218CNA000001

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.12994376

3

Science through computing is,
at best,

as credible as the software that produces it!

4

The Success of Computational Science Creates
the Challenges of Computational Science
• Positive feedback loop

– More complex codes, simulations
and analysis

– More moving parts that need to interoperate
– Variety of expertise needed – the only tractable

development model is through separation of concerns
– It is more difficult to work on the same software in different roles without a software

engineering process

• Onset of higher platform heterogeneity
– Requirements are unfolding, not known a priori
– The only safeguard is investing in flexible design and robust software engineering

process

Better Scientific
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More Hardware
Resources

Supercomputers change fast
Especially now!

5

Scientific Facilities Provide Valuable
Resources

• Major supercomputers often cost O($100M)
• All cost millions more to operate, annually
• Significant allocations on large supercomputers can

be worth millions
• Even if you don’t pay the $ you have to spend the

time and effort to get the allocation
• Sponsors’ concern: Are you being a good steward

of the resources?
• Your concern: Are you getting the most science

possible out of your work (aka scientific
productivity)?

6

High-Consequence Software-Related Scientific Failures

Therac-25 (1985-1987)
• Computer-controlled radiation therapy system

• Poor software design, development and
testing practices allowed flaws that let to at
least six cases of substantial radiation
overdoses, three fatal

Mars Climate Orbiter (1999)
• Incorrect trajectory adjustment caused loss of

the orbiter as it was supposed to enter
Martian orbit

• Discrepancy in the units used in two different
software components

• One component didn’t follow specifications
• Inadequate testing at the interface

• Concerns raised earlier in the mission were
ignored because they weren’t properly
documented

Just two of many examples

More Subtle Impacts on Scientific
Productivity
• In 2005, the FLASH astrophysics team was

offered a unique opportunity to access one
of the biggest machines in the world at that
time (BG/L) for a dedicated run

• Short notice to prepare
– < 1month to get ready for 1.5 week run

• Quick and dirty development of particle capability in code
• Error in tracking particles resulted in duplicated tags from round-off
• Had to develop post-processing tools to correctly identify trajectories

– 6 months to process results

FLASH had a software process in place. It was tested regularly. This was one
instance when the full process could not be applied because of time constraints.

8

Technical Debt

Like monetary debt, the more you accumulate, the harder it is to pay off
• Increases cost of maintenance
• Parts of software may become unusable over time
• Inadequately verified software produces questionable results
• Increases ramp-up time for new developers
• Overall, reduces software and science productivity

The cost implied cost of additional rework caused by
choosing an easy (limited) solution now instead of

using a better approach that would take longer.
-- Wikipedia

9

Challenges Developing Scientific Applications Today

Technical
• All parts of the model and software

system can be under research
• Requirements change throughout the

lifecycle as knowledge grows
• Verification complicated by floating

point representation
• Real world is messy, so is the

software
• Increasing architectural diversity

Sociological
• Competing priorities and incentives

– Sponsors often care more about
scientific publications than software
per se

• Limited resources
• Need for interdisciplinary interactions

– Many different kinds of expertise to be
successful

10

Good scientific process
requires

good software practices

Good software practices
increase

scientific productivity

Software sustainability
increases

scientific productivity

Good software practices
increase

software sustainability

11

Best Practices for Scientific Software Development

Baseline
• Invest in extensible code design
• Use version control and automated

testing
• Institute a rigorous verification and

validation regime
• Define and enforce coding and testing

standards
• Clear and well-defined policies for

– Auditing and maintenance
– Distribution and contribution
– Documentation

Desirable
• Provenance and reproducibility
• Lifecycle management
• Open development and frequent

releases

This tutorial will focus primarily on
scientific software as distinct from
more generic software engineering
best practices

12

Continual, Incremental Software Process Improvement

Target: your project should include “just enough”
software engineering so that you can meet your
short-term and longer-term scientific goals effectively

1. Identify your team’s “pain points” in your
software development processes

2. Set a goal for something to improve
– Target processes and behaviors, not just tasks
– Pick something that you can address in a few

months that will give you a noticeable benefit

3. Agree on a plan to address it, identify
markers of progress and what is “done”

– Write them down

4. Work your plan, track your progress

5. When you are done, celebrate…

…then pick a new pain point to address

C
os

t

ProgressStart Finish

Old Process
New Process

The new process costs something to
implement, but it pays off over time

Productivity and Sustainability Improvement Planning
https://bssw.io/psip

https://bssw.io/psip

Agenda
Time (Eastern US) Module Topic Speaker Time (UTC)

2:30pm-2:35pm 00 Introduction David E. Bernholdt, ORNL 19:30-19:35

2:35pm-2:45pm 01 Motivation and Overview of Best Practices in
HPC Software Development

David E. Bernholdt, ORNL 19:35-19:45

2:45pm-3:15pm 02 Agile Methodologies Rinku Gupta, ANL 19:45-20:15

3:15pm-3:30pm 03 Git Workflows Patricia Grubel, LANL 20:15-20:30

3:30pm-4:00pm 04 Software Design Anshu Dubey, ANL 20:30-21:00

4:00pm-4:15pm 05 Software Testing 1 Rinku Gupta, ANL 21:00-21:15

4:15pm-4:35pm Break (live Q&A and demo of Kanban hands-on
activities)

David E. Bernholdt and All 21:15-21:35

4:35pm-4:50pm 06 Software Testing 2 Anshu Dubey, ANL 21:35-21:50

4:50pm-5:35pm 07 Refactoring Anshu Dubey, ANL 21:50-22:35

5:35pm-5:50pm 08 Continuous Integration David E. Bernholdt, ORNL 22:35-22:50

5:50pm-6:05pm 09 Reproducibility Patricia Grubel, LANL 22:50-23:05

6:05pm-6:10pm 10 Summary David E. Bernholdt, ORNL 23:05-23:10

6:10pm-6:30pm Live Q&A and demo of CI hands-on activities David E. Bernholdt and All 23:10-23:30

Please evaluate us: https://submissions.supercomputing.org/?page=Submit&id=TutorialEvaluation&site=sc20

https://submissions.supercomputing.org/?page=Submit&id=TutorialEvaluation&site=sc20

	Motivation and Overview of Best Practices in HPC Software Development
	License, Citation and Acknowledgements
	Slide Number 3
	The Success of Computational Science Creates the Challenges of Computational Science
	Scientific Facilities Provide Valuable Resources
	High-Consequence Software-Related Scientific Failures
	More Subtle Impacts on Scientific Productivity
	Technical Debt
	Challenges Developing Scientific Applications Today
	Slide Number 10
	Best Practices for Scientific Software Development
	Continual, Incremental Software Process Improvement
	Agenda

