Rural Postman (RPP)

Input: Undirected graph G = (V, E) with edge lengths and a set $R \subseteq E$ of required edges.

Find: Shortest tour containing all required edges.

Solution structure

If the graph $G\langle R\rangle$ consisting only of edges in R and incident vertices has

- c connected components and
- b odd-degree vertices,

then an optimal tour visits

 $d \ge \max\{c, b/2\}$

edges additionally to those in R.

Theoretical results

Theorem 1. RPP cannot be polynomial-time reduced to instances of size $d^{O(1)}$, unless coNP \subseteq NP/poly.

Theorem 2. Given $\varepsilon > 0$, any RPP instance I can be reduced to an instance I' in $O(|V|^3)$ time such that

- I' has $2b + O(c/\varepsilon)$ vertices, and
- α -approximate solutions for I' yield $\alpha(1 + \varepsilon)$ -approximate solutions for I, for any $\alpha > 1$.

On approximate data reduction for the Rural Postman Problem

R. van Bevern, T. Fluschnik, and O. Yu. Tsidulko, Networks, in press.

Experiments show that

vertex count decreases to 60 %

solution cost increases by 1 %

on instances with few components of required edges.

Experimental results

Average component size of $G\langle R \rangle$ vs fraction of remaining vertices:

Example: before and after

